Nothing Special   »   [go: up one dir, main page]

JPH10168502A - Composite material with high thermal conductivity - Google Patents

Composite material with high thermal conductivity

Info

Publication number
JPH10168502A
JPH10168502A JP8329407A JP32940796A JPH10168502A JP H10168502 A JPH10168502 A JP H10168502A JP 8329407 A JP8329407 A JP 8329407A JP 32940796 A JP32940796 A JP 32940796A JP H10168502 A JPH10168502 A JP H10168502A
Authority
JP
Japan
Prior art keywords
composite material
thermal conductivity
metal powder
crystalline carbon
high thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8329407A
Other languages
Japanese (ja)
Inventor
Hisaji Matsui
久次 松井
Yoshio O
祥生 王
Takeo Matsui
丈雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8329407A priority Critical patent/JPH10168502A/en
Publication of JPH10168502A publication Critical patent/JPH10168502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material of a high thermal conductivity, excellent in thermal conductivity, hydrophilic property, and corrosion resistance and useful for a substitute material for copper, aluminum, etc., conventionally used in a heat radiation plate for protection of an electric circuit and in thermal machinery, such as a heat exchanger and heat pump. SOLUTION: A mixture is prepared by mixing 100 pts.wt. of metal powder (Fe, Cu, Al, Ag, Be, Mg, W, Ni, Mo, Si, Zn, etc.) and 1-200 pts.wt. of crystalline carbon material (graphite, carbon fiber, carbon black, fullerene, carbon nano- tube, etc.). This mixture is refined under pressurization and compounded. The resultant composite material grains are hot-press-compacted. By this method, the compound material with high thermal conductivity, having a structure in which the metal powder, e.g. of 5μm to 1nm average grain size is dispersed in the crystalline carbon matrix, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高熱伝導率複合材
及びその製造法に関する。本発明は、高熱伝導率複合材
の製造用材料として好適な複合材粒子及びその製造法に
関する。本発明の高熱伝導率複合材は、電気回路保護用
の散熱板、熱交換器やヒートポンプ等の熱的機械の高熱
伝導性が要求される構築材料として有用である。
The present invention relates to a high thermal conductivity composite and a method for producing the same. The present invention relates to composite particles suitable as a material for producing a high thermal conductivity composite and a method for producing the composite particles. The high thermal conductivity composite material of the present invention is useful as a construction material that requires high thermal conductivity of thermal machines such as heat spreaders for protecting electric circuits, heat exchangers and heat pumps.

【0002】[0002]

【従来の技術】従来、熱交換、熱伝達の現象を伴う熱的
機械又は散熱用の汎用熱伝導材としては、主に鋳鉄、ス
テンレス鋼、銅及び銅合金、アルミニウム及びアルミニ
ウム合金、ニッケル及びニッケル合金、チタン及びチタ
ン合金、ジルコニウム合金等が使用されている。特に、
高熱伝導率が要求される熱交換器等の熱的機械には、常
温から高温までの温度範囲にわたって熱伝導率が最も高
い銅やアルミニウム等が使用されている。
2. Description of the Related Art Conventionally, general-purpose heat conductive materials for thermal machinery or heat dissipation with the phenomenon of heat exchange and heat transfer include mainly cast iron, stainless steel, copper and copper alloys, aluminum and aluminum alloys, nickel and nickel. Alloys, titanium and titanium alloys, zirconium alloys and the like are used. Especially,
For a thermal machine such as a heat exchanger that requires a high thermal conductivity, copper, aluminum, or the like having the highest thermal conductivity over a temperature range from room temperature to a high temperature is used.

【0003】しかし、現代社会においては、省エネルギ
ーの技術に対する要望がますます高まっている中、より
高い熱伝導率あるいは熱効率を有する熱的機械が求めら
れており、銅やアルミニウム等に比べて、より高い熱伝
導率を有する汎用熱伝導材を開発する必要がある。ま
た、銅、アルミニウム等の金属を熱伝導材とする熱的機
械においては、媒体と金属の濡れ性や酸性又はアルカリ
性媒体による金属の腐食性といった点にも問題がある。
[0003] However, in the modern society, as the demand for energy saving technology is increasing more and more, there is a demand for a thermal machine having higher thermal conductivity or thermal efficiency. It is necessary to develop a general-purpose heat conductive material having high heat conductivity. Further, in a thermal machine using a metal such as copper or aluminum as a heat conductive material, there is a problem in wettability between the medium and the metal or corrosiveness of the metal by an acidic or alkaline medium.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、電気
回路保護用の放熱板、熱交換器やヒートポンプ等の熱的
機械において、従来使用されている銅やアルミニウム等
の代替材料となり得るように、高熱伝導率を有する高熱
伝導材を提供することにあり、更に、高い親水性及び耐
食性を有する新規高熱伝導材を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat sink for protecting electric circuits, a heat exchanger, a heat pump, and other thermal machines, which can be used as an alternative material to copper, aluminum, and the like conventionally used. Another object of the present invention is to provide a high thermal conductive material having a high thermal conductivity, and to provide a novel high thermal conductive material having high hydrophilicity and corrosion resistance.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記の目
的に鑑み鋭意検討の結果、銅よりも熱伝導率が高い黒鉛
や炭素繊維等の結晶性カーボン材と様々な金属を特定の
方法により複合化させることにより、一般に熱的機械に
使用されている銅よりも2倍以上高い熱伝導率を有する
カーボンと金属の複合材が得られること、特に、結晶性
カーボンマトリックスに金属粉末を微細に分散させた複
合材が高熱伝導率を有することを見出した。
Means for Solving the Problems The present inventors have made intensive studies in view of the above-mentioned object, and as a result, have specified a crystalline carbon material such as graphite or carbon fiber having a higher thermal conductivity than copper and various metals. By compounding by the method, it is possible to obtain a composite material of carbon and metal having a thermal conductivity that is at least twice as high as that of copper generally used in thermal machines. It has been found that a finely dispersed composite material has a high thermal conductivity.

【0006】本発明は、金属粉末(例えば、Fe、C
u、Al、Ag、Be、Mg、W、Ni、Mo、Si及
びZnからなる群から選ばれた金属の粉末又は前記群か
ら選ばれた金属を含む合金の粉末から選ばれた1種類又
は2種類以上)と結晶性カーボン材(例えば、黒鉛、炭
素繊維、カーボンブラック、フラーレン又はカーボンナ
ノチューブから選ばれた1種類又は2種類以上)とを
(例えば、金属粉末100重量部に対して結晶性カーボ
ン材1〜200重量部の混合割合で)混合し、加圧微細
化・複合化させることにより得られる複合材粒子及びそ
の製造法に関するものである。
[0006] The present invention relates to a metal powder (for example, Fe, C).
one or two selected from powders of metals selected from the group consisting of u, Al, Ag, Be, Mg, W, Ni, Mo, Si and Zn or powders of alloys containing metals selected from the group Or more) and a crystalline carbon material (for example, one or more kinds selected from graphite, carbon fiber, carbon black, fullerene or carbon nanotube) (for example, 100 parts by weight of a metal powder and crystalline carbon). The present invention relates to a composite material particle obtained by mixing and mixing under a mixing ratio of 1 to 200 parts by weight of a material, and performing pressure refining and compounding, and a method for producing the same.

【0007】本発明は、当該複合材粒子をホットプレス
成形することにより得られる高熱伝導率複合材及びその
製造法に関するものである。本発明は、(例えば、前記
複合材粒子をホットプレス成形することにより得られ
る)結晶性カーボンマトリックスに数平均粒子径が5μ
m〜1nmの金属粉末が分散した組織を有する高熱伝導
率複合材に関するものである。
[0007] The present invention relates to a high thermal conductivity composite obtained by subjecting the composite particles to hot press molding and a method for producing the same. The present invention provides a crystalline carbon matrix (e.g., obtained by hot pressing the composite material particles) having a number average particle size of 5 μm.
The present invention relates to a high thermal conductivity composite material having a structure in which metal powder of m to 1 nm is dispersed.

【0008】本発明の高熱伝導率複合材は、従来の銅や
アルミニウム等を使用している熱的機械のための代替材
として使用できるだけでなく、腐食性、親水性などの性
能が要求される新規分野においてもその特性を発揮する
ことができる。
The high thermal conductivity composite material of the present invention can be used not only as a substitute for a conventional thermal machine using copper or aluminum, but also required to have performance such as corrosiveness and hydrophilicity. The characteristics can be exhibited in new fields.

【0009】[0009]

【発明の実施の形態】複合材粒子 金属粉末としては、Fe、Cu、Al、Ag、Be、M
g、W、Ni、Mo、Si、Zn等の金属単体又はこれ
らの金属を1種類以上含む合金の粉末を使用することが
できる。金属粉末は1種類を単独で又は2種類以上を混
合して使用することができる。熱伝導率の高い金属粉
末、例えば、Cu、Ag、Al、Be等の粉末を使用す
ることにより、より熱伝導率の高い複合材を得ることが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION As composite material metal powder, Fe, Cu, Al, Ag, Be, M
A single metal such as g, W, Ni, Mo, Si, Zn or the like, or an alloy powder containing one or more of these metals can be used. One type of metal powder can be used alone, or two or more types can be mixed and used. By using a metal powder having a high thermal conductivity, for example, a powder of Cu, Ag, Al, Be or the like, a composite material having a higher thermal conductivity can be obtained.

【0010】結晶性カーボン材としては、天然黒鉛、人
工合成黒鉛、炭素繊維、フラーレン、カーボンナノチュ
ーブ、その他の結晶性を有するカーボン材を使用するこ
とができる。結晶性カーボン材は粉末又は短繊維として
使用することができる。結晶性カーボンは1種類を単独
で又は2種類以上を混合して使用することができる。結
晶性のよいカーボン材、例えば、天然黒鉛、人工合成黒
鉛等を使用することにより、より熱伝導率の高い複合材
を得ることができる。
As the crystalline carbon material, natural graphite, artificial synthetic graphite, carbon fiber, fullerene, carbon nanotube, and other carbon materials having crystallinity can be used. The crystalline carbon material can be used as a powder or short fiber. One type of crystalline carbon can be used alone, or two or more types can be used in combination. By using a carbon material having good crystallinity, for example, natural graphite or artificial synthetic graphite, a composite material having higher thermal conductivity can be obtained.

【0011】金属粉末と結晶性カーボン材との混合割合
については、特に限定はないが、原料組成物中の金属粉
末100重量部に対して結晶性カーボン材1〜200重
量部、好ましくは10〜100重量部とすることによ
り、熱伝導率が高く且つ成形が容易な複合材を得ること
ができる。好ましい実施の形態では、複合材粒子は、金
属粉末と結晶性カーボン材とが加圧・複合されたカーボ
ン/金属の合金粉末であって、カーボンマトリックス中
の金属粉末の平均粒子径が5μm〜1nmである。
The mixing ratio between the metal powder and the crystalline carbon material is not particularly limited, but is preferably 1 to 200 parts by weight, preferably 10 to 10 parts by weight of the crystalline carbon material per 100 parts by weight of the metal powder in the raw material composition. By setting the content to 100 parts by weight, a composite material having high thermal conductivity and easy to form can be obtained. In a preferred embodiment, the composite material particles are a carbon / metal alloy powder in which a metal powder and a crystalline carbon material are pressed and compounded, and the average particle diameter of the metal powder in the carbon matrix is 5 μm to 1 nm. It is.

【0012】金属粉末と結晶性カーボン材との混合材料
の加圧微細化・複合化は、いわゆる機械的合金化処理す
ることにより実施することができる。機械的合金化処理
は、ボールミルを使用して混合・摩砕することにより実
施することができる。好ましい実施の形態では、得られ
る複合材粒子のカーボンマトリックス中の金属粒子の平
均粒子径が5μm〜1nmとなるように混合材料の加圧
微細化・複合化を行なう。
[0012] The pressure-refining and compounding of the mixed material of the metal powder and the crystalline carbon material can be carried out by a so-called mechanical alloying treatment. The mechanical alloying treatment can be performed by mixing and grinding using a ball mill. In a preferred embodiment, the mixed material is subjected to pressure reduction and compounding so that the average particle size of the metal particles in the carbon matrix of the obtained composite material particles is 5 μm to 1 nm.

【0013】混合材料の加圧微細化・複合化を不活性ガ
ス雰囲気中で実施することが好ましく、また、40℃以
下、好ましくは30℃以下、特に好ましくは0℃以下の
低温で実施することが好ましい。混合材料の加圧微細化
・複合化を不活性ガス雰囲気中30℃以下の低温で実施
することにより、カーボンマトリックス中に金属粒子が
均一に分散した複合材を効率よく製造することができ、
特に、不活性ガス雰囲気中0℃以下の低温で、例えばア
ルゴンガス雰囲気中、液体窒素で冷却しながら実施する
ことにより、一層微細な複合材粒子を製造することがで
き、高熱伝導率複合材を製造するために都合がよい。
It is preferable that the pressure-reducing and complexing of the mixed material is carried out in an inert gas atmosphere, and that it is carried out at a low temperature of 40 ° C. or lower, preferably 30 ° C. or lower, particularly preferably 0 ° C. or lower. Is preferred. By performing the pressurized fineness and compounding of the mixed material in an inert gas atmosphere at a low temperature of 30 ° C. or less, it is possible to efficiently manufacture a composite material in which metal particles are uniformly dispersed in a carbon matrix,
In particular, by performing the cooling at a low temperature of 0 ° C. or lower in an inert gas atmosphere, for example, in an argon gas atmosphere while cooling with liquid nitrogen, it is possible to produce finer composite material particles, and to obtain a high thermal conductivity composite material. It is convenient to manufacture.

【0014】金属粉末と結晶性カーボン材とを適当量配
合して混在させ、これら混合粉末を加圧すれば、微細混
合が進行し、各粒子の均一性が高まると共に、各粒子の
有する性質に機能性が付加され、より高い性能と機能性
を有する合金粒子、即ち、複合材粒子が生成する。特に
加圧を、高エネルギーボールミル等を使用して、いわゆ
る機械的合金化処理により実施すると、各粒子は加工さ
れ偏平状になって新生面を露出し、この新生面どうしが
鍛接され合体するようになって、このことが繰り返さ
れ、衝突・圧縮衝撃力により微細化と均質化が一層進行
し、ミクロン以下nmオーダーの微細構造を有する複合
材粒子が生成する。
When the metal powder and the crystalline carbon material are mixed and mixed in an appropriate amount, and these mixed powders are pressurized, fine mixing progresses, the uniformity of each particle is improved, and the properties of each particle are improved. Functionality is added to produce alloy particles having higher performance and functionality, ie, composite particles. In particular, when pressurization is performed by a so-called mechanical alloying process using a high-energy ball mill or the like, each particle is processed and flattened to expose a new surface, and the new surfaces are forged and joined together. This is repeated, and the fineness and homogenization are further promoted by the impact force of the collision / compression, and composite particles having a fine structure on the order of submicron or nm are generated.

【0015】高熱伝導率複合材 複合材粒子を成形加工することにより、高熱伝導率複合
材を製造することができる。特に、本発明の複合材粒子
をホットプレス成形、即ち、加熱・加圧成形することに
より優れた特性を有する高熱伝導率複合材を製造するこ
とができる。複合材粒子のホットプレス成形は、不活性
雰囲気中20〜1500℃で実施することができる。
The high thermal conductivity composite material can be manufactured by molding the high thermal conductivity composite material particles. In particular, a high thermal conductivity composite material having excellent properties can be produced by hot press molding, that is, heat and pressure molding of the composite material particles of the present invention. Hot pressing of the composite particles can be carried out at 20 to 1500 ° C. in an inert atmosphere.

【0016】複合材粒子をホットプレス成形することに
より、高熱伝導率複合材を得る過程において、ホットプ
レス成形を不活性ガス雰囲気中、適切な温度下で行うこ
とが重要であり、成形圧力が高ければ高いほど、より緻
密な複合材を製造することができ、熱伝導率や機械強度
等の特性が良好な高熱伝導率複合材を得ることができ
る。例えば、銅パウダーと天然黒鉛パウダーから製造し
た銅/黒鉛合金パウダーを、アルゴン雰囲気中800℃
で10000kg/cm2の圧力で成形することにより
銅板の2.3倍の熱伝導率を有する高熱伝導率複合材を
製造することができる。
In the process of obtaining a composite material having a high thermal conductivity by hot-pressing the composite particles, it is important to perform the hot-press molding in an inert gas atmosphere at an appropriate temperature. The higher the temperature, the more dense a composite material can be manufactured, and a high thermal conductivity composite material having good properties such as thermal conductivity and mechanical strength can be obtained. For example, copper / graphite alloy powder produced from copper powder and natural graphite powder is placed at 800 ° C. in an argon atmosphere.
By molding at a pressure of 10,000 kg / cm 2 at, a high thermal conductivity composite material having a thermal conductivity 2.3 times that of the copper plate can be manufactured.

【0017】[0017]

【実施例】以下に本発明の実施例と比較例を示し、本発
明の特徴とするところをより一層明確にする。
EXAMPLES Examples of the present invention and comparative examples are shown below to further clarify the features of the present invention .

【0018】実施例1 銅パウダー(粒子径100μm、純度99.8%)90
重量部に天然黒鉛(パウダー状、純度99%)10重量
部を配合し、混合する。これら混合粉末と100重量部
のステンレスボールを内容積200mlのステンレス鋼
容器に仕込んで、振動ボールミルによってアルゴンガス
気流中、液体窒素で冷却しながら12時間、いわゆる機
械的合金化処理を行った。得られた合金粒子を800
℃、10000kg/cm2の圧力で空気を遮断した状
態で円板状にホットプレス成形した。得られた円板状サ
ンプルを室温でレーザーフラッシュ法による熱伝導率の
測定を行った。その結果を表1に示す。
Example 1 Copper powder (particle size: 100 μm, purity: 99.8%) 90
10 parts by weight of natural graphite (powder, purity: 99%) is blended with and mixed with parts by weight. These mixed powders and 100 parts by weight of stainless steel balls were charged into a stainless steel container having an internal volume of 200 ml, and subjected to a so-called mechanical alloying treatment for 12 hours while cooling with liquid nitrogen in an argon gas stream by a vibrating ball mill. The obtained alloy particles were 800
The disk was hot-pressed at a temperature of 10,000 kg / cm 2 at a pressure of 10,000 kg / cm 2 while the air was shut off. The thermal conductivity of the obtained disk-shaped sample was measured at room temperature by a laser flash method. Table 1 shows the results.

【0019】実施例2 銅パウダー(粒子径100μm、純度99.8%)70
重量部に天然黒鉛(パウダー状、純度99%)30重量
部を配合し、混合する。これら混合粉末と100重量部
のステンレスボールを内容積200mlのステンレス鋼
容器に仕込んで、実施例1と同様な条件で、機械的合金
化処理を行った。得られた円板状サンプルを室温でレー
ザーフラッシュ法による熱伝導率の測定を行った。その
結果を表1に示す。
Example 2 Copper powder (particle size 100 μm, purity 99.8%) 70
30 parts by weight of natural graphite (powder, purity: 99%) are blended and mixed with the parts by weight. The mixed powder and 100 parts by weight of stainless steel balls were placed in a stainless steel container having an internal volume of 200 ml, and subjected to mechanical alloying treatment under the same conditions as in Example 1. The thermal conductivity of the obtained disk-shaped sample was measured at room temperature by a laser flash method. Table 1 shows the results.

【0020】実施例3 銅パウダー(粒子径100μm、純度99.8%)50
重量部に天然黒鉛(パウダー状、純度99%)50重量
部を配合し、混合する。これら混合粉末と100重量部
のステンレスボールを内容積200mlのステンレス鋼
容器に仕込んで、実施例1と同様な条件で、機械的合金
化処理を行った。得られた円板状サンプルを室温でレー
ザーフラッシュ法による熱伝導率の測定を行った。その
結果を表1に示す。
Example 3 Copper powder (particle size: 100 μm, purity: 99.8%) 50
50 parts by weight of natural graphite (powder, purity: 99%) is blended with and mixed with parts by weight. The mixed powder and 100 parts by weight of stainless steel balls were placed in a stainless steel container having an internal volume of 200 ml, and subjected to mechanical alloying treatment under the same conditions as in Example 1. The thermal conductivity of the obtained disk-shaped sample was measured at room temperature by a laser flash method. Table 1 shows the results.

【0021】実施例4 アルミニウム粉末(粒子径200μm、純度99.9
%)70重量部に天然黒鉛(パウダー状、純度99%)
30重量部を配合し、混合する。これら混合粉末と10
0重量部のステンレスボールを内容積200mlのステ
ンレス鋼容器に仕込んで、実施例1と同様な条件で、機
械的合金化処理を行った。得られた円板状サンプルを室
温でレーザーフラッシュ法による熱伝導率の測定を行っ
た。その結果を表1に示す。
Example 4 Aluminum powder (particle size 200 μm, purity 99.9)
%) 70 parts by weight of natural graphite (powder, purity 99%)
30 parts by weight are blended and mixed. These mixed powders and 10
0 parts by weight of stainless steel balls were placed in a stainless steel container having an internal volume of 200 ml, and mechanically alloyed under the same conditions as in Example 1. The thermal conductivity of the obtained disk-shaped sample was measured at room temperature by a laser flash method. Table 1 shows the results.

【0022】実施例5 鉄粉末(粒子径20〜60mesh、純度99.9%)
70重量郭に天然黒鉛(パウダー状、純度99%)30
重量部を配合し、混合する。これら混合粉末と100重
量部のステンレスボールを内容積200mlのステンレ
ス鋼容器に仕込んで、実施例1と同様な条件で、機械的
合金化処理を行った。得られた円板状サンプルを室温で
レーザーフラッシュ法による熱伝導率の測定を行った。
その結果を表1に示す。
Example 5 Iron powder (particle size: 20-60 mesh, purity: 99.9%)
Natural graphite (powder, purity 99%) 30 in 70 weight section
Mix and mix parts by weight. The mixed powder and 100 parts by weight of stainless steel balls were placed in a stainless steel container having an internal volume of 200 ml, and subjected to mechanical alloying treatment under the same conditions as in Example 1. The thermal conductivity of the obtained disk-shaped sample was measured at room temperature by a laser flash method.
Table 1 shows the results.

【0023】実施例6 ニッケルパウダー(Type287、純度99.0%)
70重量部に人造黒鉛(石油コークスから製造されたも
の、パウダー状、純度99%)30重量部を配合し、混
合する。これら混合粉末と100重量部のステンレスボ
ールを内容積200mlのステンレス鋼容器に仕込ん
で、実施例1と同様な条件で、機械的合金化処理を行っ
た。得られた円板状サンプルを室温でレーザーフラッシ
ュ法による熱伝導率の測定を行った。その結果を表1に
示す。
Example 6 Nickel powder (Type 287, purity 99.0%)
30 parts by weight of artificial graphite (manufactured from petroleum coke, powder, purity 99%) is blended with 70 parts by weight and mixed. The mixed powder and 100 parts by weight of stainless steel balls were placed in a stainless steel container having an internal volume of 200 ml, and subjected to mechanical alloying treatment under the same conditions as in Example 1. The thermal conductivity of the obtained disk-shaped sample was measured at room temperature by a laser flash method. Table 1 shows the results.

【0024】比較例1 100重量部の銅パウダー(粒子径100μm、純度9
9.8%)と100重量部のステンレスボールを内容積
200mlのステンレス鋼容器に仕込んで、振動ポール
ミルによってアルゴンガス気流中、液体窒素で冷却しな
がら12時間、いわゆる機械的合金化処理を行った。得
られた合金粒子を800℃、10000kg/cm2
圧力で空気を遮断した状態で円板状にホットプレス成型
した。得られた円板状サンプルを室温でレーザーフラッ
シュ法による熱伝導率の測定を行った。その結果を表1
に示す。
Comparative Example 1 100 parts by weight of copper powder (particle diameter: 100 μm, purity: 9)
9.8%) and 100 parts by weight of stainless steel balls were placed in a 200 ml stainless steel container and subjected to so-called mechanical alloying treatment for 12 hours while cooling with liquid nitrogen in an argon gas stream using a vibrating pole mill. . The obtained alloy particles were hot-pressed into a disk shape at 800 ° C. and at a pressure of 10,000 kg / cm 2 with air shut off. The thermal conductivity of the obtained disk-shaped sample was measured at room temperature by a laser flash method. Table 1 shows the results.
Shown in

【0025】比較例2 100重量部のアルミニウム粉末(粒子径200μm、
純度99.9%)と100重量郡のステンレスボールを
内容積200mlのステンレス鋼容器に仕込んで、比較
例1と同様な条件で機械的合金化処理を行った。得られ
た合金粒子を800℃、10000kg/cm2の圧力
で空気を遮断した状態で円板状にホットプレス成型し
た。得られた円板状サンプルを室温でレーザーフラッシ
ュ法による熱伝導率の測定を行った。その結果を表1に
示す。
Comparative Example 2 100 parts by weight of aluminum powder (particle diameter: 200 μm,
(Purity: 99.9%) and stainless balls of 100 weight groups were charged into a stainless steel container having an inner volume of 200 ml, and subjected to mechanical alloying treatment under the same conditions as in Comparative Example 1. The obtained alloy particles were hot-pressed into a disk shape at 800 ° C. and at a pressure of 10,000 kg / cm 2 with air shut off. The thermal conductivity of the obtained disk-shaped sample was measured at room temperature by a laser flash method. Table 1 shows the results.

【0026】比較例3 100重量部の鉄粉末(粒子径20〜60meSh、純
度99.9%)と100重量郎のステンレスボールを内
容積200mlのステンレス鋼容器に仕込んで、比較例
1と同様な条件で機械的合金化処理を行った。得られた
合金粒子を800℃、10000kg/cm2の圧力で
空気を遮断した状態で円板状にホットプレス成型した。
得られた円板状サンプルを室温でレーザーフラッシュ法
による熱伝導率の測定を行った。その結果を表1に示
す。
Comparative Example 3 100 parts by weight of iron powder (particle size: 20 to 60 meSh, purity: 99.9%) and 100 parts by weight of stainless steel balls were charged into a 200 ml stainless steel container. Mechanical alloying treatment was performed under the conditions. The obtained alloy particles were hot-pressed into a disk shape at 800 ° C. and at a pressure of 10,000 kg / cm 2 with air shut off.
The thermal conductivity of the obtained disk-shaped sample was measured at room temperature by a laser flash method. Table 1 shows the results.

【0027】比較例4 100重量部のニッケルパウダー(Type287、純
度99.0%)と100重量部のステンレスボールを内
容積200mlのステンレス鋼容器に仕込んで、比較例
1と同様な条件で機械的合金化処理を行った。得られた
合金粒子を800℃、10000kg/cm2の圧力で
空気を遮断した状態で円板状にホットプレス成型した。
得られた円板状サンプルを室温でレーザーフラッシュ法
による熱伝導率の測定を行った。その結果を表1に示
す。
Comparative Example 4 100 parts by weight of nickel powder (Type 287, purity: 99.0%) and 100 parts by weight of stainless steel balls were charged into a 200 ml stainless steel container under the same conditions as in Comparative Example 1. An alloying process was performed. The obtained alloy particles were hot-pressed into a disk shape at 800 ° C. and at a pressure of 10,000 kg / cm 2 with air shut off.
The thermal conductivity of the obtained disk-shaped sample was measured at room temperature by a laser flash method. Table 1 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明によれば、単なる金属より2倍以
上ほど高い熱伝導率複合材が得られる。本発明の高熱伝
導率複合材は、耐腐食性や親水性や機械強度などの特性
にも優れている。本発明の高熱伝導率複合材は、高熱伝
導率を有し、しかも、様々な形状に加工することができ
るので、電気回路保護用の散熱板、熱交換器やヒートポ
ンプ等の熱的機械の高熱伝導性が要求される構築材料と
して有用である。
According to the present invention, it is possible to obtain a thermal conductivity composite material that is at least twice as high as a simple metal. The high thermal conductivity composite of the present invention is also excellent in properties such as corrosion resistance, hydrophilicity and mechanical strength. The high thermal conductivity composite material of the present invention has a high thermal conductivity and can be processed into various shapes, so that the high heat of a heat dissipating plate for protecting electric circuits, heat exchangers, heat pumps and other thermal machines. It is useful as a construction material requiring conductivity.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末と結晶性カーボン材とを混合
し、加圧微細化・複合化させることにより得られる複合
材粒子。
1. Composite material particles obtained by mixing a metal powder and a crystalline carbon material and subjecting the mixture to pressure-reduction and compounding.
【請求項2】 金属粉末と結晶性カーボン材との混合割
合が、金属粉末100重量部に対して結晶性カーボン材
1〜200重量部である請求項1に記載の複合材粒子。
2. The composite material particles according to claim 1, wherein the mixing ratio of the metal powder and the crystalline carbon material is 1 to 200 parts by weight of the crystalline carbon material per 100 parts by weight of the metal powder.
【請求項3】 金属粉末が、Fe、Cu、Al、Ag、
Be、Mg、W、Ni、Mo、Si及びZnからなる群
から選ばれた金属の粉末又は前記群から選ばれた金属を
含む合金の粉末から選ばれた1種類又は2種類以上であ
る請求項1又は2に記載の複合材粒子。
3. The method according to claim 1, wherein the metal powder is Fe, Cu, Al, Ag,
It is one or more kinds selected from powders of metals selected from the group consisting of Be, Mg, W, Ni, Mo, Si and Zn or powders of alloys containing metals selected from the group. 3. The composite material particle according to 1 or 2.
【請求項4】 結晶性カーボン材が、黒鉛、炭素繊維、
カーボンブラック、フラーレン又はカーボンナノチュー
ブから選ばれた1種類又は2種類以上である請求項1〜
3のいずれかに記載の複合材粒子。
4. The crystalline carbon material is graphite, carbon fiber,
One or more kinds selected from carbon black, fullerene or carbon nanotube.
4. The composite material particle according to any one of 3.
【請求項5】 請求項1〜4のいずれかに記載の複合材
粒子をホットプレス成形することにより得られる高熱伝
導率複合材。
5. A high thermal conductivity composite obtained by subjecting the composite particles according to claim 1 to hot press molding.
【請求項6】 結晶性カーボンマトリックスに平均粒子
径が5μm〜1nmの金属粉末が分散した組織を有する
高熱伝導率複合材。
6. A high thermal conductivity composite material having a structure in which a metal powder having an average particle size of 5 μm to 1 nm is dispersed in a crystalline carbon matrix.
【請求項7】 請求項1〜4のいずれかに記載の複合材
粒子をホットプレス成形することにより得られる請求項
6に記載の高熱伝導率複合材。
7. The high thermal conductivity composite according to claim 6, which is obtained by subjecting the composite material particles according to claim 1 to hot press molding.
【請求項8】 金属粉末と結晶性カーボン材とを混合
し、加圧微細化・複合化させる複合材粒子の製造法。
8. A method for producing composite material particles in which a metal powder and a crystalline carbon material are mixed, and the mixture is refined and composited under pressure.
【請求項9】 金属粉末と結晶性カーボン材との混合割
合が、金属粉末100重量部に対して結晶性カーボン材
1〜200重量部である請求項8に記載の複合材粒子の
製造法。
9. The method according to claim 8, wherein the mixing ratio of the metal powder and the crystalline carbon material is 1 to 200 parts by weight of the crystalline carbon material per 100 parts by weight of the metal powder.
【請求項10】 金属粉末が、Fe、Cu、Al、A
g、Be、Mg、W、Ni、Mo、Si及びZnからな
る群から選ばれた金属の粉末又は前記群から選ばれた金
属を含む合金の粉末から選ばれた1種類又は2種類以上
である請求項8又は9に記載の複合材粒子の製造法。
10. The method according to claim 1, wherein the metal powder is Fe, Cu, Al, A
g, Be, Mg, W, Ni, Mo, Si and Zn are one or more selected from metal powders or alloy powders containing metals selected from the group. A method for producing the composite material particles according to claim 8.
【請求項11】 結晶性カーボン材が、黒鉛、炭素繊
維、カーボンブラック、フラーレン又はカーボンナノチ
ューブから選ばれた1種類又は2種類以上である請求項
8〜10のいずれかに記載の複合材粒子の製造法。
11. The composite material particles according to claim 8, wherein the crystalline carbon material is one or more selected from graphite, carbon fiber, carbon black, fullerene, and carbon nanotube. Manufacturing method.
【請求項12】 金属粉末と結晶性カーボン材との加圧
微細化・複合化をボールミルで行なう請求項8〜11の
いずれかに記載の複合材粒子の製造法。
12. The method for producing composite material particles according to claim 8, wherein the metal powder and the crystalline carbon material are refined under pressure and combined with a ball mill.
【請求項13】 金属粉末と結晶性カーボン材との加圧
微細化・複合化を不活性ガス雰囲気中40℃以下の低温
で行なう請求項8〜12のいずれかに記載の複合材粒子
の製造法。
13. The production of composite material particles according to claim 8, wherein the metal powder and the crystalline carbon material are pressurized and finely divided / composited at a low temperature of 40 ° C. or lower in an inert gas atmosphere. Law.
【請求項14】 請求項1〜4のいずれかに記載の複合
材粒子をホットプレス成形する高熱伝導率複合材の製造
法。
14. A method for producing a composite material having high thermal conductivity, comprising subjecting the composite material particles according to claim 1 to hot press molding.
【請求項15】 ホットプレス成形を不活性雰囲気中2
0〜1500℃で行なう請求項14に記載の高熱伝導率
複合材の製造法。
15. Hot press molding in an inert atmosphere
The method for producing a high thermal conductivity composite according to claim 14, which is performed at 0 to 1500 ° C.
JP8329407A 1996-12-10 1996-12-10 Composite material with high thermal conductivity Pending JPH10168502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8329407A JPH10168502A (en) 1996-12-10 1996-12-10 Composite material with high thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8329407A JPH10168502A (en) 1996-12-10 1996-12-10 Composite material with high thermal conductivity

Publications (1)

Publication Number Publication Date
JPH10168502A true JPH10168502A (en) 1998-06-23

Family

ID=18221082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8329407A Pending JPH10168502A (en) 1996-12-10 1996-12-10 Composite material with high thermal conductivity

Country Status (1)

Country Link
JP (1) JPH10168502A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069825A (en) * 2002-08-02 2004-03-04 Seiko Epson Corp Electrooptical device and electronic equipment
WO2004092052A1 (en) * 2003-04-17 2004-10-28 Kyungwon Enterprise Co. Ltd. Nano-structured metal-carbon composite and process for preparation thereof
WO2005040065A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
WO2005040067A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
WO2005040066A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
US6933531B1 (en) 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
JP2006001232A (en) * 2004-06-21 2006-01-05 Hitachi Metals Ltd Composite having high heat conduction/low heat expansion and manufacturing process of the same
JP2006147170A (en) * 2004-11-16 2006-06-08 Sumitomo Electric Ind Ltd Conductive material and its manufacturing method
KR100625276B1 (en) * 2003-07-23 2006-09-15 닛신 고오교오 가부시키가이샤 Carbon Fiber Composite Material and Process for Producing the Same, Carbon Fiber Composite Product and Process for Producing the Same
US7244374B2 (en) 2003-10-28 2007-07-17 Fuji Xerox Co., Ltd. Composite and method of manufacturing the same
US7252795B2 (en) 2003-08-26 2007-08-07 Matsushita Electric Industrial Co., Ltd. High thermal conductivite element, method for manufacturing same, and heat radiating system
JP2007277691A (en) * 2006-04-11 2007-10-25 Showa Denko Kk Carbon fiber-reinforced aluminum composite material and its production method
US7311135B1 (en) * 2005-05-27 2007-12-25 Nissei Plastic Industrial Co., Ltd. Process for manufacturing a nanocarbon-metal composite material
JP2008156676A (en) * 2006-12-21 2008-07-10 Nissin Kogyo Co Ltd Carbon fiber composite metallic material and its production method
JP2008196053A (en) * 2008-02-15 2008-08-28 Nissin Kogyo Co Ltd Carbon fiber-compounded metallic material, method for producing the same, carbon fiber-compounded nonmetallic material, and method for producing the same
JP2008545882A (en) * 2005-05-17 2008-12-18 アプライド カーボン ナノ テクノロジー カンパニー,リミテッド Method for uniformly dispersing nanofibers in metal, polymer and ceramic matrices
CN100466222C (en) * 2006-09-21 2009-03-04 上海交通大学 Carbon nano tube/copper composite plating membrane and method for preparing electricity interconnecting line
JP2009149972A (en) * 2007-12-21 2009-07-09 Sungkyunkwan Univ Foundation For Corporate Collaboration Method for encapsulating carbon material into aluminum
JP2010047833A (en) * 2008-08-25 2010-03-04 Ind Technol Res Inst Method of nanosizing magnesium-based hydrogen storage material
JP2010508432A (en) * 2006-10-31 2010-03-18 アルカン テヒノロギー ウント メーニッジメント リミテッド Materials containing carbon nanotubes, methods for producing these materials, and use of these materials
JP2010159445A (en) * 2009-01-07 2010-07-22 Shinshu Univ Method of mixing metal particle and carbon powder, method of producing metal-carbon composite material, and metal-carbon composite material
JP2011014650A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Electromagnetic shielding molding material, electromagnetic shielding molding for electronic component, electromagnetic shielding molding for building material, and method of manufacturing the electromagnetic shielding molding material
KR101027275B1 (en) 2009-12-16 2011-04-06 이철호 Heating element for snow removal using thermal interface material including mixture of carbon nanotube, apparatus for manufacturing and method for manufacturing the same
WO2011071240A3 (en) * 2009-12-09 2011-09-01 연세대학교 산학협력단 Metal matrix composite, and preparation method thereof
JP2012518079A (en) * 2009-02-16 2012-08-09 バイエル・インターナショナル・ソシエテ・アノニム COMPOSITE MATERIAL CONTAINING METAL AND NANOPARTICLE AND METHOD FOR PRODUCING THE SAME
TWI403576B (en) * 2008-12-31 2013-08-01 Ind Tech Res Inst Metal based composites material containing carbon and manufacturing method thereof
US8642132B2 (en) 2009-05-19 2014-02-04 Toyota Jidosha Kabushiki Kaisha Method of forming carbon particle-containing film, heat transfer member, power module, and vehicle inverter
CN103752815A (en) * 2013-12-15 2014-04-30 北京工业大学 Preparation method and application for one-dimensional silver/manganese oxide composite nano-materials with different morphologies
US20140182830A1 (en) * 2012-12-28 2014-07-03 Bor Z. Jang Graphene composite hand-held and hand-heated thawing tool
JP5563175B1 (en) * 2014-03-05 2014-07-30 清二 加川 High thermal conductivity heat dissipation sheet and method for manufacturing the same
CN104846259A (en) * 2015-04-20 2015-08-19 杭州科明电子有限公司 Push rod of tool switch
US20160053155A1 (en) * 2013-06-26 2016-02-25 Lg Electronics Inc. Heat discharging sheet and method for manufacturing the same
US20160280550A1 (en) * 2013-11-05 2016-09-29 Graftech International Holdings Inc. A graphite article
RU2625692C2 (en) * 2015-11-13 2017-07-18 Общество с ограниченной ответственностью "Карбон тех" Method for producing nanocomposite materials based on copper matrix
US10276475B2 (en) 2012-12-26 2019-04-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Thermal conductive stress relaxation structure
US10566482B2 (en) 2013-01-31 2020-02-18 Global Graphene Group, Inc. Inorganic coating-protected unitary graphene material for concentrated photovoltaic applications
US10861617B2 (en) 2012-11-02 2020-12-08 Global Graphene Group, Inc. Graphene oxide-coated graphitic foil and processes for producing same
US10919760B2 (en) 2013-02-14 2021-02-16 Global Graphene Group, Inc. Process for nano graphene platelet-reinforced composite material
CN112809241A (en) * 2020-12-31 2021-05-18 南京力之兴焊接材料有限公司 Aluminum soldering paste and preparation method thereof
WO2021125196A1 (en) * 2019-12-17 2021-06-24 宇部興産株式会社 Graphite-copper composite material, heating member using same, and method for manufacturing graphite-copper composite material
CN114457294A (en) * 2022-01-14 2022-05-10 西安工业大学 Preparation method of high-strength high-resistance multi-scale cooperative reinforced aluminum matrix composite
WO2022210298A1 (en) * 2021-03-31 2022-10-06 Ube株式会社 Graphite-copper composite material, heat sink member using same, and method for manufacturing graphite-copper composite material
CN117187617A (en) * 2023-09-21 2023-12-08 上海理工大学 High-heat-conductivity composite material and preparation method thereof

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933531B1 (en) 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
JP2004069825A (en) * 2002-08-02 2004-03-04 Seiko Epson Corp Electrooptical device and electronic equipment
WO2004092052A1 (en) * 2003-04-17 2004-10-28 Kyungwon Enterprise Co. Ltd. Nano-structured metal-carbon composite and process for preparation thereof
KR100625276B1 (en) * 2003-07-23 2006-09-15 닛신 고오교오 가부시키가이샤 Carbon Fiber Composite Material and Process for Producing the Same, Carbon Fiber Composite Product and Process for Producing the Same
US7402340B2 (en) 2003-08-26 2008-07-22 Matsushita Electric Industrial Co., Ltd. High thermal conductive element, method for manufacturing same, and heat radiating system
US7252795B2 (en) 2003-08-26 2007-08-07 Matsushita Electric Industrial Co., Ltd. High thermal conductivite element, method for manufacturing same, and heat radiating system
US7244374B2 (en) 2003-10-28 2007-07-17 Fuji Xerox Co., Ltd. Composite and method of manufacturing the same
JPWO2005040066A1 (en) * 2003-10-29 2007-03-01 住友精密工業株式会社 Carbon nanotube-dispersed composite material, production method thereof, and application thereof
JPWO2005040067A1 (en) * 2003-10-29 2007-03-01 住友精密工業株式会社 Carbon nanotube-dispersed composite material, production method thereof, and application thereof
JPWO2005040068A1 (en) * 2003-10-29 2007-03-08 住友精密工業株式会社 Method for producing carbon nanotube dispersed composite material
WO2005040068A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
WO2005040066A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
WO2005040067A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
JP4593473B2 (en) * 2003-10-29 2010-12-08 住友精密工業株式会社 Method for producing carbon nanotube dispersed composite material
WO2005040065A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
JP4593472B2 (en) * 2003-10-29 2010-12-08 住友精密工業株式会社 Method for producing carbon nanotube-dispersed composite material and application thereof
JP2006001232A (en) * 2004-06-21 2006-01-05 Hitachi Metals Ltd Composite having high heat conduction/low heat expansion and manufacturing process of the same
JP4711165B2 (en) * 2004-06-21 2011-06-29 日立金属株式会社 High thermal conductivity / low thermal expansion composite and method for producing the same
JP2006147170A (en) * 2004-11-16 2006-06-08 Sumitomo Electric Ind Ltd Conductive material and its manufacturing method
JP2008545882A (en) * 2005-05-17 2008-12-18 アプライド カーボン ナノ テクノロジー カンパニー,リミテッド Method for uniformly dispersing nanofibers in metal, polymer and ceramic matrices
US7311135B1 (en) * 2005-05-27 2007-12-25 Nissei Plastic Industrial Co., Ltd. Process for manufacturing a nanocarbon-metal composite material
KR101225925B1 (en) 2005-05-27 2013-01-24 고쿠리츠다이가쿠호진 나가오카기쥬츠가가쿠다이가쿠 Process for manufacturing a nanocarbon-metal composite material
JP2007277691A (en) * 2006-04-11 2007-10-25 Showa Denko Kk Carbon fiber-reinforced aluminum composite material and its production method
CN100466222C (en) * 2006-09-21 2009-03-04 上海交通大学 Carbon nano tube/copper composite plating membrane and method for preparing electricity interconnecting line
JP2010508432A (en) * 2006-10-31 2010-03-18 アルカン テヒノロギー ウント メーニッジメント リミテッド Materials containing carbon nanotubes, methods for producing these materials, and use of these materials
JP2008156676A (en) * 2006-12-21 2008-07-10 Nissin Kogyo Co Ltd Carbon fiber composite metallic material and its production method
JP2009149972A (en) * 2007-12-21 2009-07-09 Sungkyunkwan Univ Foundation For Corporate Collaboration Method for encapsulating carbon material into aluminum
JP2008196053A (en) * 2008-02-15 2008-08-28 Nissin Kogyo Co Ltd Carbon fiber-compounded metallic material, method for producing the same, carbon fiber-compounded nonmetallic material, and method for producing the same
JP4669014B2 (en) * 2008-02-15 2011-04-13 日信工業株式会社 Method for producing carbon fiber composite metal material
JP2010047833A (en) * 2008-08-25 2010-03-04 Ind Technol Res Inst Method of nanosizing magnesium-based hydrogen storage material
TWI403576B (en) * 2008-12-31 2013-08-01 Ind Tech Res Inst Metal based composites material containing carbon and manufacturing method thereof
JP2010159445A (en) * 2009-01-07 2010-07-22 Shinshu Univ Method of mixing metal particle and carbon powder, method of producing metal-carbon composite material, and metal-carbon composite material
JP2012518079A (en) * 2009-02-16 2012-08-09 バイエル・インターナショナル・ソシエテ・アノニム COMPOSITE MATERIAL CONTAINING METAL AND NANOPARTICLE AND METHOD FOR PRODUCING THE SAME
JP2012518078A (en) * 2009-02-16 2012-08-09 バイエル・インターナショナル・ソシエテ・アノニム Engine or engine component and method for manufacturing the same
JP2012518080A (en) * 2009-02-16 2012-08-09 バイエル・インターナショナル・ソシエテ・アノニム Coupling means, manufacturing method thereof, and material joining
US8642132B2 (en) 2009-05-19 2014-02-04 Toyota Jidosha Kabushiki Kaisha Method of forming carbon particle-containing film, heat transfer member, power module, and vehicle inverter
JP2011014650A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Electromagnetic shielding molding material, electromagnetic shielding molding for electronic component, electromagnetic shielding molding for building material, and method of manufacturing the electromagnetic shielding molding material
US9410228B2 (en) 2009-12-09 2016-08-09 Industry-Academic Cooperation Foundation Yonsei University Metal matrix composite, and preparation method thereof
WO2011071240A3 (en) * 2009-12-09 2011-09-01 연세대학교 산학협력단 Metal matrix composite, and preparation method thereof
KR101027275B1 (en) 2009-12-16 2011-04-06 이철호 Heating element for snow removal using thermal interface material including mixture of carbon nanotube, apparatus for manufacturing and method for manufacturing the same
US10861617B2 (en) 2012-11-02 2020-12-08 Global Graphene Group, Inc. Graphene oxide-coated graphitic foil and processes for producing same
US10276475B2 (en) 2012-12-26 2019-04-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Thermal conductive stress relaxation structure
US20140182830A1 (en) * 2012-12-28 2014-07-03 Bor Z. Jang Graphene composite hand-held and hand-heated thawing tool
US9833913B2 (en) * 2012-12-28 2017-12-05 Nanotek Instruments, Inc. Graphene composite hand-held and hand-heated thawing tool
US10566482B2 (en) 2013-01-31 2020-02-18 Global Graphene Group, Inc. Inorganic coating-protected unitary graphene material for concentrated photovoltaic applications
US10919760B2 (en) 2013-02-14 2021-02-16 Global Graphene Group, Inc. Process for nano graphene platelet-reinforced composite material
US20160053155A1 (en) * 2013-06-26 2016-02-25 Lg Electronics Inc. Heat discharging sheet and method for manufacturing the same
US10273395B2 (en) * 2013-06-26 2019-04-30 Lg Electronics Inc. Heat discharging sheet and method for manufacturing the same
US20160280550A1 (en) * 2013-11-05 2016-09-29 Graftech International Holdings Inc. A graphite article
US10589998B2 (en) * 2013-11-05 2020-03-17 Neograf Solutions, Llc Graphite article
CN103752815A (en) * 2013-12-15 2014-04-30 北京工业大学 Preparation method and application for one-dimensional silver/manganese oxide composite nano-materials with different morphologies
US10609810B2 (en) 2014-03-05 2020-03-31 Seiji Kagawa Method for producing heat-dissipating sheet having high thermal conductivity
JP5563175B1 (en) * 2014-03-05 2014-07-30 清二 加川 High thermal conductivity heat dissipation sheet and method for manufacturing the same
US20190069389A1 (en) * 2014-03-05 2019-02-28 Seiji Kagawa Heat-dissipating sheet having high thermal conductivity and its production method
CN104846259A (en) * 2015-04-20 2015-08-19 杭州科明电子有限公司 Push rod of tool switch
RU2625692C2 (en) * 2015-11-13 2017-07-18 Общество с ограниченной ответственностью "Карбон тех" Method for producing nanocomposite materials based on copper matrix
WO2021125196A1 (en) * 2019-12-17 2021-06-24 宇部興産株式会社 Graphite-copper composite material, heating member using same, and method for manufacturing graphite-copper composite material
JPWO2021125196A1 (en) * 2019-12-17 2021-06-24
CN114761588A (en) * 2019-12-17 2022-07-15 Ube株式会社 Graphite-copper composite material, heat sink member using same, and method for producing graphite-copper composite material
CN112809241A (en) * 2020-12-31 2021-05-18 南京力之兴焊接材料有限公司 Aluminum soldering paste and preparation method thereof
WO2022210298A1 (en) * 2021-03-31 2022-10-06 Ube株式会社 Graphite-copper composite material, heat sink member using same, and method for manufacturing graphite-copper composite material
CN114457294A (en) * 2022-01-14 2022-05-10 西安工业大学 Preparation method of high-strength high-resistance multi-scale cooperative reinforced aluminum matrix composite
CN117187617A (en) * 2023-09-21 2023-12-08 上海理工大学 High-heat-conductivity composite material and preparation method thereof
CN117187617B (en) * 2023-09-21 2024-06-11 上海理工大学 High-heat-conductivity composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH10168502A (en) Composite material with high thermal conductivity
JP4593473B2 (en) Method for producing carbon nanotube dispersed composite material
JP7164906B2 (en) METHOD FOR PREPARATION OF METAL MATERIAL OR METAL COMPOSITE MATERIAL
KR101197581B1 (en) Metal matrix composites and method thereof
US5993731A (en) Process for making improved net shape or near net shape metal parts
CN100464001C (en) High-strength high-conductivity oxidation-resisting low-silver copper-base alloy and preparation thereof
JP2914076B2 (en) Ceramic particle-dispersed metal member, its manufacturing method and its use
CN1101859C (en) Metal powders based on tungsten and/or molybdenum and three-dimension metals
JPWO2005040066A1 (en) Carbon nanotube-dispersed composite material, production method thereof, and application thereof
JPS62238344A (en) Mechanical alloying method
CN1676644A (en) Ceramic granule reinforced aluminium-base composite material and its preparing method
EP0529993B1 (en) Production of Aluminum matrix composite powder
CN109868392A (en) A kind of aluminum matrix composite and preparation method thereof of Fe-based amorphous alloy enhancing
JPWO2005040067A1 (en) Carbon nanotube-dispersed composite material, production method thereof, and application thereof
CN110508800B (en) Pre-alloy powder used for composite binder grinding tool for grinding hard and brittle materials, preparation method of pre-alloy powder and grinding tool
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
CN116219217A (en) Graphene copper-based composite material, preparation method thereof and brake pad
JP3869853B2 (en) Iron-based powder containing Mo, P, C
JP3047239B2 (en) Warm-worked magnet and manufacturing method thereof
JPH083601A (en) Aluminum-aluminum nitride composite material and its production
CN113770926A (en) Metal bond diamond tool and preparation method thereof
JP6447948B2 (en) Conductive support member and manufacturing method thereof
CN108103423A (en) A kind of press fitting cylinder body spring
CN115927894B (en) Aluminum alloy material for automobile heat dissipation parts and preparation method thereof
US20240207930A1 (en) Methods for making a sintered body