Nothing Special   »   [go: up one dir, main page]

JPH10125924A - Org. thin film transistor, liq. crystal element and org. light emitting element - Google Patents

Org. thin film transistor, liq. crystal element and org. light emitting element

Info

Publication number
JPH10125924A
JPH10125924A JP8274401A JP27440196A JPH10125924A JP H10125924 A JPH10125924 A JP H10125924A JP 8274401 A JP8274401 A JP 8274401A JP 27440196 A JP27440196 A JP 27440196A JP H10125924 A JPH10125924 A JP H10125924A
Authority
JP
Japan
Prior art keywords
electrode
film transistor
thin film
layer
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8274401A
Other languages
Japanese (ja)
Other versions
JP4085438B2 (en
Inventor
Akio Takimoto
昭雄 滝本
Kazunori Komori
一徳 小森
Hisanori Sugiura
久則 杉浦
Kazuhiro Nishiyama
和廣 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27440196A priority Critical patent/JP4085438B2/en
Publication of JPH10125924A publication Critical patent/JPH10125924A/en
Application granted granted Critical
Publication of JP4085438B2 publication Critical patent/JP4085438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]

Landscapes

  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a bright display having a large aperture ratio with large light emitting elements by using an org. compd. having specified repetition units of oligomer molecules for forming an active semiconductor layer. SOLUTION: The org. thin film transistor comprises three terminals of a gate, source and drain electrodes 2, 6, 5 and active semiconductor layer 4 on a transparent insulative substrate 1. The active layer 4 is an org. thin film having five or more repetition units of oligomer molecules of phenylene sulfide having benzene rings and S atoms straightly bonded, shown by formula I. A voltage applied between the drain and source electrodes 5, 6 of the transistor structure causes the charge migration orthogonally to the major axis of the oligomer molecule easily enough to lower gate voltage required for the transistor switching.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は大型ディスプレイ素
子を駆動する有機薄膜トランジスタと、この有機薄膜ト
ランジスタを用いた大型の液晶素子と、有機薄膜トラン
ジスタを用いた大型の有機発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic thin film transistor for driving a large display device, a large liquid crystal device using the organic thin film transistor, and a large organic light emitting device using the organic thin film transistor.

【0002】[0002]

【従来の技術】直視型の大画面ディスプレイには、液晶
素子、プラズマ・ディスプレイ・パネル(PDP)の開
発が盛んである。例えば液晶素子では10インチクラス
以上のa-SiTFT直視パネルが主流となっている。また
PDPは40インチクラスを目指して開発が進んでい
る。他の大型表示素子の方法としてプラズマアドレス型
の液晶素子も、このPDPと同レベルの大きさのディス
プレイ素子の実現を目指している。この方式は大画面の
液晶素子を駆動するトランジスタの代わりにプラズマを
利用するものである。これらの素子は、大画面化に伴っ
て様々な課題に直面する。液晶素子では、駆動素子にプ
ラズマCVD法によるa-Siを用いており、大型化対応の
製造装置の開発が必要となり、製造コストの大幅な増加
がある。
2. Description of the Related Art Development of a liquid crystal element and a plasma display panel (PDP) has been active in a direct-view large-screen display. For example, in the case of liquid crystal elements, a-Si TFT direct-view panels of a 10-inch class or more are mainly used. PDPs are being developed for the 40-inch class. As a method of another large-sized display element, a plasma-addressed liquid crystal element is also aimed at realizing a display element having the same size as this PDP. This method uses plasma instead of a transistor for driving a large-screen liquid crystal element. These elements face various problems as the screen size increases. In a liquid crystal element, a-Si formed by a plasma CVD method is used as a driving element, so that it is necessary to develop a manufacturing apparatus that can handle a large size, and the manufacturing cost is greatly increased.

【0003】これに対して有機物で薄膜トランジスタを
形成することが可能になれば、塗布法あるいは低温の蒸
着法などで大型化が容易になるという考えがある。研究
段階ではあるが有機薄膜トランジスタの開発が盛んにな
ってきた。例えば、A.Dodabalapur等は、有機の活性半
導体層として蒸着法によって成膜するチオフェンオリゴ
マ膜(重合度6)を用いて電界効果移動度0.01〜0.03cm
2V-1s-1、トランジスタの電流オン/オフ比は6〜7桁
を得ている(「サイエンス」(SCIENCE、VOL.268,p.270
〜271))。但し、電流値は他のトランジスタに比べて
小さい。また、スイッチングに必要なゲート電圧とドレ
イン電圧が数十Vと高いのが欠点である。この性能は現
行のa-Siの電界効果移動度0.1〜0.5cm2V-1-1
及び電流のオン/オフ比の〜7桁に近い。
On the other hand, if it is possible to form a thin film transistor using an organic material, it is considered that the size can be easily increased by a coating method or a low-temperature deposition method. Although at the research stage, the development of organic thin film transistors has become active. For example, A. Dodabalapur et al. Use a thiophene oligomer film (degree of polymerization: 6) formed by an evaporation method as an organic active semiconductor layer, and have a field-effect mobility of 0.01 to 0.03 cm.
2 V −1 s −1 , and the transistor current on / off ratio is 6 to 7 digits (“Science” (SCIENCE, VOL.268, p.270)
~ 271)). However, the current value is smaller than other transistors. Another drawback is that the gate and drain voltages required for switching are as high as several tens of volts. This performance is based on the current field-effect mobility of a-Si of 0.1 to 0.5 cm 2 V −1 s −1 ,
And the on / off ratio of the current is close to 77 digits.

【0004】更に低温p-Siの電界効果移動度50cm2V
-1-1、及び電流のオン/オフ比は〜7桁であり、高温
p-Siの電界効果移動度100cm2V-1s-1、及びオン/
オフ比は〜7桁である。最も性能の良い単結晶Siになる
と、その電界効果移動度1500cm2V-1s-1、及び電
流のオン/オフ比は9桁以上である。しかし、いずれの
トランジスタも大型化対応が非常に困難である。前出の
有機薄膜トランジスタは、この大型ディスプレイ素子で
も直視型の液晶素子の駆動素子として有力視されてい
る。
Further, the field-effect mobility of low-temperature p-Si is 50 cm 2 V
-1 s -1 , and the on / off ratio of the current is ~ 7 digits,
The field effect mobility of p-Si is 100 cm 2 V −1 s −1 , and the on /
The off ratio is up to 7 digits. When single crystal Si has the best performance, its field effect mobility is 1500 cm 2 V −1 s −1 and the current on / off ratio is 9 digits or more. However, it is very difficult to increase the size of any of the transistors. The organic thin film transistor described above is considered to be a promising driving element for a direct-view type liquid crystal element even in this large display element.

【0005】バックライトが必要な液晶素子に対して発
光型の大画面ディスプレイデバイスへの要望がある。前
出のPDPが代表例であるが、有機薄膜の発光素子の開
発も近年盛んである。モノマ分子の蒸着法による素子
と、ポリフェニレンビニレン(PPV)を初めとする高
分子材料を塗布形成する素子が有望である。これらの有
機発光材料を用いてカラー表示素子を作製する場合、液
晶素子の開発の歴史をから推測されるように近い将来、
トランジスタによるアクティブ型駆動が主流になるであ
ろう。単純なマトリックス電極配線によると、大画面で
発生する輝度傾斜を防ぐためである。現状ではアクティ
ブ駆動が困難で、パシブ駆動の延長となってしまう。
There is a demand for a light-emitting large-screen display device for a liquid crystal element requiring a backlight. Although the above-mentioned PDP is a typical example, the development of a light-emitting element using an organic thin film has been active in recent years. Promising elements are those obtained by vapor deposition of monomer molecules and those formed by coating a polymer material such as polyphenylenevinylene (PPV). In the case of producing a color display element using these organic light emitting materials, in the near future as inferred from the history of development of liquid crystal elements,
Active drive by transistors will be mainstream. This is because the simple matrix electrode wiring prevents a luminance gradient from occurring on a large screen. At present, active driving is difficult, and it extends passive driving.

【0006】[0006]

【発明が解決しようとする課題】有機薄膜トランジスタ
の性能の第1の課題は、電界効果移動度が0.01〜0.03cm
2V-1s-1とa-Siの電界効果移動度0.1〜0.5cm2V-1s-1に対
して1桁以上小さいことである。第2の課題は駆動電圧
がゲート電圧、ドレイン電圧共に数十Vと高いことであ
る。但し、プラズマアドレス型液晶素子の場合、データ
電圧100V(ゲート電圧に相当)、放電電圧350V(ド
レイン電圧に相当)であり、必ずしも欠点とはならな
い。液晶素子の駆動は通常5V以下でなされるが、液晶
モードによっては15V以上の高駆動電圧が必要になる
こともある。本発明は有機薄膜トランジスタにおいて電
界効果移動度を向上させることと、駆動電圧を低減させ
ることである。
SUMMARY OF THE INVENTION Organic thin film transistor
The first issue of the performance of the device is that the field-effect mobility is 0.01 to 0.03 cm.
TwoV-1s-1And a-Si field-effect mobility 0.1-0.5cmTwoV-1s-1To
That is, it is smaller by one digit or more. The second issue is the drive voltage
Is as high as several tens of volts for both gate voltage and drain voltage.
You. However, in the case of the plasma address type liquid crystal element, the data
Voltage 100V (corresponding to gate voltage), Discharge voltage 350V (D
(Equivalent to rain voltage), which is not necessarily a disadvantage.
No. The driving of the liquid crystal element is usually performed at 5 V or less.
High drive voltage of 15V or more is required depending on the mode
Sometimes. The present invention relates to an organic thin film transistor.
To improve field effect mobility and reduce drive voltage
Is Rukoto.

【0007】液晶素子の大型化に伴って視野角の広い特
性が望まれる。視野角の広い液晶表示モ−ドである垂直
配向の負の誘電異方性を持つ液晶の場合、駆動電圧が高
く、通常のa-Siトランジスタでは駆動が困難である。ま
た大型化に伴って、動作時に液晶配向を保持するために
各画素に導入される補助容量を形成することが困難にな
る。本発明は液晶素子において、視野角特性の良い大型
ディスプレイを得ることである。
As the size of the liquid crystal element increases, a wide viewing angle characteristic is desired. In the case of liquid crystal having a negative dielectric anisotropy of vertical alignment, which is a liquid crystal display mode with a wide viewing angle, the driving voltage is high and it is difficult to drive with a normal a-Si transistor. In addition, as the size increases, it becomes difficult to form an auxiliary capacitor introduced to each pixel in order to maintain liquid crystal alignment during operation. An object of the present invention is to obtain a large display having a good viewing angle characteristic in a liquid crystal element.

【0008】有機発光素子を形成する場合、発光層は正
孔輸送層と連続で透明電極上に数百オングスオロ−ムと
極薄く成膜される。これに画素毎に駆動用のトランジス
タを設ける場合、通常トランジスタを基板面に設けてお
いてから、発光層を設ける。このため開口率が低い。本
発明は大型発光素子において、開口率が大きく明るいデ
ィスプレイを得ることである。
When an organic light emitting device is formed, the light emitting layer is formed as thin as several hundred angstroms on a transparent electrode continuously with the hole transport layer. When a driving transistor is provided for each pixel, a transistor is usually provided on a substrate surface, and then a light emitting layer is provided. Therefore, the aperture ratio is low. An object of the present invention is to obtain a bright display having a large aperture ratio in a large light emitting element.

【0009】[0009]

【課題を解決するための手段】電界効果移動度の課題を
解決するために、基板上にゲート電極、ソース電極、ド
レイン電極の3端子及び活性半導体層からなる薄膜トラ
ンジスタにおいて、活性半導体層が繰り返し単位を持つ
有機物であり、その繰り返し単位が5以上のオリゴマ分
子を備えたものである。
In order to solve the problem of the field-effect mobility, in a thin film transistor including a gate electrode, a source electrode, a drain electrode, and an active semiconductor layer on a substrate, the active semiconductor layer is composed of repeating units. And an oligomer having 5 or more repeating units.

【0010】駆動電圧の課題を解決するために、基板上
にゲート電極、ソース電極、ドレイン電極の3端子及び
活性半導体層からなる薄膜トランジスタにおいて、活性
半導体層が有機物からなり、ソース電極及びドレイン電
極と前記活性半導体層の間に有機物からなる電子輸送層
あるいは正孔輸送層を備えたものである。
In order to solve the problem of the driving voltage, in a thin film transistor including a gate electrode, a source electrode, a drain electrode, and an active semiconductor layer on a substrate, the active semiconductor layer is made of an organic material, and the source electrode and the drain electrode are connected to each other. An electron transporting layer or a hole transporting layer made of an organic substance is provided between the active semiconductor layers.

【0011】動作特性の課題を解決するために、基板上
にマトリクス状に配置された有機薄膜トランジスタと、
そのソース電極に接続する画素電極と、そのドレイン電
極に接続するデータバスと、そのゲート電極に接続し、
前記データバスに垂直に配置されるスキャンバスを有
し、この基板と一定間隔をもって設けられた透明電極を
被覆された透明基板が液晶層を介し、この透明電極と、
前記画素電極あるいは前記ソース電極との間に有機絶縁
性薄膜からなる静電容量を構成する蓄積容量電極を備え
たものである。
In order to solve the problem of the operating characteristics, an organic thin film transistor arranged in a matrix on a substrate;
A pixel electrode connected to the source electrode, a data bus connected to the drain electrode, and a gate connected to the gate electrode,
It has a scan bus arranged vertically to the data bus, a transparent substrate coated with a transparent electrode provided at a constant interval with this substrate through a liquid crystal layer, this transparent electrode,
A storage capacitor electrode is provided between the pixel electrode and the source electrode to form a capacitance made of an organic insulating thin film.

【0012】視野角特性の課題を解決するために、基板
上にマトリクス状に配置された有機薄膜トランジスタ
と、そのソース電極に接続する画素電極と、そのドレイ
ン電極に接続するデータバスと、そのゲート電極に接続
し、前記データバスに垂直に配置されるスキャンバスを
有し、この基板と一定間隔をもって設けられた透明電極
を被覆された透明基板が液晶層を介し、液晶が負の誘電
異方性を有し、垂直配向することを備えたものである。
In order to solve the problem of viewing angle characteristics, an organic thin film transistor arranged in a matrix on a substrate, a pixel electrode connected to its source electrode, a data bus connected to its drain electrode, and a gate electrode thereof And a scan bus arranged perpendicularly to the data bus, and a transparent substrate coated with a transparent electrode provided at a constant interval from the substrate has a liquid crystal layer interposed therebetween, and the liquid crystal has a negative dielectric anisotropy. And vertical alignment is provided.

【0013】開口率の課題を解決するために、透明な共
通電極が被覆された透明基板上に有機薄膜からなる電界
発光層、及び正孔輸送層が積層され、その上にマトリッ
クス状に分離された画素電極があり、各画素電極上に
は、ソース電極を介して有機薄膜トランジスタが配置さ
れることを備えた発光素子とするものである。
In order to solve the problem of the aperture ratio, an electroluminescent layer composed of an organic thin film and a hole transport layer are laminated on a transparent substrate covered with a transparent common electrode, and are separated in a matrix form thereon. A pixel electrode, and an organic thin film transistor is disposed on each pixel electrode via a source electrode.

【0014】[0014]

【発明の実態の形態】以下、本発明の実施の形態につい
て、図1から図5を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0015】(実施の形態1)図1は逆スタガー構造の
有機薄膜トランジスタの断面を示す。図1において、1
は、ガラスを代表とする電気絶縁性基板であり、2はゲ
ート電極、3は電気絶縁層であり、例えば塗布形成可能
なシロキサン結合を主鎖に持つポリオルガノシロキサン
がある。4は活性半導体層であり、有機薄膜である。こ
の有機薄膜として(化5)のベンゼン環とイオウ原子が
直鎖状につながるフェニレンスルフィドのオリゴマ分子
を蒸着法によって形成した。
Embodiment 1 FIG. 1 shows a cross section of an organic thin film transistor having an inverted staggered structure. In FIG. 1, 1
Is an electrically insulating substrate represented by glass, 2 is a gate electrode, 3 is an electrically insulating layer, for example, a polyorganosiloxane having a siloxane bond in its main chain which can be formed by coating. Reference numeral 4 denotes an active semiconductor layer, which is an organic thin film. As this organic thin film, an oligomer molecule of phenylene sulfide in which a benzene ring and a sulfur atom of Chemical Formula 5 are linearly formed was formed by a vapor deposition method.

【0016】[0016]

【化5】 Embedded image

【0017】他の例としてはチオフェンのオリゴマ分子
がある。5及び6はそれぞれドレイン電極とソース電極
である。ゲート電極は金をドレイン電極とソース電極は
アルミニウムを用いた。チャネル長は12μmとした。
オリゴマ層を形成するオリゴマの長さと蒸着条件によっ
てオリゴマ層の微結晶粒の大きさが制御される。最大〜
0.1cm2V-1s-1の電界効果移動度を得た。またオン/オフ
電流比はおよそ7桁と良好な結果である。チオフェンオ
リゴマの場合、グレインサイズが0.1μmと小さいた
め、チャネル長に比べて小さく膜中を結晶粒界をホッピ
ング伝導することになる。
Another example is an oligomeric molecule of thiophene. 5 and 6 are a drain electrode and a source electrode, respectively. Gold was used for the gate electrode and aluminum was used for the drain electrode and the source electrode. The channel length was 12 μm.
The size of the microcrystal grains of the oligomer layer is controlled by the length of the oligomer forming the oligomer layer and the vapor deposition conditions. maximum~
A field effect mobility of 0.1 cm 2 V −1 s −1 was obtained. The on / off current ratio is a good result of about 7 digits. In the case of a thiophene oligomer, since the grain size is as small as 0.1 μm, hopping conduction is performed at a crystal grain boundary in the film, which is smaller than the channel length.

【0018】一方、フェニレンスルフィドのオリゴマ膜
はグレインサイズが数μm程度にまでなり、結晶中の分
子鎖間伝導が電荷輸送のメカニズムの主となる。従っ
て、粒界でのホッピングがないため移動度が著しく増加
する。また蒸着条件によって分子の配向が制御され、基
板面に対して分子の長軸(c軸)が垂直になるようにでき
る。具体的には、蒸着速度を小さく基板温度を高くする
ことである。この分子配向の時、膜中の電荷はc軸に直
交する方向により良く輸送される。
On the other hand, the phenylene sulfide oligomer film has a grain size of about several μm, and conduction between molecular chains in the crystal is the main charge transport mechanism. Therefore, there is no hopping at the grain boundary, so that the mobility is significantly increased. In addition, the orientation of the molecules is controlled by the evaporation conditions, and the major axis (c-axis) of the molecules can be perpendicular to the substrate surface. Specifically, it is to reduce the deposition rate and increase the substrate temperature. In this molecular orientation, the charges in the film are better transported in the direction perpendicular to the c-axis.

【0019】これは隣接分子間で相対するベンゼン環と
の間の軌道重なりが最も大きいためである。この時、フ
ェニレンスルフィドの分子間距離はおよそ5オングスト
ロームである。トランジスタの構成から、ドレイン電極
とソース電極との間に印加される電圧によって、オリゴ
マ分子にとってc軸に直交する方向に電荷移動が起こる
ことになる。また、荷輸送が容易になることから、トラ
ンジスタのスイッチングに必要なゲート電圧も低下す
る。ゲート電圧に対するドレイン電流の特性向上は、上
記の微結晶粒の増大と配向性の向上とにある。
This is because the orbital overlap between the adjacent molecules and the adjacent benzene ring is the largest. At this time, the intermolecular distance of phenylene sulfide is about 5 angstroms. Due to the structure of the transistor, charge transfer occurs in a direction orthogonal to the c-axis for the oligomer molecule due to a voltage applied between the drain electrode and the source electrode. In addition, the gate voltage required for switching of the transistor is also reduced because the load is easily transported. The improvement of the characteristics of the drain current with respect to the gate voltage lies in the above-mentioned increase in the size of the fine crystal grains and the improvement in the orientation.

【0020】またゲート絶縁膜と活性半導体層である有
機薄膜層の間のトラップによる局斉準位を減少させるこ
とも重要である。ゲート絶縁膜として大画面に対応可能
で、緻密な膜で且つ表面が安定な上記シロキサン結合を
主鎖に持つポリオルガノシロキサンを用いた。他の例と
して活性半導体層に(化6)のフェニレンスルフィドオ
リゴマ分子を含んだポリイミド高分子を形成した。
It is also important to reduce the local level due to traps between the gate insulating film and the organic thin film layer as the active semiconductor layer. As the gate insulating film, a polyorganosiloxane having a siloxane bond as a main chain, which is a dense film capable of supporting a large screen and having a stable surface, is used. As another example, a polyimide polymer containing a phenylene sulfide oligomer molecule of Chemical Formula 6 was formed on the active semiconductor layer.

【0021】[0021]

【化6】 Embedded image

【0022】形成方法は(化7)のジアミンのオリゴマ
分子と(化8)ベンゾフェノンテトラカルボン酸の2種
類の材料を2源蒸着による蒸着重合法によった。
The formation was carried out by a vapor deposition polymerization method using two-source vapor deposition of two kinds of materials of a diamine oligomer molecule of the formula (7) and benzophenonetetracarboxylic acid.

【0023】[0023]

【化7】 Embedded image

【0024】[0024]

【化8】 Embedded image

【0025】形成された有機薄膜層は、基板面に対して
垂直に分子鎖が並び、微結晶粒も数μm程度となった。
分子間距離は前記(化5)に比べて若干小さくなり、よ
り高い移動度に寄与している。これは、結晶内の電荷輸
送が隣接する分子間の伝導となるので、分子間距離が短
くなるに従って分子軌道重なりが大きくなって、移動度
が増加するためである。その結果、(化6)の高分子を
活性半導体層とすることで、最大〜0.3cm2V-1s-1の電界
効果移動度と電流のオン/オフ比7桁を得た。
In the formed organic thin film layer, the molecular chains were arranged perpendicular to the substrate surface, and the fine crystal grains were about several μm.
The intermolecular distance is slightly smaller than in the above (Chem. 5), and contributes to higher mobility. This is because charge transport in the crystal becomes conduction between adjacent molecules, and as the intermolecular distance becomes shorter, the molecular orbital overlap increases and the mobility increases. As a result, by using the polymer of formula (6) as the active semiconductor layer, a field effect mobility of up to 0.3 cm 2 V −1 s −1 and an on / off ratio of current of 7 digits were obtained.

【0026】(実施の形態2)図2は逆スタガー構造の
有機薄膜トランジスタの断面を示す。図1と異なるのは
活性半導体層4の有機薄膜とドレイン電極6およびソー
ス電極5の間に電荷輸送層7があることである。電荷輸
送層7の導入によって電荷注入の障壁が少なくなること
でドレイン電圧の低下とオン電流の増加が得られる。用
いた電荷輸送材料は正孔輸送層としては(化9)トリフ
ェニルジアミン、電子輸送層としては(化10)オキサ
ジアゾールである。
(Embodiment 2) FIG. 2 shows a cross section of an organic thin film transistor having an inverted stagger structure. The difference from FIG. 1 is that a charge transport layer 7 is provided between the organic thin film of the active semiconductor layer 4 and the drain electrode 6 and the source electrode 5. The introduction of the charge transport layer 7 reduces the barrier for charge injection, thereby lowering the drain voltage and increasing the on-current. The charge transporting materials used were (phenyl) diamine for the hole transport layer and oxadiazole for the electron transport layer.

【0027】[0027]

【化9】 Embedded image

【0028】[0028]

【化10】 Embedded image

【0029】中でも(化9)トリフェニルジアミンを用
いるとドレイン電圧10Vで従来のドレイン電圧100
Vと同じオン電流が得られた。
When triphenyldiamine is used, the drain voltage is 10 V and the conventional drain voltage is 100 V.
The same on-current as V was obtained.

【0030】(実施の形態3)図3は逆スタガー構造の
有機薄膜トランジスタと有機絶縁性薄膜からなる静電容
量を構成する蓄積容量電極を持つ液晶素子の断面図であ
る。ガラス基板1上にトランジスタを構成するゲート電
極2、ゲート絶縁膜3、実施の形態1で示した有機薄膜
の半導体層4と実施の形態2で示した電荷輸送層7、ド
レイン電極5、ソース電極6、透明な画素電極8が形成
される。更に蓄積容量を形成するための蓄積容量電極9
と11、有機絶縁性薄膜10を設ける。液晶を配向させるた
めの配向膜12を全面に設ける。対向基板1は透明電極13
が全面に形成される。液晶層14は両基板の配向膜12によ
って配向される。この構造においてゲート絶縁膜3と有
機絶縁性薄膜10を塗布形成可能なシロキサン結合を主
鎖に持つポリオルガノシロキサンとすることで、大画面
の基板に対応できる。具体的なプロセスを説明する。
(Embodiment 3) FIG. 3 is a cross-sectional view of a liquid crystal element having a storage capacitor electrode constituting an electrostatic capacitance composed of an organic thin film transistor having an inverted stagger structure and an organic insulating thin film. A gate electrode 2, a gate insulating film 3, a semiconductor layer 4 of an organic thin film described in Embodiment 1 and a charge transport layer 7, a drain electrode 5, and a source electrode described in Embodiment 2 on a glass substrate 1. 6. A transparent pixel electrode 8 is formed. Further, a storage capacitor electrode 9 for forming a storage capacitor
And 11, an organic insulating thin film 10 is provided. An alignment film 12 for aligning liquid crystal is provided on the entire surface. The opposing substrate 1 has a transparent electrode 13
Are formed on the entire surface. The liquid crystal layer 14 is aligned by the alignment films 12 of both substrates. In this structure, a polyorganosiloxane having a siloxane bond in the main chain capable of coating and forming the gate insulating film 3 and the organic insulating thin film 10 can be used for a large-screen substrate. A specific process will be described.

【0031】(1)対角25インチ(縦横比4:3)の
ガラス基板1上に画素電極8としてインジウム・チタン
・酸化物(ITO)をスパッタ法によって形成し、正方
配列で画素電極8をパターン形成する。画素ピッチは横
方向に200μmとして画素数は800×3=2400
個、縦方向には620μmとして画素数は600個並
べ、全画素数を144万画素形成した。これはカラーS
VGAクラスの表示画素である。更にゲート電極2と蓄
積容量電極9としてクロム電極をスパッタ法で成膜しパ
ターン形成する。
(1) Indium / titanium / oxide (ITO) is formed as a pixel electrode 8 on a glass substrate 1 having a diagonal width of 25 inches (aspect ratio 4: 3) by sputtering, and the pixel electrodes 8 are arranged in a square array. Form a pattern. The pixel pitch is 200 μm in the horizontal direction, and the number of pixels is 800 × 3 = 2400.
The number of pixels was set to 620 μm in the vertical direction, the number of pixels was arranged 600, and the total number of pixels was 1.44 million. This is color S
It is a VGA class display pixel. Further, a chromium electrode is formed as a gate electrode 2 and a storage capacitor electrode 9 by sputtering to form a pattern.

【0032】(2)全面にポリオルガノシロキサンを塗
布、乾燥した後、400度で加熱硬化させる。その後フ
ォトリソグラフ工程によってゲート絶縁膜3と有機絶縁
性薄膜10を設ける。
(2) A polyorganosiloxane is applied to the entire surface, dried, and then cured by heating at 400 degrees. Thereafter, the gate insulating film 3 and the organic insulating thin film 10 are provided by a photolithographic process.

【0033】(3)真空蒸着法(基板温度150度)によ
って(化5)のフェニレンスルフィド(重合度5)のオ
リゴマ膜を1000オングストローム形成する。続けて
(化9)に示すトリフェニルジアミンで電荷輸送層6を
同じく真空蒸着で形成する。
(3) A phenylene sulfide (polymerization degree 5) oligomer film of the formula (5) is formed to a thickness of 1000 angstroms by a vacuum deposition method (substrate temperature 150 ° C.). Subsequently, the charge transport layer 6 is formed of triphenyldiamine shown in Chemical Formula 9 by vacuum deposition.

【0034】(4)ドレイン電極5、ソース電極6及び
蓄積容量電極11をアルミニウムで同時に成膜、パター
ン形成する。
(4) The drain electrode 5, the source electrode 6, and the storage capacitor electrode 11 are simultaneously formed of aluminum and patterned.

【0035】(5)全面をポリミドの配向膜で覆う。 (6)液晶素子の対向基板となるITO13付きガラス
基板1上に配向膜12を塗布し、トランジスタの構成さ
れた基板とをそれぞれラビング処理する。この1組の基
板をビーズを介して接着し、真空注入装置によって液晶
14を注入し、封じすることで素子が完成する。
(5) The entire surface is covered with a polyimide alignment film. (6) An alignment film 12 is applied on a glass substrate 1 with ITO 13 which is a counter substrate of a liquid crystal element, and a rubbing process is performed on each of the substrates on which transistors are formed. This set of substrates is bonded via beads, and the liquid crystal 14 is injected by a vacuum injection device and sealed, thereby completing the element.

【0036】液晶表示モードは用いる液晶材料と配向膜
材料で決まる。1例としてツイストネマチックモードと
他の例として垂直配向モードの素子を、それぞれ作製し
た。前者のツイストネマチックモードには正の誘電異方
性を持つネマチック液晶とプレチルト角〜2度のポリイ
ミド配向膜を使った。後者の垂直配向モードには負の誘
電異方性を持つネマチック液晶とプレチルト角87度の
ポリイミド配向膜を使った。各々の素子でのドレイン駆
動電圧は、前者が5Vで後者が7Vである。視野角依存
性を評価したところコントラスト100を維持する角度
が前者が上下20度に対して、後者が上下60度と後者
の方が優れている。対角25インチの大型液晶パネルの
SVGAフルカラー表示を実現した。
The liquid crystal display mode is determined by the liquid crystal material used and the alignment film material. As an example, a twisted nematic mode device and as another example, a vertical alignment mode device were produced. For the former twisted nematic mode, a nematic liquid crystal having a positive dielectric anisotropy and a polyimide alignment film having a pretilt angle of about 2 degrees were used. In the latter vertical alignment mode, a nematic liquid crystal having a negative dielectric anisotropy and a polyimide alignment film having a pretilt angle of 87 degrees were used. The drain drive voltage of each element is 5 V for the former and 7 V for the latter. When the viewing angle dependence was evaluated, the angle at which the contrast was maintained at 100 was superior in the former case, that is, 20 degrees in the upper and lower directions, and 60 degrees in the upper and lower directions. SVGA full-color display on a large 25 inch diagonal liquid crystal panel has been realized.

【0037】(実施の形態4)図4に透明な共通電極13
が被覆された透明基板1上に有機薄膜からなる電界発光
層15、及び正孔輸送層16が積層され、その上にマトリッ
クス状に分離された画素電極17があり、各画素電極17上
には、ソース電極6を介して有機薄膜トランジスタが配
置される有機発光素子の断面図を示した。発光面の開口
率は、発光面をトランジスタの大きさに依存せずに配置
することができるために高い。また層間絶縁層18は平坦
化層としての働きもあり、図5に示すフルカラー素子を
構成する場合、各画素上の有機薄膜トランジスタは平坦
な層の上に構成することができる。具体的な製造方法を
説明する。
(Embodiment 4) FIG. 4 shows a transparent common electrode 13.
An electroluminescent layer 15 made of an organic thin film and a hole transport layer 16 are laminated on a transparent substrate 1 covered with a layer, and pixel electrodes 17 separated in a matrix are provided thereon. 1 is a cross-sectional view of an organic light emitting device in which an organic thin film transistor is arranged via a source electrode 6. The aperture ratio of the light emitting surface is high because the light emitting surface can be arranged without depending on the size of the transistor. Further, the interlayer insulating layer 18 also functions as a flattening layer, and when forming the full-color element shown in FIG. 5, the organic thin film transistor on each pixel can be formed on a flat layer. A specific manufacturing method will be described.

【0038】(1)対角25インチ(縦横比4:3)の
ガラス基板1上に全面をスパッタ法により透明電極13
としてITOを1000オングストローム成膜する。こ
の基板を真空蒸着装置に設置し、有機発光層15と電荷
輸送層16を連続成膜する。それぞれ代表例として(化
11)アルミニウムキノリンを100オングストローム
及び(化9)トリフェニルジアミンを1000オングス
トロームとした。
(1) A transparent electrode 13 is formed on the entire surface of a glass substrate 1 having a diagonal width of 25 inches (aspect ratio 4: 3) by sputtering.
1000 Å of ITO is formed. This substrate is set in a vacuum evaporation apparatus, and an organic light emitting layer 15 and a charge transport layer 16 are continuously formed. As typical examples, (chemical formula 11) aluminum quinoline was 100 angstroms and (chemical formula 9) triphenyldiamine was 1000 angstroms.

【0039】[0039]

【化11】 Embedded image

【0040】(2)画素電極17を電子ビーム蒸着法あ
るいはスパッタ法によってアルミニウム1000オング
ストローム成膜する。マトリックス状に分離するために
は、成膜時にマスクするか、全面に成膜後フォトリソグ
ラフィによって分離するかはいずれの方法でもよい。画
素ピッチは横方向に200μmとして画素数は800×
3=2400個、縦方向には620μmとして画素数6
00個並べ、全画素数を144万画素形成した。これは
カラーSVGAの表示画素である。画素の開口率は80
%以上である。
(2) A 1000 Å aluminum film is formed on the pixel electrode 17 by electron beam evaporation or sputtering. In order to separate them in a matrix, either masking during film formation or separation by photolithography after film formation over the entire surface may be used. The pixel pitch is 200 μm in the horizontal direction and the number of pixels is 800 ×
3 = 2400, 620 μm in the vertical direction, 6 pixels
00 pixels were arranged to form a total of 1.44 million pixels. This is a display pixel of the color SVGA. Pixel aperture ratio is 80
% Or more.

【0041】(3)層間絶縁層18としてアクリル系のレ
ジストを用いて約2μm成膜する。フォトリソグラフィ
によって各画素電極とのコンタクトホールを形成する。
層間絶縁膜18上にフォトリソグラフィによってゲート
電極2を形成し、更に良質なゲート絶縁膜3としてCV
D法によるシリコン酸化膜と、他に塗布形成可能なシロ
キサン結合を主鎖に持つポリオルガノシロキサンの2方
法で形成した。
(3) A film of about 2 μm is formed as an interlayer insulating layer 18 using an acrylic resist. A contact hole with each pixel electrode is formed by photolithography.
A gate electrode 2 is formed on the interlayer insulating film 18 by photolithography.
It was formed by two methods: a silicon oxide film by Method D, and a polyorganosiloxane having a siloxane bond in its main chain which can be formed by coating.

【0042】(4)活性半導体層4として真空蒸着法
(基板温度150度)によって、(化5)のフェニレン
スルフィド(重合度5)のオリゴマ膜を1000オング
ストローム形成する。続けて(化9)に示す電荷輸送層
7を、同じく真空蒸着で形成する。この形成方法は実施
の形態3と同様である。
(4) As the active semiconductor layer 4, an oligomer film of phenylene sulfide (degree of polymerization: 5) of 1000 Å is formed by a vacuum evaporation method (substrate temperature: 150 ° C.). Subsequently, the charge transport layer 7 shown in (Chem. 9) is similarly formed by vacuum evaporation. This forming method is the same as in the third embodiment.

【0043】(5)ドレイン電極5、ソース電極6をア
ルミニウムで同時に成膜、パターン形成する。最後に全
面をパシベーション膜19で覆う。
(5) The drain electrode 5 and the source electrode 6 are simultaneously formed of aluminum and patterned. Finally, the entire surface is covered with a passivation film 19.

【0044】このようにして製造した有機トランジスタ
駆動によるアクティブ型の有機発光素子は、ドレイン駆
動電圧10V、ゲート電圧10Vで発光輝度1万cd/m2
と明るい。また、動画表示も可能である。さらに、図5
に示すカラー表示対応の素子を作製するため、有機発光
層を赤色発光層20(材料は(化12)のペリレンー
4)、緑色発光層21(材料は(化11)のアルミニウ
ムキノリン)、青色発光層22(材料は(化13)のテ
トラフェニルブタジエン)をストライプ状に並べて形成
する。
The active organic light emitting device driven by the organic transistor manufactured in this manner has a luminance of 10,000 cd / m 2 at a drain drive voltage of 10 V and a gate voltage of 10 V.
And bright. In addition, moving images can be displayed. Further, FIG.
In order to produce an element corresponding to color display shown in (1), the organic light emitting layer was composed of a red light emitting layer 20 (material is perylene-4 of (Chem. 12)), a green light emitting layer 21 (material was aluminum quinoline of (Chem. 11)), and blue light emission. The layer 22 (the material is tetraphenylbutadiene of Chemical Formula 13) is formed in a stripe shape.

【0045】[0045]

【化12】 Embedded image

【0046】[0046]

【化13】 Embedded image

【0047】電荷輸送層16は共通とできる。その他は
単色素子の工程と同じである。このカラー素子をドレイ
ン駆動電圧10V、ゲート電圧10Vで動画表示したと
ころ、発光輝度5000cd/m2と明るく応答速度も1msec
以下と良好な特性を得た。
The charge transport layer 16 can be common. The other steps are the same as those of the single color element. When this color element was displayed as a moving image with a drain drive voltage of 10 V and a gate voltage of 10 V, the light emission luminance was 5000 cd / m 2 and the response speed was 1 msec.
The following favorable characteristics were obtained.

【0048】実施の形態3と同じ25インチの大画面素
子を発光素子で実現できた。なお、以上の実施の形態1
から4の説明は有機トランジスタの構成を逆スタガ型の
例を説明したが、プレーナ型についても同様に実施可能
である。
The same 25-inch large screen element as in the third embodiment can be realized by the light emitting element. The first embodiment described above
In the description of (1) to (4), the configuration of the organic transistor is described as an example of an inverted staggered type, but a planar type can be similarly implemented.

【0049】[0049]

【発明の効果】以上のように本発明によれば、高移動度
を持つ有機トランジスタをスイッチング素子として組み
込むことで大面積の液晶表示素子あるいは有機発光素子
が実現できる。
As described above, according to the present invention, a large-area liquid crystal display element or organic light-emitting element can be realized by incorporating an organic transistor having high mobility as a switching element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1による有機薄膜トランジ
スタを示す断面図
FIG. 1 is a sectional view showing an organic thin film transistor according to a first embodiment of the present invention.

【図2】本発明の実施の形態2による電荷輸送層を持つ
有機薄膜トランジスタを示す断面図
FIG. 2 is a sectional view showing an organic thin film transistor having a charge transport layer according to a second embodiment of the present invention.

【図3】本発明の実施の形態3による有機薄膜トランジ
スタを持つ液晶素子の断面図
FIG. 3 is a sectional view of a liquid crystal device having an organic thin film transistor according to a third embodiment of the present invention.

【図4】本発明の実施の形態4による有機薄膜トランジ
スタを持つ単色有機発光素子の断面図
FIG. 4 is a sectional view of a monochromatic organic light emitting device having an organic thin film transistor according to a fourth embodiment of the present invention.

【図5】本実施の形態による有機薄膜トランジスタを持
つフルカラー有機発光素子の断面図
FIG. 5 is a cross-sectional view of a full-color organic light-emitting device having an organic thin-film transistor according to the present embodiment.

【符号の説明】[Explanation of symbols]

1 透明絶縁性基板 2 ゲート電極 3 ゲート絶縁膜 4 有機薄膜(活性半導体層) 5 ドレイン電極 6 ソース電極 7 電荷輸送層 8 画素電極 9 蓄積容量電極 10 有機絶縁性薄膜 11 蓄積容量電極 12 配向膜 13 透明電極 14 液晶層 15 電界発光層 16 正孔輸送層 17 画素電極 18 層間絶縁膜 19 パシベーション膜 20 赤色発光層 21 緑色発光層 22 青色発光層 Reference Signs List 1 transparent insulating substrate 2 gate electrode 3 gate insulating film 4 organic thin film (active semiconductor layer) 5 drain electrode 6 source electrode 7 charge transport layer 8 pixel electrode 9 storage capacitor electrode 10 organic insulating thin film 11 storage capacitor electrode 12 alignment film 13 Transparent electrode 14 Liquid crystal layer 15 Electroluminescent layer 16 Hole transport layer 17 Pixel electrode 18 Interlayer insulating film 19 Passivation film 20 Red light emitting layer 21 Green light emitting layer 22 Blue light emitting layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 和廣 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuhiro Nishiyama 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】基板上にゲート電極、ソース電極、ドレイ
ン電極の3端子及び活性半導体層からなる薄膜トランジ
スタにおいて、前記活性半導体層が繰り返し単位を持つ
有機物であり、その繰り返し単位が5以上のオリゴマ分
子であることを特徴とする有機薄膜トランジスタ。
1. A thin film transistor comprising a gate electrode, a source electrode, a drain electrode and three terminals on a substrate and an active semiconductor layer, wherein the active semiconductor layer is an organic substance having a repeating unit, and the number of the repeating units is 5 or more. An organic thin film transistor characterized by the following.
【請求項2】基板上にゲート電極、ソース電極、ドレイ
ン電極の3端子及び活性半導体層からなる薄膜トランジ
スタにおいて、前記活性半導体層が繰り返し単位を持つ
有機物であり、その繰り返し単位が(化1)で現される
オリゴマ分子であることを特徴とする請求項1記載の有
機薄膜トランジスタ。 【化1】
2. A thin film transistor comprising three terminals of a gate electrode, a source electrode, a drain electrode and an active semiconductor layer on a substrate, wherein the active semiconductor layer is an organic substance having a repeating unit, and the repeating unit is represented by the following chemical formula (1). 2. The organic thin-film transistor according to claim 1, wherein the organic thin-film transistor is an oligomer molecule. Embedded image
【請求項3】基板上にゲート電極、ソース電極、ドレイ
ン電極の3端子及び活性半導体層からなる薄膜トランジ
スタにおいて、前記活性半導体層が繰り返し単位を持つ
有機物であり、その繰り返し単位が(化1)で表される
オリゴマ分子を持つ(化2)で表される高分子であるこ
とを特徴とする請求項1記載の有機薄膜トランジスタ。 【化2】
3. A thin film transistor comprising three terminals of a gate electrode, a source electrode, a drain electrode and an active semiconductor layer on a substrate, wherein the active semiconductor layer is an organic substance having a repeating unit, and the repeating unit is represented by the following chemical formula (1). 2. The organic thin-film transistor according to claim 1, wherein the organic thin-film transistor is a polymer represented by (Chemical Formula 2) having the represented oligomer molecule. Embedded image
【請求項4】基板上にゲート電極、ソース電極、ドレイ
ン電極の3端子及び活性半導体層からなる薄膜トランジ
スタにおいて、前記活性半導体層が有機物からなり、ソ
ース電極及びドレイン電極と前記活性半導体層の間に有
機物からなる電子輸送層あるいは正孔輸送層を有するこ
とを特徴とする有機薄膜トランジスタ。
4. A thin film transistor comprising a gate electrode, a source electrode, a drain electrode, and three terminals on a substrate and an active semiconductor layer, wherein the active semiconductor layer is made of an organic substance, and is provided between the source electrode and the drain electrode and the active semiconductor layer. An organic thin-film transistor having an electron transport layer or a hole transport layer made of an organic substance.
【請求項5】基板上にゲート電極、ソース電極、ドレイ
ン電極の3端子及び活性半導体層からなる薄膜トランジ
スタにおいて、前記活性半導体層が有機物からなり、ソ
ース電極及びドレイン電極と前記活性半導体層の間に
(化3)で表される電子輸送層あるいは(化4)で表さ
れる正孔輸送層を有することを特徴とする請求項4記載
の有機薄膜トランジスタ。 【化3】 【化4】
5. A thin film transistor comprising three terminals of a gate electrode, a source electrode, a drain electrode, and an active semiconductor layer on a substrate, wherein the active semiconductor layer is made of an organic material, and is provided between the source electrode and the drain electrode and the active semiconductor layer. The organic thin film transistor according to claim 4, comprising an electron transporting layer represented by (Chem. 3) or a hole transporting layer represented by (Chem. 4). Embedded image Embedded image
【請求項6】基板上にマトリクス状に配置された有機薄
膜トランジスタと、そのソース電極に接続する画素電極
と、そのドレイン電極に接続するデータバスと、そのゲ
ート電極に接続し、前記データバスに垂直に配置される
スキャンバスを有し、この基板と一定間隔をもって設け
られた透明電極を被覆された透明基板が液晶層を介し、
この透明電極と、前記画素電極あるいは前記ソース電極
との間に有機絶縁性薄膜からなる静電容量を構成する蓄
積容量電極を有することを特徴とする液晶素子。
6. An organic thin-film transistor arranged in a matrix on a substrate, a pixel electrode connected to its source electrode, a data bus connected to its drain electrode, and a data bus connected to its gate electrode and perpendicular to said data bus. Has a scan bus, a transparent substrate coated with a transparent electrode provided at a constant interval from this substrate via a liquid crystal layer,
A liquid crystal device comprising a storage capacitor electrode constituting a capacitance made of an organic insulating thin film between the transparent electrode and the pixel electrode or the source electrode.
【請求項7】基板上にマトリクス状に配置された有機薄
膜トランジスタと、そのソース電極に接続する画素電極
と、そのドレイン電極に接続するデータバスと、そのゲ
ート電極に接続し、前記データバスに垂直に配置される
スキャンバスを有し、この基板と一定間隔をもって設け
られた透明電極を被覆された透明基板が液晶層を介し、
液晶が負の誘電異方性を有し、垂直配向することを特徴
とする液晶素子。
7. An organic thin-film transistor arranged in a matrix on a substrate, a pixel electrode connected to its source electrode, a data bus connected to its drain electrode, and a data bus connected to its gate electrode and perpendicular to said data bus. Has a scan bus, a transparent substrate coated with a transparent electrode provided at a constant interval from this substrate via a liquid crystal layer,
A liquid crystal device, wherein the liquid crystal has a negative dielectric anisotropy and is vertically aligned.
【請求項8】透明な共通電極が被覆された透明基板上に
有機薄膜からなる電界発光層、及び正孔輸送層が積層さ
れ、その上にマトリックス状に分離された画素電極があ
り、各画素電極上には、ソース電極を介して有機薄膜ト
ランジスタが配置されることを特徴とする有機発光素
子。
8. An electroluminescent layer composed of an organic thin film and a hole transport layer are laminated on a transparent substrate covered with a transparent common electrode, and a pixel electrode separated in a matrix is formed on the electroluminescent layer. An organic light emitting device, wherein an organic thin film transistor is disposed on the electrode via a source electrode.
【請求項9】透明な共通電極が被覆された透明基板上に
有機薄膜からなる電界発光層、及び正孔輸送層が積層さ
れ、その上にマトリックス状に分離された画素電極があ
り、画素電極上には有機樹脂からなる平坦化層を有し、
各画素電極は平坦化層の一部に設けられたコンタクトホ
ールを介してソース電極と結合する有機薄膜トランジス
タが配置される有機発光素子。
9. An electroluminescent layer composed of an organic thin film and a hole transport layer are laminated on a transparent substrate covered with a transparent common electrode, and a pixel electrode separated in a matrix is formed on the electroluminescent layer. There is a flattening layer made of organic resin on the top,
An organic light emitting device in which each pixel electrode is provided with an organic thin film transistor which is coupled to a source electrode via a contact hole provided in a part of the planarization layer.
JP27440196A 1996-10-17 1996-10-17 Organic thin film transistor, liquid crystal device and organic light emitting device Expired - Lifetime JP4085438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27440196A JP4085438B2 (en) 1996-10-17 1996-10-17 Organic thin film transistor, liquid crystal device and organic light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27440196A JP4085438B2 (en) 1996-10-17 1996-10-17 Organic thin film transistor, liquid crystal device and organic light emitting device

Publications (2)

Publication Number Publication Date
JPH10125924A true JPH10125924A (en) 1998-05-15
JP4085438B2 JP4085438B2 (en) 2008-05-14

Family

ID=17541161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27440196A Expired - Lifetime JP4085438B2 (en) 1996-10-17 1996-10-17 Organic thin film transistor, liquid crystal device and organic light emitting device

Country Status (1)

Country Link
JP (1) JP4085438B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086804A (en) * 2001-09-07 2003-03-20 Seiko Epson Corp Organic semiconductor device
JP2004006750A (en) * 2002-03-27 2004-01-08 Mitsubishi Chemicals Corp Organic semiconductor material and organic electronic device
JP2004103905A (en) * 2002-09-11 2004-04-02 Pioneer Electronic Corp Organic semiconductor element
US6747287B1 (en) 2001-10-18 2004-06-08 Nec Corporation Organic thin film transistor
US6784452B2 (en) 2001-10-05 2004-08-31 Nec Corporation Organic thin film transistor
US6821811B2 (en) 2002-08-02 2004-11-23 Semiconductor Energy Laboratory Co., Ltd. Organic thin film transistor and method of manufacturing the same, and semiconductor device having the organic thin film transistor
JP2004335557A (en) * 2003-04-30 2004-11-25 Ricoh Co Ltd Vertical organic transistor
JP2005045266A (en) * 2003-07-25 2005-02-17 Xerox Corp Equipment in which n-type semiconductor is incorporated
JP2005203728A (en) * 2003-08-19 2005-07-28 Seiko Epson Corp Electrode, method for forming electrode, thin-film transistor, electronic circuit, organic electroluminescent element, display, and electronic equipment
JP2005294785A (en) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd Organic semiconductor device
JP2006216718A (en) * 2005-02-02 2006-08-17 Institute Of Physical & Chemical Research Top contact type field effect transistor and method of manufacturing the same top contact type field effect transistor
JP2006253675A (en) * 2005-03-08 2006-09-21 Samsung Sdi Co Ltd Organic thin film transistor and flat panel display device comprising it
US7166859B2 (en) 2003-11-17 2007-01-23 Fuji Xerox Co., Ltd. Organic semiconductor transistor element, semiconductor device using the same, and process for producing the semiconductor device
JP2007019291A (en) * 2005-07-08 2007-01-25 National Institute Of Advanced Industrial & Technology Organic semiconductor device
JP2007096055A (en) * 2005-09-29 2007-04-12 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2007518220A (en) * 2004-05-11 2007-07-05 エルジー・ケム・リミテッド Organic electrical element
JP2007520075A (en) * 2004-02-17 2007-07-19 エルジー・ケム・リミテッド Organic thin film transistor
WO2007094361A1 (en) 2006-02-16 2007-08-23 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008044695A1 (en) 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
WO2008059816A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008059817A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US7378683B2 (en) 2004-04-15 2008-05-27 Nec Corporation Transistor using organic material having a bridged cyclic hydrocarbon lactone structure and process for producing the same
JP2008270843A (en) * 2002-03-27 2008-11-06 Mitsubishi Chemicals Corp Organic semiconductor material and organic electronic device
WO2011036866A1 (en) * 2009-09-25 2011-03-31 出光興産株式会社 Organic thin-film transistor
US8030645B2 (en) 2004-10-25 2011-10-04 Panasonic Corporation Electronic device, process for producing the same and electronic equipment making use thereof
US8148720B2 (en) 2006-11-24 2012-04-03 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US8199271B2 (en) 2005-05-06 2012-06-12 Lg Display, Co., Ltd. Liquid crystal display device with active layer over the gate line, data line, gate electrode and source/drain electrodes
US8203139B2 (en) 2006-11-24 2012-06-19 Idemitsu Kosan Co., Ltd Organic thin film transistor and organic thin film light-emitting transistor using an organic semiconductor layer having an aromatic hydrocarbon group or an aromatic heterocyclic group in the center thereof
US8207525B2 (en) 2006-12-04 2012-06-26 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor
US8217391B2 (en) 2009-03-24 2012-07-10 Fuji Xerox Co., Ltd. Organic semiconductor transistor, method of producing the same, and electronic device
US8263972B2 (en) 2009-04-30 2012-09-11 Fuji Xerox Co. Ltd. Organic electroluminescent device and display medium
US8304283B2 (en) 2002-03-27 2012-11-06 Mitsubishi Chemical Corporation Method for producing organic electronic device including converting a precursor for a semiconductor layer
US8330147B2 (en) 2006-12-04 2012-12-11 Idemitsu Kosan, Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor having organic semiconductor compound with divalent aromatic hydrocarbon group and divalent aromatic heterocyclic group
US8487298B2 (en) 2009-03-23 2013-07-16 Fuji Xerox Co., Ltd. Organic semiconductor transistor
US8716703B2 (en) 2011-12-26 2014-05-06 Fuji Xerox Co., Ltd. Organic semiconductor transistor
US9011729B2 (en) 2010-04-22 2015-04-21 Idemitsu Kosan Co., Ltd. Organic thin-film transistor
KR20170116865A (en) * 2016-04-12 2017-10-20 충북대학교 산학협력단 Oxide semiconducting transistor, and method thereof

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086804A (en) * 2001-09-07 2003-03-20 Seiko Epson Corp Organic semiconductor device
US6784452B2 (en) 2001-10-05 2004-08-31 Nec Corporation Organic thin film transistor
US6747287B1 (en) 2001-10-18 2004-06-08 Nec Corporation Organic thin film transistor
US8304283B2 (en) 2002-03-27 2012-11-06 Mitsubishi Chemical Corporation Method for producing organic electronic device including converting a precursor for a semiconductor layer
JP2004006750A (en) * 2002-03-27 2004-01-08 Mitsubishi Chemicals Corp Organic semiconductor material and organic electronic device
JP2008270843A (en) * 2002-03-27 2008-11-06 Mitsubishi Chemicals Corp Organic semiconductor material and organic electronic device
US8368065B2 (en) 2002-08-02 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Organic thin film transistor and method of manufacturing the same, and semiconductor device having the organic thin film transistor
US7985967B2 (en) 2002-08-02 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Organic thin film transistor and method of manufacturing the same, and semiconductor device having the organic thin film transistor
US6821811B2 (en) 2002-08-02 2004-11-23 Semiconductor Energy Laboratory Co., Ltd. Organic thin film transistor and method of manufacturing the same, and semiconductor device having the organic thin film transistor
US7626196B2 (en) 2002-08-02 2009-12-01 Semiconductor Energy Laboratory Co., Ltd. Organic thin film transistor and method of manufacturing the same, and semiconductor device having the organic thin film transistor
US7230267B2 (en) * 2002-09-11 2007-06-12 Pioneeer Corporation Organic semiconductor device
JP2004103905A (en) * 2002-09-11 2004-04-02 Pioneer Electronic Corp Organic semiconductor element
JP2004335557A (en) * 2003-04-30 2004-11-25 Ricoh Co Ltd Vertical organic transistor
JP2005045266A (en) * 2003-07-25 2005-02-17 Xerox Corp Equipment in which n-type semiconductor is incorporated
JP2005203728A (en) * 2003-08-19 2005-07-28 Seiko Epson Corp Electrode, method for forming electrode, thin-film transistor, electronic circuit, organic electroluminescent element, display, and electronic equipment
US7166859B2 (en) 2003-11-17 2007-01-23 Fuji Xerox Co., Ltd. Organic semiconductor transistor element, semiconductor device using the same, and process for producing the semiconductor device
JP2007520075A (en) * 2004-02-17 2007-07-19 エルジー・ケム・リミテッド Organic thin film transistor
JP2005294785A (en) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd Organic semiconductor device
US7378683B2 (en) 2004-04-15 2008-05-27 Nec Corporation Transistor using organic material having a bridged cyclic hydrocarbon lactone structure and process for producing the same
JP2007518220A (en) * 2004-05-11 2007-07-05 エルジー・ケム・リミテッド Organic electrical element
US8030645B2 (en) 2004-10-25 2011-10-04 Panasonic Corporation Electronic device, process for producing the same and electronic equipment making use thereof
JP2006216718A (en) * 2005-02-02 2006-08-17 Institute Of Physical & Chemical Research Top contact type field effect transistor and method of manufacturing the same top contact type field effect transistor
JP2006253675A (en) * 2005-03-08 2006-09-21 Samsung Sdi Co Ltd Organic thin film transistor and flat panel display device comprising it
US8193527B2 (en) 2005-03-08 2012-06-05 Samsung Mobile Display Co., Ltd. Organic thin film transistor and flat panel display device including the same
US7683366B2 (en) 2005-03-08 2010-03-23 Samsung Mobile Display Co., Ltd. Organic thin film transistor providing smoother movement of holes between electrodes and semiconductor layer and flat panel display device including the same
KR101201304B1 (en) * 2005-05-06 2012-11-14 엘지디스플레이 주식회사 Liquid Crystal Display Device and method for fabricating the same
US8199271B2 (en) 2005-05-06 2012-06-12 Lg Display, Co., Ltd. Liquid crystal display device with active layer over the gate line, data line, gate electrode and source/drain electrodes
JP2007019291A (en) * 2005-07-08 2007-01-25 National Institute Of Advanced Industrial & Technology Organic semiconductor device
JP2007096055A (en) * 2005-09-29 2007-04-12 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
WO2007094361A1 (en) 2006-02-16 2007-08-23 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US8217389B2 (en) 2006-10-12 2012-07-10 Idemitsu Kosan, Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
WO2008044695A1 (en) 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
WO2008059817A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US8022401B2 (en) 2006-11-14 2011-09-20 Idemitsu Kosan, Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008059816A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US8203139B2 (en) 2006-11-24 2012-06-19 Idemitsu Kosan Co., Ltd Organic thin film transistor and organic thin film light-emitting transistor using an organic semiconductor layer having an aromatic hydrocarbon group or an aromatic heterocyclic group in the center thereof
US8148720B2 (en) 2006-11-24 2012-04-03 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US8207525B2 (en) 2006-12-04 2012-06-26 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor
US8330147B2 (en) 2006-12-04 2012-12-11 Idemitsu Kosan, Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor having organic semiconductor compound with divalent aromatic hydrocarbon group and divalent aromatic heterocyclic group
US8487298B2 (en) 2009-03-23 2013-07-16 Fuji Xerox Co., Ltd. Organic semiconductor transistor
US8217391B2 (en) 2009-03-24 2012-07-10 Fuji Xerox Co., Ltd. Organic semiconductor transistor, method of producing the same, and electronic device
US8263972B2 (en) 2009-04-30 2012-09-11 Fuji Xerox Co. Ltd. Organic electroluminescent device and display medium
JPWO2011036866A1 (en) * 2009-09-25 2013-02-14 出光興産株式会社 Organic thin film transistor
WO2011036866A1 (en) * 2009-09-25 2011-03-31 出光興産株式会社 Organic thin-film transistor
JP5677306B2 (en) * 2009-09-25 2015-02-25 出光興産株式会社 Organic thin film transistor
JP2015109455A (en) * 2009-09-25 2015-06-11 出光興産株式会社 Organic thin film transistor
US9011729B2 (en) 2010-04-22 2015-04-21 Idemitsu Kosan Co., Ltd. Organic thin-film transistor
US8716703B2 (en) 2011-12-26 2014-05-06 Fuji Xerox Co., Ltd. Organic semiconductor transistor
KR20170116865A (en) * 2016-04-12 2017-10-20 충북대학교 산학협력단 Oxide semiconducting transistor, and method thereof

Also Published As

Publication number Publication date
JP4085438B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP4085438B2 (en) Organic thin film transistor, liquid crystal device and organic light emitting device
JP7547556B2 (en) Display device
US7405775B2 (en) Display employing organic material
US7112820B2 (en) Stacked capacitor having parallel interdigitized structure for use in thin film transistor liquid crystal display
US6885146B2 (en) Display device comprising substrates, contrast medium and barrier layers between contrast medium and each of substrates
US8210890B2 (en) Method of fabricating organic electroluminescence display device comprising an elastic contact electrode
JP4536184B2 (en) Active matrix display device
US7768011B2 (en) Electro-luminescence device including a thin film transistor and method of fabricating an electro-luminescence device
US8062924B2 (en) Thin film transistor, method for fabricating the same and display device
JP2006086502A (en) Organic thin film transistor, substrates for liquid crystal display device, and method for manufacturing the same
US7495724B2 (en) Liquid crystal display device
US10504731B2 (en) TFT substrate and manufacturing method thereof
JPH06325869A (en) Organic electroluminescent panel
JP4118706B2 (en) Method for manufacturing liquid crystal display device
US6897931B2 (en) In-plane switching mode liquid crystal display device and method for fabricating the same
JPH10209459A (en) Organic thin film transistor, fabrication thereof, liquid crystal element and organic light emitting element
KR101217662B1 (en) The thin film transistor using organic semiconductor material and method of fabricating the array substrate for LCD with the same
CN1638545B (en) Organic electroluminescent display device and method of fabricating the same
Meng et al. Room‐temperature deposition of thin‐film indium tin oxide on micro‐fabricated color filters and its application to flat‐panel displays
JP2001352068A (en) Substrate, display element, and display unit
JP3760555B2 (en) Liquid crystal charge transport materials and organic light emitting devices
JP2004119599A (en) Method for manufacturing thin film semiconductor device, thin film semiconductor device electro-optical device, and electronic apparatus
JPH10305369A (en) Liquid crystal display and manufacture
Sato et al. Flexible displays for digital tv broadcasting
KR20050011124A (en) Method Of Forming Organic Semiconductor Pattern And Method Of Manufacturing Organic Thin Film Transistor Using The Same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

EXPY Cancellation because of completion of term