Nothing Special   »   [go: up one dir, main page]

JPH037942A - Charge holding medium - Google Patents

Charge holding medium

Info

Publication number
JPH037942A
JPH037942A JP2057351A JP5735190A JPH037942A JP H037942 A JPH037942 A JP H037942A JP 2057351 A JP2057351 A JP 2057351A JP 5735190 A JP5735190 A JP 5735190A JP H037942 A JPH037942 A JP H037942A
Authority
JP
Japan
Prior art keywords
charge retention
charge
layer
medium
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2057351A
Other languages
Japanese (ja)
Other versions
JP2902036B2 (en
Inventor
Masayuki Iijima
飯嶋 正行
Seiji Take
誠司 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP5735190A priority Critical patent/JP2902036B2/en
Priority to US07/616,445 priority patent/US5439768A/en
Publication of JPH037942A publication Critical patent/JPH037942A/en
Priority to DE69119998T priority patent/DE69119998T2/en
Priority to PCT/JP1991/000283 priority patent/WO1991014206A1/en
Priority to EP91905337A priority patent/EP0471851B1/en
Priority to US08/451,158 priority patent/US5731116A/en
Priority to US08/935,301 priority patent/US5981123A/en
Application granted granted Critical
Publication of JP2902036B2 publication Critical patent/JP2902036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To permanently maintain the information charges accumulated in a charge holding layer by forming the charge holding layer of a resin contg. fluorine. CONSTITUTION:The charge holding medium is provided with at least an electrode layer 13 and the charge holding layer 11. The layer 11 is formed of the resin (A) contg. the fluorine. A tetrafluoroethylene/hexafluoropropylene copolymer, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer, polytetrafluoroethylene, etc., are preferably used for the resin A. The medium 3 can be formed by depositing the Al electrode 13 by evaporation on the film 11 of the resin A. Also, formation of the medium by depositing the Al electrode 13 on a glass supporting body 15 by evaporation and applying the soln. of the resin A thereon is possible as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電圧印加時露光方法等により情報を静電的に
記録し、任意時点で情報再生を行うことができる電荷保
持媒体に関し、特に電荷保持特性に優れた電荷保持媒体
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a charge-retaining medium that can electrostatically record information using an exposure method when voltage is applied, etc., and that can reproduce information at any time. The present invention relates to a charge retention medium with excellent charge retention properties.

〔従来の技術〕[Conventional technology]

従来、電子写真技術等において電極層上に光導電層を蒸
着させ、その光導電層上を全面帯電させた後像露光して
露光部の電荷をリークさせることにより光導電層上に静
電潜像を光学的に形成させ、その残留電荷と逆極性の電
荷を有するトナーを付着させ、紙等に静電転写して現像
するものが知られている。これは主として複写用に使用
されているが、記録媒体としての光導電層における静電
荷の保持期間を短くし静電潜像形成後は直ちにトナー現
像されるものであり、これを例えば撮影用とすると低感
度のためとても使用できない。
Conventionally, in electrophotography, etc., a photoconductive layer is deposited on an electrode layer, the entire surface of the photoconductive layer is charged, and then imagewise exposed to leak the charge in the exposed area, thereby forming an electrostatic latent layer on the photoconductive layer. It is known that an image is formed optically, a toner having a polarity opposite to the residual charge is attached, and the image is electrostatically transferred onto paper or the like to be developed. This is mainly used for copying, but it shortens the retention period of electrostatic charge in the photoconductive layer as a recording medium, and the toner is developed immediately after the electrostatic latent image is formed. This makes it very unusable due to its low sensitivity.

またTV撮影技術は撮像管で得られた電気的像慣号を取
り出し、また記録するためには線順次走査が必要となる
。線順次走査は撮像管内では電子ビームで、ビデオ記録
では磁気ヘッドで行うが、解像性は走査線数に依存する
ために銀塩写真のような面状アナログ記録に比較して著
しく劣化するという問題がある。
Furthermore, the TV photography technique requires line-sequential scanning in order to extract and record the electrical image signals obtained by the image pickup tube. Line-sequential scanning is performed using an electron beam in the image pickup tube and a magnetic head for video recording, but because resolution depends on the number of scanning lines, it is said to be significantly worse than planar analog recording such as silver halide photography. There's a problem.

更に近年発達しつつある固体撮像素子を利用したTV撮
像系も解像性に関しては本質的に同様であり、これらの
技術の内蔵する問題は、画像記録が高品質、高解像度で
あればあるほど処理工程が複雑であり、工程が簡便であ
れば記憶機能の欠如或いは画質の基本的劣化がある。
Furthermore, TV imaging systems that use solid-state imaging devices, which have been developing in recent years, are essentially the same in terms of resolution, and the problems inherent in these technologies become worse the higher the quality and resolution of image recording. The processing process is complicated, and if the process is simple, there is a lack of storage function or a basic deterioration of image quality.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者等は、先に前面に電極を設けた光導電層からな
る感光体と、後面に電極が設けられた電荷保持層からな
る電荷保持媒体とを対向させて配置し、両電極間に電圧
印加した状態で像露光した後、電荷保持媒体を分離し、
電荷保持層面に像情報として蓄積される表面電位を増幅
し像再生出力させることにより極めて鮮明に情報を再生
しうろことを見出し、その電荷保持媒体について出願し
た(特願昭63−127555号)。
The present inventors first placed a photoreceptor made of a photoconductive layer with an electrode on the front surface and a charge retention medium made of a charge retention layer with an electrode on the rear surface facing each other, and then After image exposure with a voltage applied, the charge retention medium is separated,
They discovered that information could be reproduced extremely clearly by amplifying the surface potential accumulated as image information on the surface of the charge retention layer and outputting the image reproduction, and filed an application for the charge retention medium (Japanese Patent Application No. 127555/1983).

本発明は、電荷保持特性の更なる改良を目的とするもの
であり、電荷保持特性の優れた電荷保持媒体の提供を課
題とする。
The present invention aims at further improving charge retention characteristics, and an object of the present invention is to provide a charge retention medium having excellent charge retention characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明の電荷保持媒体は、少なくとも電極層
と電荷保持層とを有する電荷保持媒体において、該電荷
保持層が弗素を含有した樹脂からなることを特徴とする
ものである。
For this purpose, the charge retention medium of the present invention is characterized in that the charge retention medium has at least an electrode layer and a charge retention layer, and the charge retention layer is made of a resin containing fluorine.

以下、本発明の電荷保持媒体の構成材料とその形成方法
、およびこの電荷保持媒体を使用した静電画像記録再生
方法について説明する。
Hereinafter, the constituent materials of the charge retention medium of the present invention, the method for forming the same, and the electrostatic image recording and reproducing method using this charge retention medium will be explained.

第1図は本発明の電荷保持媒体3の各態様の一例を断面
で示す図であり、図中3は電荷保持媒体、11は電荷保
持層、13は電荷保持媒体電極、15は支持体、16は
接着層である。
FIG. 1 is a cross-sectional view showing an example of each aspect of the charge retention medium 3 of the present invention, in which 3 is the charge retention medium, 11 is the charge retention layer, 13 is the charge retention medium electrode, 15 is the support, 16 is an adhesive layer.

電荷保持層11は、高絶縁性を有する弗素を含有した樹
脂からなるものである。
The charge retention layer 11 is made of a fluorine-containing resin having high insulation properties.

弗素を含有した樹脂としては、ポリ (テトラフルオロ
エチレン)  (PTFE)、テトラフルオロエチレン
−パーフルオロアルキルビニルエーテル共重合体(PF
A)、テトラフルオロエチレン−ヘキサフルオロプロピ
レン共重合体(FEP)、テトラフルオロエチレン−ヘ
キサフルオロプロピレン−バーフルオロアルキルビニル
エーテル共重合体(EPE)、テトラフルオロエチレン
−エチレン共重合体(ETFE) 、ポリ(クロロトリ
フルオロエチレン)(PCTFE)、クロロトリフルオ
ロエチレン−エチレン共重合体(ECTFE)等の弗素
樹脂の他、熱可塑性樹脂、熱硬化性樹脂、また紫外線硬
化性樹脂、電子線硬化性樹脂等のエネルギー線硬化性樹
脂、エンジニアリングプラスチック等の水素の一部或い
は全部を弗素原子により置換した樹脂、或いは弗素を含
有した樹脂と混合して使用することができる。
Examples of resins containing fluorine include poly (tetrafluoroethylene) (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PF
A), Tetrafluoroethylene-hexafluoropropylene copolymer (FEP), Tetrafluoroethylene-hexafluoropropylene-berfluoroalkyl vinyl ether copolymer (EPE), Tetrafluoroethylene-ethylene copolymer (ETFE), Poly( In addition to fluororesins such as chlorotrifluoroethylene (PCTFE) and chlorotrifluoroethylene-ethylene copolymer (ECTFE), thermoplastic resins, thermosetting resins, ultraviolet curable resins, electron beam curable resins, etc. It can be used in combination with a resin in which part or all of hydrogen has been replaced with fluorine atoms, such as an energy ray-curable resin or an engineering plastic, or a resin containing fluorine.

また、−綴代 及び/又は、−綴代 (但し、nは1又は2) で示される環構造の繰り返し単位からなり、50℃での
固有粘度が少なくても0.1であるような分子量を有す
る含弗素熱可塑性樹脂、又、−綴代 及び/又は、−綴代 (但し、nは1又は2) で示される環構造の繰り返し単位(a)と、綴代、  
            ・・・(3)−(CF2−C
PX)− (但し、X1tF、CI、−0−C11,CF、CF、
、−0−CF@CP(CF、)口CFffiCFffS
O31’、  −0−CF、CF、CF2C0口CH,
)で示される繰り返し単位(b)からなり、少なくても
80重量%の繰り返し単位(a)を含み、50℃での固
有粘度が少なくとも0.1であるような分子量を有する
含弗素熱可塑性樹脂を好適に使用することができる。
In addition, it is composed of a repeating unit of a ring structure represented by - binding margin and/or - binding margin (where n is 1 or 2), and has a molecular weight such that the intrinsic viscosity at 50°C is at least 0.1. A fluorine-containing thermoplastic resin having a repeating unit (a) of a ring structure represented by - binding allowance and/or - binding allowance (however, n is 1 or 2), and binding allowance,
...(3)-(CF2-C
PX) - (However, X1tF, CI, -0-C11, CF, CF,
, -0-CF@CP(CF,)mouthCFffiCFffS
O31', -0-CF, CF, CF2C0mouth CH,
), containing at least 80% by weight of the repeating unit (a), and having a molecular weight such that the intrinsic viscosity at 50° C. is at least 0.1. can be suitably used.

繰り返し単位(a)は、−綴代 %式% (但し、nは1又2) で示されるパーフルオロアリルビニルエーテル、又はパ
ーフルオロブテニルビニルエーテルをラジカル的に環化
重合することにより得られるものである。また繰り返し
単位(a)と上記繰り返し単位(b)を含有するものは
、−綴代 %式% (但し、nは1又2) で示されるパーフルオロビニルエーテルと一般式 %式% )) で示される千ツマ−とラジカル重合させることにより得
られるものである。これらの樹脂は例えば、特開平1−
131215号公報に開示されている。
The repeating unit (a) is obtained by radical cyclization polymerization of perfluoroallyl vinyl ether or perfluorobutenyl vinyl ether represented by the formula % (where n is 1 or 2). be. In addition, those containing the repeating unit (a) and the above-mentioned repeating unit (b) are perfluorovinyl ethers represented by the formula % (where n is 1 or 2) and the general formula %)). It can be obtained by radical polymerization with 1,000 yen. These resins are disclosed in, for example, JP-A-1-
It is disclosed in Japanese Patent No. 131215.

電荷保持層の積層方法としては、まず第1図(a)に示
す電荷保持媒体の場合には、電極上に蒸着、スパッタ法
等により、または溶剤に溶解させてコーティング、ディ
ッピングすることにより層形成することができる。また
含弗素ポリマーフィルムを接着剤等を介して電極に貼着
することにより層形成させてもよく、また含弗素ポリマ
ーフィルムに電極形成材料を蒸着等の方法で積層しても
よい。上記−綴代(1)及び/又は(2)で示される繰
り返し単位(a)からなる上記環化重合体、又は繰り返
し単位(a)と繰り返し単位(b)とからなる共重合体
を使用する場合には、パーフルオロ(2−ブチルテトラ
ヒドロフラン)等の弗素系溶媒に溶解して塗布するとよ
い。
In the case of the charge-retaining medium shown in FIG. 1(a), the charge-retaining layer is first formed on the electrode by vapor deposition, sputtering, etc., or by dissolving it in a solvent and coating or dipping. can do. Further, a layer may be formed by adhering a fluorine-containing polymer film to an electrode via an adhesive or the like, or an electrode forming material may be laminated on the fluorine-containing polymer film by a method such as vapor deposition. The above-mentioned cyclized polymer consisting of the repeating unit (a) shown in the above-mentioned binding margin (1) and/or (2), or the copolymer consisting of the repeating unit (a) and the repeating unit (b) is used. In such cases, it is preferable to dissolve it in a fluorine-based solvent such as perfluoro(2-butyltetrahydrofuran) and apply it.

電荷保持層の膜厚は、0.1μm〜100μmとすると
よ<、0.1μm以下であると電荷を保持しても電荷の
リークが生じ、100μm以上は可とう性を必要とする
場合には可とう性を失う。
The thickness of the charge retention layer should be between 0.1 μm and 100 μm. If it is less than 0.1 μm, charge leakage will occur even if the charge is retained, and if it is 100 μm or more, flexibility is required. Loses flexibility.

また、これら弗素を含有した樹脂中に電荷蓄積のために
光導電性、導電性微粒子を存在させてもよい。
Furthermore, photoconductive and conductive fine particles may be present in these fluorine-containing resins for charge accumulation.

光導電性微粒子材料としてはアモルファスシリコン、結
晶シリコン、アモルファスセレン、結晶セレン、硫化カ
ドミウム、酸化亜鉛等の無機系光導電材料、またポリビ
ニルカルバゾール、フタロシアニン、アゾ系顔料等の有
機系光導電材料が使用される。
As photoconductive fine particle materials, inorganic photoconductive materials such as amorphous silicon, crystalline silicon, amorphous selenium, crystalline selenium, cadmium sulfide, and zinc oxide, and organic photoconductive materials such as polyvinyl carbazole, phthalocyanine, and azo pigments are used. be done.

また導電性材料としては、周期律表第1A族(アルカリ
金属)、同IB族(銅族)、同2A族(アルカリ土類金
属)、同2B族(亜鉛族)、同3A族(アルミニウム族
)、同3B族(希土類)、同IVB族(チタン族)、同
VB族(バナジウム族)、同VIB族(クロム族)、同
■B族(マンガン族)、同■族(鉄族、白金族)、また
同IVA族(炭素族)としては炭素、珪素、ゲルマニウ
ム、錫、鉛、同VA族(窒素族)としてはアンチモン、
ビスマス、同VTA族(酸素族)としては硫黄、セレン
、テルルが微細粉状で使用される。また上記元素単体の
うち金属類は金属イオン、微粒子状の合金、有機金属、
錯体の形態としても使用することができる。更に上記元
素単体は酸化物、燐酸化物、硫酸化物、ハロゲン化物の
形態で使用することができる。特に炭素、金、銅、アル
ミニウム等が好ましく使用される。
Conductive materials include Group 1A (alkali metals), Group IB (copper), Group 2A (alkaline earth metals), Group 2B (zinc group), and Group 3A (aluminum group) of the periodic table. ), Group 3B (rare earths), Group IVB (titanium), Group VB (vanadium), Group VIB (chromium), Group ■B (manganese), Group ■ (iron, platinum). Also, the IVA group (carbon group) includes carbon, silicon, germanium, tin, and lead, and the VA group (nitrogen group) includes antimony,
Bismuth and VTA group (oxygen group) sulfur, selenium, and tellurium are used in fine powder form. Among the above elements, metals include metal ions, fine particle alloys, organic metals,
It can also be used in the form of a complex. Furthermore, the above elements can be used in the form of oxides, phosphorus oxides, sulfides, and halides. In particular, carbon, gold, copper, aluminum, etc. are preferably used.

この微粒子層はその形成材料を電極上、又は弗素樹脂層
上に低圧蒸着装置を使用し、蒸着させることにより形成
される。粒子層形成材料は、10TOrr〜10−’T
orr程度の低圧下で蒸発させると凝集し、10〜0.
1μm径程度の超微粒子状態となり、微粒子は電橋、又
は弗素樹脂層表面に、単層状、或いは複数層状に整列し
た状態で積層されるものである。またコーティングによ
り電荷保持層を形成する場合は、弗素樹脂溶液中に微粒
子材料を分散させ、コーティングすることにより形成す
ることができる。
This fine particle layer is formed by vapor depositing its forming material onto the electrode or the fluororesin layer using a low pressure vapor deposition apparatus. The particle layer forming material is 10 TOrr to 10-'T
When evaporated under a low pressure of about 10 to 0.
The particles are in the form of ultrafine particles with a diameter of about 1 μm, and the particles are stacked on the electric bridge or the surface of the fluororesin layer in a single layer or in a plurality of layers. In addition, when forming the charge retention layer by coating, it can be formed by dispersing particulate material in a fluororesin solution and coating it.

電荷保持媒体3は、電荷保持層11に情報を静電荷の分
布として記録するものである。従って記録される情報、
あるいは記録の方法によりこの電荷保持媒体の形状は種
々の形状をとることができる。例えば静電カメラ(同一
出願人による特願昭63−121591号)に用いられ
る場合には、一般のフィルム(単コマ、連続コマ用)形
状、あるいはディスク状となり、レーザー等によりデジ
タル情報、またはアナログ情報を記録する場合には、テ
ープ形状、ディスク形状、あるいはカード形状となる。
The charge retention medium 3 records information in the charge retention layer 11 as a distribution of static charges. Information recorded accordingly;
Alternatively, the shape of this charge retention medium can take various shapes depending on the recording method. For example, when used in an electrostatic camera (Japanese Patent Application No. 63-121591 filed by the same applicant), it is in the form of a general film (single frame or continuous frame) or a disk, and digital information or analog When recording information, it takes the form of a tape, disk, or card.

第1図(b)に示す電荷保持媒体における支持体15は
、電荷保持媒体3を強度的に支持するものであり、電荷
保持層を支持することができるある程度の強度を有して
いれば、その材質、厚みは特に制限がなく、例えば可撓
性のあるプラスチックフィルム、金属箔、紙、或いは硝
子、プラスチックシート、金属板(電極を兼ねることも
できる)等の剛体が使用され光透過性も同様に要求され
る場合がある。光透過性が要求される場合、必要に応じ
て反射防止効果を有する層、また反射防止効果を発現し
うる膜厚に調整するか、両者を組み合わせることにより
反射防止性を付与することができる。支持体として具体
的には、電荷保持媒体3がフレキシブルなフィルム、テ
ープ、ディスク形状をとる場合には、フレキシブル性の
あるプラスチックフィルムが使用され、強度が要求され
る場合には剛性のあるシート、ガラス等の無機材料等が
使用される。
The support 15 in the charge retention medium shown in FIG. 1(b) supports the charge retention medium 3 with strength, and if it has a certain level of strength that can support the charge retention layer, There are no particular restrictions on the material and thickness; for example, flexible plastic films, metal foils, paper, or rigid bodies such as glass, plastic sheets, and metal plates (which can also serve as electrodes) may be used, and light transmittance may also be used. The same may be required. When light transmittance is required, antireflection properties can be imparted by using a layer having an antireflection effect, adjusting the film thickness to a level that can exhibit the antireflection effect, or combining both, if necessary. Specifically, when the charge retention medium 3 takes the form of a flexible film, tape, or disk, a flexible plastic film is used as the support, and when strength is required, a rigid sheet, Inorganic materials such as glass are used.

電荷保持媒体3がフレキシブルなフィルム、テープ、デ
ィスク形状をとる場合について説明する。
A case where the charge retention medium 3 takes the shape of a flexible film, tape, or disk will be described.

まず第2図(a)に示すものは、記録部である電荷保持
層11が連続しているタイプである。
First, what is shown in FIG. 2(a) is a type in which the charge retention layer 11, which is a recording section, is continuous.

これは電極層を設けたプラスチックフィルム等の支持体
上に電荷保持層を支持体の両辺を残して、または全面に
形成してなるものである。この電荷保持媒体は、少なく
とも記録される一画面(例えばカメラ取りによる場合の
一コマ、デジタル情報記録のトラック巾)の2倍以上の
長さを有するものである。また当然この電荷保持媒体を
長手方向に複数接合してなるものも含まれ、この際には
隣接する電荷保持層の間に電荷保持層欠落のスリット帯
があってもよい。
This is made by forming a charge retention layer on a support such as a plastic film provided with an electrode layer, leaving both sides of the support or the entire surface of the support. This charge retention medium has a length that is at least twice as long as one screen to be recorded (for example, one frame in the case of camera recording, or the track width in digital information recording). Of course, it also includes a structure in which a plurality of charge-retaining media are joined in the longitudinal direction, and in this case, there may be a slit zone between adjacent charge-retaining layers, where the charge-retaining layer is missing.

また第2図(b)に示すように、電荷保持N11が長手
方向に不連続のタイプがある。
Furthermore, as shown in FIG. 2(b), there is a type in which the charge retention N11 is discontinuous in the longitudinal direction.

これはプラスチックフィルム等の支持体上に、電荷保持
層を支持体の両辺を残して、または残さずして、長手方
向に不連続に形成してなるものであり、支持体上には複
数の電荷保持層が成る大きさで形成される。この電荷保
持層の大きさは、画像、および情報の入力装置の露光方
法にもよるが、例えばカメラ取りによる場合は、35m
mX35mmであり、レーザービーム等のスポット入力
の場合は、デジタル情報記録のトラック巾である。
This is made by forming a charge retention layer discontinuously in the longitudinal direction on a support such as a plastic film, with or without leaving both sides of the support. It is formed to a size that corresponds to the charge retention layer. The size of this charge retention layer depends on the exposure method of the image and information input device, but for example, when using a camera, 35 m
m x 35 mm, which is the track width of digital information recording in the case of spot input such as a laser beam.

尚、デジタル情報記録の場合には、隣接する電荷保持層
間に形成されている電荷保持層欠落部は、情報の入出力
の際のトラッキング帯として利用されつる。また当然こ
の電荷保持媒体を長手方向に複数接合してなるものも含
まれ、この際には隣接する電荷保持層の間に電荷保持層
欠落のスリット帯があってもよい。
In the case of digital information recording, a charge retention layer missing portion formed between adjacent charge retention layers is used as a tracking band when inputting and outputting information. Of course, it also includes a structure in which a plurality of charge-retaining media are joined in the longitudinal direction, and in this case, there may be a slit zone between adjacent charge-retaining layers, where the charge-retaining layer is missing.

また第2図(c)に示すように電荷保持層が巾方向に不
連続のタイプがある。
Furthermore, as shown in FIG. 2(c), there is a type in which the charge retention layer is discontinuous in the width direction.

このタイプは電極層を設けたプラスチックフィルム等の
支持体上に、電荷保持層を支持体の両辺を残して、また
は残さずして、巾方向に不連続に形成してなるものであ
り、支持体上には複数の帯状の電荷保持層が形成される
。この電荷保持層の巾は記録されるデジタル情報のトラ
ック巾に等しいか、或いは整数倍のものであり、隣接す
る電荷保持層間に形成されている電荷保持層欠落部は、
情報の入出力の際のトラッキング帯として利用される。
This type is made by forming a charge retention layer discontinuously in the width direction on a support such as a plastic film provided with an electrode layer, with or without leaving both sides of the support. A plurality of band-shaped charge retention layers are formed on the body. The width of this charge retention layer is equal to or an integral multiple of the track width of digital information to be recorded, and the charge retention layer missing portion formed between adjacent charge retention layers is
It is used as a tracking band when inputting and outputting information.

また第2図(d)に示すように、円板状のタイプがある
Furthermore, as shown in FIG. 2(d), there is a disc-shaped type.

このタイプは、電極層を設けた円形のプラスチックフィ
ルム等の支持体上に電荷保持層を全面に、或いは連続し
た渦巻状の電荷保持層欠落部を有して形成されるもので
ある。この電荷保持媒体では、入出力装置の駆動のため
の円形欠落が形成されていてもよい。またデジタル情報
記録部の場合には、連続した渦巻状の電荷保持層欠落部
は、情報の入出力の際のトラッキング帯として利用され
うる。
In this type, a charge retention layer is formed on the entire surface of a support such as a circular plastic film provided with an electrode layer, or with a continuous spiral missing portion of the charge retention layer. This charge retention medium may have a circular cutout for driving an input/output device. Further, in the case of a digital information recording section, the continuous spiral missing portion of the charge retention layer can be used as a tracking band when inputting and outputting information.

電極13は、支持体上に接着層16を介するか、或いは
蒸着法等により形成され、その材質は比抵抗値が106
0・CII+以下であれば限定されなく、無機金属導電
膜、無機金属酸化物導電膜、四級アンモニウム塩等の有
機導電膜等である。このような電荷保持媒体電極はその
支持体上に蒸着、スパッタリング、CVD、コーティン
グ、メツキ、ディッピング、電解重合等の方法により形
成される。
The electrode 13 is formed on the support via an adhesive layer 16 or by a vapor deposition method, and the material thereof has a specific resistance value of 106.
There is no limitation as long as it is 0.CII+ or less, and examples include inorganic metal conductive films, inorganic metal oxide conductive films, and organic conductive films such as quaternary ammonium salts. Such charge retention medium electrodes are formed on the support by methods such as vapor deposition, sputtering, CVD, coating, plating, dipping, and electrolytic polymerization.

またその膜厚は電極を構成する材料の電気特性、および
情報記録の際の印加電圧により変化させる必要があるが
、例えばアルミニウムであれば100〜3000人程度
であり、支持体と電荷保持層との間の全面、或いは電荷
保持層の形成パターンに合わせて形成される。
In addition, the film thickness needs to be changed depending on the electrical properties of the material constituting the electrode and the applied voltage during information recording, but for example, in the case of aluminum, it is about 100 to 3000, and the thickness of the support and charge retention layer is approximately 100 to 3000. It is formed on the entire surface between or in accordance with the formation pattern of the charge retention layer.

光透過性が要求される場合、必要に応じて反射防止効果
を有する層、また反射防止効果を発現しうる膜厚に調整
するか、両者を組み合わせることにより反射防止性を付
与することができる。
When light transmittance is required, antireflection properties can be imparted by using a layer having an antireflection effect, adjusting the film thickness to a level that can exhibit the antireflection effect, or combining both, if necessary.

また本発明の電荷保持媒体は、情報記録後、電荷保持媒
体表面の破損、また情報電荷の減衰を防止するために電
荷保持媒体表面に保護膜としてプラスチックフィルム、
またはプラスチックの溶液をコーティングするか、又は
蒸着法等により膜厚数百人〜数十μmに形成するとよく
、この程度であれば情報再生は可能である。
The charge-retaining medium of the present invention also includes a plastic film as a protective film on the surface of the charge-retaining medium to prevent damage to the surface of the charge-retaining medium and attenuation of information charges after information is recorded.
Alternatively, the film may be coated with a plastic solution or formed to a thickness of several hundred to several tens of micrometers by a vapor deposition method, and information reproduction is possible at this level.

保護膜としてはまず、情報再生時に剥離して読み取るた
めに粘着性を有する再生ゴム、スチレン−ブタジェンゴ
ム、ポリイソプレン、ブチルゴム、ブナ−N(ブタジェ
ン・アクリロニトリルゴム)、ポリビニルエーテル(エ
チル基、又はそれ以上の炭化水素基をアルコール残基と
して有するもの)、ポリアクリレートエステル(エチル
基、又はそれ以上の炭化水素基を有するもの)、シリコ
ンゴム、ポリテルペン樹脂、ガムロジン、ロジンエステ
ル、及びロジン誘導体、油溶性フェノール樹脂、クマロ
ン・インデン樹脂、石油系炭化水素樹脂の1種、若しく
は2種以上混合したものを、膜厚0.5〜数十μmのフ
ィルム状にし、電荷保持媒体表面に貼着することにより
形成されるもの、また上述した電荷保持層形成材として
のプラスチックフィルムを剥離可能な密着剤を使用して
貼着してもよく、密着剤としては比抵抗10′4Ω・C
m以上のシリコンオイル、ジメチルシリコンオイル、メ
チルフェニルシリコンオイル、高級脂肪酸変性シリコン
オイル、メチル塩素化フェニルシリコンオイル、アルキ
ル変性シリコンオイル、メチルハイドロジエンシリコン
オイル、環状ポリジメチルシロキサン、シリコンポリエ
ーテル共重合体、アミノ変性シリコンオイル、エポキシ
変性シリコンオイル、絶縁性油等を1種、又は2種以上
混合して使用するとよい。
As a protective film, first, recycled rubber, styrene-butadiene rubber, polyisoprene, butyl rubber, Buna-N (butadiene-acrylonitrile rubber), polyvinyl ether (ethyl group or higher (having a hydrocarbon group as an alcohol residue), polyacrylate ester (having an ethyl group or higher hydrocarbon group), silicone rubber, polyterpene resin, gum rosin, rosin ester, and rosin derivatives, oil-soluble phenol Formed by forming a film with a thickness of 0.5 to several tens of micrometers from one or more of resin, coumaron/indene resin, and petroleum-based hydrocarbon resin and attaching it to the surface of a charge retention medium. Alternatively, the above-mentioned plastic film as a charge retention layer forming material may be attached using a removable adhesive, and the adhesive has a specific resistance of 10'4 Ω・C.
m or more silicone oil, dimethyl silicone oil, methylphenyl silicone oil, higher fatty acid modified silicone oil, methyl chlorinated phenyl silicone oil, alkyl modified silicone oil, methylhydrogen silicone oil, cyclic polydimethylsiloxane, silicone polyether copolymer , amino-modified silicone oil, epoxy-modified silicone oil, insulating oil, etc., or a mixture of two or more thereof may be used.

また上述した弗素樹脂等を、膜厚数百人〜数十μmにな
るように蒸着法、スピンナーコーティング法等により形
成してもよい。
Further, the above-mentioned fluororesin or the like may be formed by a vapor deposition method, a spinner coating method, or the like so as to have a film thickness of several hundred to several tens of μm.

また、電荷保持媒体に感光性を同時に付与する必要があ
る場合は、光導電層を有する感光体表面に該電荷保持層
を塗布、或いは接着等により設けて使用することができ
る。
Further, when it is necessary to impart photosensitivity to the charge retention medium at the same time, the charge retention layer can be provided on the surface of the photoreceptor having the photoconductive layer by coating or adhesion.

次ぎに、本発明の電荷保持媒体の使用方法の1つである
静電画像記録方法について説明する。
Next, an electrostatic image recording method, which is one method of using the charge retention medium of the present invention, will be described.

第3図は静電画像記録方法を説明するための図で、図中
1は感光体、5は光導電層支持体、7は感光体電極、9
は光導電層、17は電源である。
FIG. 3 is a diagram for explaining the electrostatic image recording method, in which 1 is a photoreceptor, 5 is a photoconductive layer support, 7 is a photoreceptor electrode, and 9 is a diagram for explaining an electrostatic image recording method.
1 is a photoconductive layer, and 17 is a power source.

まず1!I11厚のガラスからなる光導電層支持体5上
に1000人厚のIT○からなる透明な感光体電極7を
形成し、この上に10μm程度の光導電層9を形成して
感光体1を構成している。同図(a)に示すようにこの
感光体1に対して、10μm程度の空隙を介して電荷保
持媒体3が配置される。
First 1! A transparent photoconductor electrode 7 made of IT○ with a thickness of 1000 is formed on a photoconductive layer support 5 made of glass with a thickness of I11, and a photoconductive layer 9 of about 10 μm is formed on this to form a photoconductor 1. It consists of As shown in FIG. 2A, a charge holding medium 3 is placed with respect to the photoreceptor 1 with a gap of about 10 μm in between.

次いで同図(b)に示すように電源17により電極7.
13間に電圧を印加する。暗所であれば光導電層9は高
抵抗体であるため、空隙に加わる電圧がパッシェンの法
則に従う放電開始電圧以下であれば、電極間には何の変
化も生じない。また放電開始電圧以上の電圧が外部電源
により空隙に印加されると放電が起こり、電荷保持媒体
表面に電荷が蓄積され、放電開始電圧に下がるまでその
状態が続き、カブリ電荷となる。感光体1側より光18
が入射すると、光が入射した部分の光導電層9は導電性
を示し放電が生じ、電荷保持媒体表面に電荷が蓄積され
る。また予め均一なカブリ電荷がある場合でも、光が入
射した部分では更に電荷が蓄積される。次いで電源17
をOFFとし、電荷保持媒体3を感光体1から剥離する
ことにより静電潜像の形成が終了する。
Next, as shown in FIG. 7(b), the electrode 7.
A voltage is applied between 13. In the dark, the photoconductive layer 9 is a high-resistance material, so if the voltage applied to the gap is equal to or lower than the discharge start voltage according to Paschen's law, no change occurs between the electrodes. Further, when a voltage equal to or higher than the discharge starting voltage is applied to the gap by an external power source, a discharge occurs, charge is accumulated on the surface of the charge holding medium, and this state continues until the voltage drops to the discharge starting voltage, resulting in fogging charge. Light 18 from the photoreceptor 1 side
When the photoconductive layer 9 is incident, the portion of the photoconductive layer 9 on which the light is incident exhibits conductivity, a discharge occurs, and charges are accumulated on the surface of the charge retention medium. Further, even if there is a uniform fog charge in advance, charge is further accumulated in the portion where light is incident. Next, power supply 17
The formation of the electrostatic latent image is completed by turning OFF and peeling off the charge holding medium 3 from the photoreceptor 1.

この静電画像記録方法は面状アナログ記録とした場合、
銀塩写真法と同様に高解像度が得られ、また情報電荷は
電荷保持層中に保護され、放電せず長期間保存される。
When this electrostatic image recording method is used for planar analog recording,
Similar to silver salt photography, high resolution can be obtained, and the information charges are protected in the charge retention layer and can be stored for a long time without discharging.

本発明の電荷保持媒体への情報入力方法としては高解像
度静電カメラによる方法、またレーザーによる記録方法
がある。まず高解像度静電カメラは通常のカメラに使用
されている写真フィルムの代わりに、前面に感光体電極
7を設けた光導電層9からなる感光体1と、感光体1に
対向し後面に電荷保持媒体電極13を設けた電荷保持層
11からなる電荷保持媒体とにより記録部材を構成し、
画電極へ電圧を印加し、入射光に応じて光導電層を導電
性として入射光量に応じて電荷保持層上に電荷を蓄積さ
せることにより入射光学像の静電潜像を微粒子中に形成
するもので、機械的なシャラタも使用しうるし、また電
気的なシャッタも使用しうるものであり、また静電潜像
は明所、暗所に関係なく長期間保持することが可能であ
る。またプリズムにより光情報を、R,G、B光成分に
分離し、平行光として取り出すカラーフィルターを使用
し、RSG、B分解した電荷保持媒体3セツトで1コマ
を形成するか、または1平面上にRlG、B像を並べて
1セツトで1コマとすることにより、カラー撮影するこ
ともできる。
Methods for inputting information to the charge retention medium of the present invention include a method using a high-resolution electrostatic camera and a recording method using a laser. First of all, a high-resolution electrostatic camera uses a photoconductor 1 consisting of a photoconductive layer 9 with a photoconductor electrode 7 on the front surface, and a charge on the rear surface facing the photoconductor 1, instead of the photographic film used in ordinary cameras. A recording member is constituted by a charge retention medium consisting of a charge retention layer 11 provided with a retention medium electrode 13,
An electrostatic latent image of the incident optical image is formed in the fine particles by applying a voltage to the picture electrode, making the photoconductive layer conductive according to the amount of incident light, and accumulating charges on the charge retention layer according to the amount of incident light. A mechanical shutter can be used, or an electric shutter can be used, and the electrostatic latent image can be retained for a long time regardless of whether it is in a bright or dark place. In addition, a prism separates the optical information into R, G, and B light components, and a color filter is used to extract them as parallel light, and three sets of charge retention media separated into RSG and B are used to form one frame, or on one plane. It is also possible to take color photographs by arranging the RlG and B images so that one set constitutes one frame.

またレーザーによる記録方法としては、光源としてはア
ルゴンレーザー(514,488nm)、ヘリウム−ネ
オンレーザ−(633nm) 、半導体レーザー(78
0nm、810nm等)が使用でき、感光体と電荷保持
媒体を面状で表面同志を、密着させるか、一定の間隔を
おいて対向させ、電圧印加する。この場合感光体のキャ
リアの極性と同じ極性に感光体電極をセットするとよい
。この状態で画像信号、文字信号、コード信号、線画信
号に対応したレーザー露光をスキャニングにより行うも
のである。画像のようなアナログ的な記録は、レーザー
の光強度を変調して行い、文字、コード、線画のような
デジタル的な記録は、レーザー光の0N−OFF制御に
より行う。また画像において網点形成されるものには、
レーザー光にドツトジェネレーター0N−OFF制御を
かけて形成するものである。尚、感光体における光導電
層の分光特性は、バンクロマティッ々である必要はなく
、レーザー光源の波長に感度を有していればよい。
For recording methods using lasers, the light sources include argon laser (514,488 nm), helium-neon laser (633 nm), and semiconductor laser (78 nm).
0 nm, 810 nm, etc.), and a voltage is applied to the photoreceptor and the charge holding medium with their surfaces brought into close contact with each other or facing each other with a fixed interval. In this case, it is preferable to set the photoreceptor electrode to the same polarity as the carrier of the photoreceptor. In this state, laser exposure corresponding to image signals, character signals, code signals, and line drawing signals is performed by scanning. Analog recording such as images is performed by modulating the light intensity of the laser, and digital recording such as characters, codes, and line drawings is performed by ON-OFF control of the laser light. Also, in images where halftone dots are formed,
It is formed by applying dot generator ON-OFF control to laser light. Note that the spectral characteristics of the photoconductive layer in the photoreceptor do not need to be highly bank chromatic, but only need to be sensitive to the wavelength of the laser light source.

次ぎに電荷保持媒体に記録された静電情報の再生方法に
ついて説明する。
Next, a method for reproducing electrostatic information recorded on the charge retention medium will be explained.

第4図は静電情報記録再生方法における電位読み取り方
法の例を示す図で、第1図と同一番号は同一内容を示し
ている。なお、図中、21は電位読み取り部、23は検
出電極、25はガード電極、27はコンデンサ、29は
電圧計である。
FIG. 4 is a diagram showing an example of a potential reading method in an electrostatic information recording and reproducing method, and the same numbers as in FIG. 1 indicate the same contents. In the figure, 21 is a potential reading section, 23 is a detection electrode, 25 is a guard electrode, 27 is a capacitor, and 29 is a voltmeter.

情報電荷を蓄積した電荷保持媒体から情報を再生するに
は、まず電位読み取り部21を電荷保持媒体表面に対向
させると、検出電極23に微粒子層に蓄積された電荷に
よって生じる電界が作用し、検出電極面上に電荷保持媒
体上の電荷と等量の誘導電荷が生ずる。この誘導電荷と
逆極性の等量の電荷でコンデンサ27が充電されるので
、コンデンサの電極間に蓄積電荷に応じた電位差が生じ
、この値を電圧計29で読むことによって情報電荷の電
位を求めることができる。そして、電位読み取り部21
で電荷保持媒体面上を走査することにより静電潜像を電
気信号として出力することができる。なお、検出電極2
3だけでは電荷保持媒体の検出電極対向部位よりも広い
範囲の電荷による電界(電気力線)が作用して分解能が
落ちるので、検出電極の周囲に接地したガード電極25
を配置するようにしてもよい。これによって、電気力線
は面に対して垂直方向を向くようになるので、検出電極
23に対向した部位のみの電気力線が作用するようにな
り、検出電極面積に略等しい部位の電位を読み取ること
ができる。電位読み取りの精度、分解能は検出電極、ガ
ード電極の形状、大きさ、及び電荷保持媒体との間隔に
よって大きく変わるため、要求される性能に合わせて最
適条件を求めて設計する必要がある。
To reproduce information from a charge-holding medium that has accumulated information charges, first, the potential reading unit 21 is placed opposite the surface of the charge-holding medium, and an electric field generated by the charges accumulated in the fine particle layer acts on the detection electrode 23. An induced charge equal to the charge on the charge storage medium is generated on the electrode surface. Since the capacitor 27 is charged with an equal amount of charge of opposite polarity to this induced charge, a potential difference corresponding to the accumulated charge is generated between the electrodes of the capacitor, and by reading this value with a voltmeter 29, the potential of the information charge is determined. be able to. Then, the potential reading section 21
The electrostatic latent image can be output as an electric signal by scanning the surface of the charge holding medium with the . Note that the detection electrode 2
If only the guard electrode 25 is grounded around the detection electrode, the electric field (electric line of force) due to the charges in a wider range than the area facing the detection electrode of the charge retention medium will act and the resolution will deteriorate.
You may also place . As a result, the lines of electric force are oriented perpendicularly to the surface, so that the lines of electric force only act on the area facing the detection electrode 23, and the potential of the area approximately equal to the area of the detection electrode 23 is read. be able to. Since the accuracy and resolution of potential reading vary greatly depending on the shape and size of the detection electrode and guard electrode, and the distance between them and the charge retention medium, it is necessary to find and design optimal conditions according to the required performance.

第5図は静電画像再生方法の概略構成を示す図で、図中
、31は電位読み取り装置、33は増幅器、35はCR
T、37はプリンタである。
FIG. 5 is a diagram showing a schematic configuration of an electrostatic image reproduction method, in which 31 is a potential reading device, 33 is an amplifier, and 35 is a CR
T, 37 is a printer.

図において、電位読み取り装置31で電荷電位を検出し
、検出出力を増幅器33で増幅してCRT35で表示し
、またプリンタ37でプリントアウトすることができる
。この場合、任意の時に、読み取りたい部位を任意に選
択して出力させることができ、また反復再生することが
可能である。
In the figure, a potential reading device 31 detects the charge potential, and an amplifier 33 amplifies the detected output, which can be displayed on a CRT 35 and printed out using a printer 37. In this case, it is possible to arbitrarily select and output the part to be read at any time, and it is also possible to reproduce it repeatedly.

また電界により光学的性質が変化する材料、例えば電気
光学結晶等を用いて光学的に読み取ることもできる。更
に静電潜像が電気信号として得られるので、必要に応じ
て他の記録媒体への記録等に利用することも可能である
It is also possible to read optically using a material whose optical properties change depending on an electric field, such as an electro-optic crystal. Furthermore, since the electrostatic latent image is obtained as an electric signal, it can also be used for recording on other recording media, etc., if necessary.

〔作用〕[Effect]

電荷保持媒体における電荷保持層11は、電荷の移動を
抑えるため高絶縁性の高分子材料から形成されることが
必要であり、絶縁性を有することが要求されるが、本発
明は弗素含有樹脂がきわめて優れた電荷保持性能を有す
ることを見出したものである。
The charge retention layer 11 in the charge retention medium needs to be formed from a highly insulating polymeric material in order to suppress the movement of charges, and is required to have insulation properties. It has been discovered that this material has extremely excellent charge retention performance.

また電荷保持媒体としては、その電荷保持層を形成する
高分子材料の物性として耐熱性が必要であるが、弗素樹
脂は高い耐熱性を有しており、また電荷保持媒体は、一
般に湿度の影響による情報電荷のリークを防止すること
が必要であり、そのために電荷保持層を形成する高分子
材料の吸水率が低いことが必要であるが、弗素含有樹脂
は極めて吸水率が低いものであり、弗素含有樹脂を電荷
保持層とすることにより電荷保持性能の極めて高い電荷
保持媒体とすることができるものである。
In addition, as a charge retention medium, heat resistance is required as a physical property of the polymer material that forms the charge retention layer, and fluororesins have high heat resistance, and charge retention media are generally not affected by humidity. It is necessary to prevent the leakage of information charges due to oxidation, and for this purpose it is necessary that the polymer material forming the charge retention layer has a low water absorption rate, but fluorine-containing resin has an extremely low water absorption rate. By using a fluorine-containing resin as the charge retention layer, a charge retention medium with extremely high charge retention performance can be obtained.

電荷保持媒体は、電極針ヘッド、或いはイオン流ヘッド
を用いた静電記録体、或いはレーザープリンター等の光
プリンター、或いは電子ビーム、イオン打ち込み等によ
る記録体として使用することができるが、特に感光体を
使用した静電情報記録媒体として適したものである。
The charge retention medium can be used as an electrostatic recording medium using an electrode needle head or an ion flow head, an optical printer such as a laser printer, or a recording medium using an electron beam, ion implantation, etc. It is suitable as an electrostatic information recording medium using

本発明の電荷保持媒体は電荷保持性能がよく、蓄積され
た情報電荷は電荷保持層内部に蓄積されるために極めて
安定であり、情報再生に際しては電極と表面電位との電
位差を計測することにより容易にその電位差を検出する
ことができ、高品質、高解像度の情報として容易に再生
できるものである。
The charge retention medium of the present invention has good charge retention performance, and the accumulated information charge is stored inside the charge retention layer, so it is extremely stable. When reproducing information, it is possible to reproduce information by measuring the potential difference between the electrode and the surface potential. The potential difference can be easily detected and easily reproduced as high-quality, high-resolution information.

以下、実施例を説明する。Examples will be described below.

〔実施例1〕 比抵抗1018Ω・Cm以上、吸水率0.01%、!厚
12.5μmのテトラフルオロエチレン−ヘキサフルオ
ロプロピレン共重合体(FEP)フィルム(デュポン社
製)に、真空蒸着(10−5Tarr)法でAl電極を
1000人の膜厚で積層し、電荷保持媒体を得た。
[Example 1] Specific resistance 1018Ω・Cm or more, water absorption rate 0.01%,! A 12.5 μm thick tetrafluoroethylene-hexafluoropropylene copolymer (FEP) film (manufactured by DuPont) was laminated with an Al electrode to a thickness of 1000 μm using a vacuum evaporation method (10-5 Tarr) to form a charge retention medium. I got it.

その電荷保持媒体上にコロナ帯電により+100v又は
−100Vの表面電位になるように帯電させ、その電荷
保持性能を測定した。
The charge retention medium was charged by corona charging to a surface potential of +100 V or -100 V, and its charge retention performance was measured.

常温常温で30日放置後測定した表面電位は、+、−共
に(以下、同じ)95V!1持し、加速試験として60
℃、20%R,)1.30日間放置の環境下でも95V
の表面電位を保持しており、また40℃、95%R,l
(,30日間放置の多湿条件下でも表面電荷として94
Vを維持していた。
The surface potential measured after being left at room temperature for 30 days was 95V for both + and - (hereinafter the same)! 1 hold, 60 as an accelerated test
℃, 20%R,) 1. 95V even when left for 30 days
It maintains a surface potential of 40℃, 95%R, l
(, even under humid conditions left for 30 days, the surface charge was 94
V was maintained.

〔実施例2〕 比抵抗I X 1016Ω・am以上、吸水率0.03
%、膜厚的12μmのテトラフルオロエチレン−パーフ
ルオロアルキルビニルエーテル共重合体(PFA)フィ
ルム(デュポン社製)に真空蒸着(104↑orr)法
でAl電極を1000人の膜厚で積層し、電荷保持媒体
を得た。
[Example 2] Specific resistance I x 1016 Ω・am or more, water absorption rate 0.03
%, an Al electrode was laminated to a thickness of 1000 μm on a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) film (manufactured by DuPont) with a film thickness of 12 μm using a vacuum deposition (104↑orr) method, and the charge was A holding medium was obtained.

得られた電荷保持媒体上にコロナ帯電により+100V
又は−100vの表面電位になるように帯電させ、その
電荷保持性能を測定した。
+100V on the resulting charge retention medium due to corona charging
Alternatively, it was charged to a surface potential of -100V, and its charge retention performance was measured.

常温常湿で30日放置後測定した表面電位は、+、−共
に(以下、同じ)93V11持し、加速試験として60
℃、20%R,8,30日間放置の環境下でも90Vの
表面電位を保持しており、また40℃、95%R,8,
30日間放置の多湿条件下でも表面電荷として90Vを
維持していた。
The surface potential measured after being left at room temperature and humidity for 30 days was 93V11 for both + and - (hereinafter the same), and 60V as an accelerated test.
℃, 20% R, 8, It maintains a surface potential of 90V even when left for 30 days, and it also maintains a surface potential of 90V at 40℃, 95% R, 8,
The surface charge of 90V was maintained even under humid conditions after being left for 30 days.

〔実施例3〕 1+nm厚のガラス基板上に、真空蒸着(10−’T。[Example 3] Vacuum evaporation (10-'T) onto a 1+nm thick glass substrate.

rr)法でへl電極を1000人の膜厚でダ層する。そ
のへE電極上に含弗素樹脂サイトツブ(商品名;旭硝子
■製、吸水率0.01%、比抵抗1×101Ω・Cm、
)をパーフルオロ(2−ブチルテトラヒドロフランに溶
解し、その5%溶液をプレードコータにより塗布し、乾
燥後腹要約3μmの電荷保持媒体を作製した。
rr) method to deposit the electrode to a thickness of 1,000 layers. Then, on the E electrode, there is a fluorine-containing resin cytotube (product name: manufactured by Asahi Glass ■, water absorption rate 0.01%, specific resistance 1 x 101 Ω・Cm,
) was dissolved in perfluoro (2-butyltetrahydrofuran), and a 5% solution thereof was coated using a blade coater to prepare a charge retention medium with a thickness of 3 μm after drying.

以上により得られた電荷保持媒体上にコロナ帯電により
一100vの表面電位になるように帯電させ、その電荷
保持性能を測定した。
The charge retention medium obtained above was charged by corona charging to a surface potential of -100V, and its charge retention performance was measured.

常温常湿で30日放置後測定した表面電位は、−90V
であった。また加速試験として60℃、20%R,It
、30日間放置の環境下でも一85Vの表面電位を保持
しており、40℃、95%R,11,30日間放置の多
湿条件下でも表面電荷として一90Vを維持していた。
The surface potential measured after being left at room temperature and humidity for 30 days was -90V.
Met. In addition, as an accelerated test, 60℃, 20%R, It
It maintained a surface potential of -85 V even after being left for 30 days, and maintained a surface charge of -90 V even under humid conditions of 40° C., 95% R, and 11 days left for 30 days.

〔実施例4〕 比抵抗lXl0”Ω”Cm以上、吸水率0. 01%以
下のポリテトラフルオロエチレン(PTFE)からなる
膜厚的25μmのフィルム(日東電工社製)に、真空蒸
着(10”Torr)法でAl電極を1000人の膜厚
で積層し、電荷保持媒体を得た。
[Example 4] Specific resistance 1Xl0"Ω"Cm or more, water absorption rate 0. A 25 μm thick film (manufactured by Nitto Denko Corporation) made of less than 0.1% polytetrafluoroethylene (PTFE) is laminated with an Al electrode to a thickness of 1000 μm by vacuum deposition (10” Torr) to maintain charge. Got the medium.

得られた電荷保持媒体上にコロナ帯電により+100v
又は−100vの表面電位になるように帯電させ、その
電荷保持性能を測定した。
+100V on the resulting charge retention medium due to corona charging
Alternatively, it was charged to a surface potential of -100V, and its charge retention performance was measured.

常温常湿で30日放置後測定した表面電位は、士、−共
に(以下、同じ) 93V維持し、加速試験として60
℃、20%R,8,30日間放置の環境下でも90Vの
表面電位を保持しており、また40℃、95%R98,
30日間放置の多湿条件下でも表面電荷として93Vを
維持していた。更に、150℃の高温条件下で10時間
放置後も90Vの表面電位を維持していた。
The surface potential measured after being left at room temperature and humidity for 30 days was maintained at 93V (hereinafter the same) and 60V as an accelerated test.
℃, 20% R, retains a surface potential of 90 V even when left for 8 or 30 days, and also maintains a surface potential of 90 V at 40° C., 95% R98,
The surface charge of 93V was maintained even under humid conditions after being left for 30 days. Furthermore, the surface potential of 90V was maintained even after being left for 10 hours under a high temperature condition of 150°C.

〔実施例5〕 1mm厚のガラス基板上に、真空蒸着(10−5T。[Example 5] Vacuum deposition (10-5T) on a 1 mm thick glass substrate.

rr)法でAl電極を1000人の膜厚で積層する。そ
のへ!電極上に、前記−綴代(1)(n=1)の繰り返
し単位を有し、固有粘度[l)が、フロリナー)PC−
75(商品名、3M■製のパーフルオロ(2−ブチルテ
トラヒドロフラン)を主成分とする溶媒中30℃で0.
50であり、ガラス転移点69℃、吸水率0.01%、
比抵抗1xio”Ω・Cmの重合体を、パーフルオロ(
2−プチルテトラヒドロフラン)中に溶解し、その5%
溶液をスピンコータにより1500rpm、20sec
で塗布し、乾燥後膜要約3μmの電荷保持媒体を作製し
た。
Al electrodes are laminated to a thickness of 1,000 layers using the rr) method. To that! It has a repeating unit of the above-mentioned binding margin (1) (n=1) on the electrode, and has an intrinsic viscosity [l] of Floriner) PC-
75 (trade name, manufactured by 3M ■) in a solvent mainly composed of perfluoro(2-butyltetrahydrofuran) at 30°C.
50, glass transition point 69°C, water absorption rate 0.01%,
A polymer with a specific resistance of 1xio''Ω・Cm was treated with perfluoro(
2-butyltetrahydrofuran), 5% of which
The solution was coated with a spin coater at 1500 rpm for 20 seconds.
After drying, a charge retention medium with a film thickness of 3 μm was prepared.

以上により得られた電荷保持媒体上にコロナ帯電により
一100vの表面電位になるように帯電させ、その電荷
保持性能を測定した。
The charge retention medium obtained above was charged by corona charging to a surface potential of -100V, and its charge retention performance was measured.

常温常湿で30日放匿後測定した表面電位は、−93V
であった。また加速試験として60℃、20%R,8,
30日間放置の環境下でも一78Vの表面電位を保持し
ており、40℃、95%R,H,30日間放置の多湿条
件下でも表面電荷として一90Vを維持していた。
The surface potential measured after being left at room temperature and humidity for 30 days was -93V.
Met. In addition, as an accelerated test, 60℃, 20%R, 8,
It maintained a surface potential of -78V even when left for 30 days, and maintained a surface charge of -90V even under humid conditions of 40° C., 95% R, H and left for 30 days.

〔実施例6〕 1non厚のガラス基板上に、真空蒸着(10−’T。[Example 6] Vacuum deposition (10-'T) on a 1non-thick glass substrate.

rr)法で^l電極を1000人の膜厚で積層する。そ
の人l電極上に、前記−綴代(1)(n=2)と同(2
)(n=2)の繰り返し単位からなり、固有粘度〔η〕
がフロリナートPC−75(商品名、3M■製のパーフ
ルオロ(2−ブチルテトラヒドロフラン)を主成分とす
る溶媒中30℃で0.55であり、ガラス転移点108
℃、吸水率0.01%、比抵抗lXl0”Ω・Cmの重
合体を、パーフルオロ(2−ブチルテトラヒドロフラン
)中に溶解し、その7%溶液をスピンコータにより15
00rpms20secで塗布し、乾燥後膜要約3μm
の電荷保持媒体を作製した。
rr) method to stack ^l electrodes to a thickness of 1000 layers. On the person's l electrode, the - Tsuzuriyo (1) (n=2) and the same (2)
) (n=2), and has an intrinsic viscosity [η]
is 0.55 at 30°C in a solvent mainly composed of perfluoro(2-butyltetrahydrofuran) manufactured by Fluorinert PC-75 (trade name, manufactured by 3M■), and the glass transition point is 108.
℃, a water absorption rate of 0.01%, and a specific resistance of 1X10''Ω・Cm were dissolved in perfluoro(2-butyltetrahydrofuran), and the 7% solution was coated with a spin coater for 15
Coated at 00 rpms 20 seconds, and after drying, the film thickness was 3 μm.
A charge retention medium was prepared.

以上により得られた電荷保持媒体上にコロナ帯電により
一100vの表面電位になるように帯電させ、その電荷
保持性能を測定した。
The charge retention medium obtained above was charged by corona charging to a surface potential of -100V, and its charge retention performance was measured.

常温常温で30日放置後測定した表面電位は、−90v
であった。また加速試験として60℃、20%R0H,
30日間放置の環境下でも一85Vの表面電位を保持し
ており、40℃、95%R,8,30日間放置の多湿条
件下でも表面電荷として一90vを維持していた。
The surface potential measured after being left at room temperature for 30 days was -90v.
Met. In addition, as an accelerated test, 60℃, 20% R0H,
It maintained a surface potential of -85V even when left for 30 days, and maintained a surface charge of -90V even under humid conditions of 40°C, 95% R, and 8.30 days.

〔実施例7〕 1mm厚のガラス基板上に、真空蒸着(10−’T。[Example 7] Vacuum deposition (10-'T) was performed on a 1 mm thick glass substrate.

rr)法で^l電極を1000人の膜厚で積層する。そ
のへl電極上に、前記−綴代(1)(n=1とn=2の
ブレンド体)と同(2)(n=2)の繰り返し単位から
なり、パーフルオロアリルビニルエーテルから誘導され
る環構造単位が54重量%であり、かつ固有粘度〔η〕
がフロリナートPC−75(商品名、3M■製のパーフ
ルオロ(2−ブチルテトラヒドロフラン)を主成分とす
る溶媒中30℃で0.44であり、ガラス転移点91℃
、吸水率0.01%、比抵抗lXl0”Ω”Cmの重合
体を、パーフルオロ(2−ブチルテトラヒドロフラン中
に溶解し、その5%溶液をスピンコータにより塗布し、
乾燥後膜要約3μmの電荷保持媒体を作製した。
rr) method to stack ^l electrodes to a thickness of 1000 layers. On the electrode, a repeating unit consisting of the above-mentioned (1) (a blend of n = 1 and n = 2) and (2) (n = 2) and derived from perfluoroallyl vinyl ether. The ring structural unit is 54% by weight, and the intrinsic viscosity [η]
is 0.44 at 30°C in a solvent mainly composed of perfluoro(2-butyltetrahydrofuran) manufactured by Fluorinert PC-75 (trade name, manufactured by 3M■), and the glass transition point is 91°C.
A polymer having a water absorption rate of 0.01% and a specific resistance of 1X10"Ω"Cm was dissolved in perfluoro(2-butyltetrahydrofuran), and a 5% solution thereof was applied using a spin coater.
After drying, a charge retention medium with a membrane thickness of 3 μm was prepared.

以上により得られた電荷保持媒体上にコロナ帯電により
一100vの表面電位になるように帯電させ、その電荷
保持性能を測定した。
The charge retention medium obtained above was charged by corona charging to a surface potential of -100V, and its charge retention performance was measured.

常温常温で30日放置後測定した表面電位は、−90V
であった。また加速試験として60℃、20%R,H0
30日間放置の環境下でも一80Vの表面電位を保持し
てふり、40℃、95%R,H,30日間放置の多湿条
件下でも表面電荷として一90Vを維持していた。
The surface potential measured after being left at room temperature for 30 days was -90V.
Met. In addition, as an accelerated test, 60℃, 20%R, H0
It maintained a surface potential of -80 V even after being left for 30 days, and maintained a surface charge of -90 V even under humid conditions of 40° C., 95% R, H and being left for 30 days.

〔実施例8〕 11Ilff+厚のガラス基板上に、真空蒸着(10−
’T。
[Example 8] Vacuum deposition (10−
'T.

rr)法で^l電極を1000人の膜厚で積層する。そ
の^l電極上に、前記−綴代(1)(n蝕1)と−(C
F、−CF、)−の繰り返し単位からなり、パーフルオ
ロアリルビニルエーテルから誘導される環構造単位が8
1重量%であり、かつ固有粘度(v〕が7oリナー)F
C−75(商品名、3M@製のパーフルオロ(2−ブチ
ルテトラヒドロフラン)を主成分とする溶媒中30℃で
0.425であり、吸水率0.01%、比抵抗lXl0
”Ω”Cmの重合体を、パーフルオロ(2−ブチルテト
ラヒドロフラン)中に溶解し、その5%溶液をスピンコ
ータにより塗布し、乾燥後膜要約3μmの電荷保持媒体
を作製した。
rr) method to stack ^l electrodes to a thickness of 1000 layers. On the ^l electrode, the - binding margin (1) (n eclipse 1) and - (C
Consisting of repeating units of F, -CF, )-, the ring structural unit derived from perfluoroallyl vinyl ether is 8
1% by weight, and the intrinsic viscosity (v) is 7oliner)F
C-75 (trade name, 0.425 at 30°C in a solvent mainly composed of perfluoro(2-butyltetrahydrofuran) manufactured by 3M@, water absorption 0.01%, specific resistance lXl0
A "Ω" Cm polymer was dissolved in perfluoro(2-butyltetrahydrofuran), and a 5% solution thereof was applied using a spin coater to produce a charge retention medium having a film thickness of 3 μm after drying.

以上により得られた電荷保持媒体上にコロナ帯電により
一100vの表面電位になるように帯電させ、その電荷
保持性能を測定した。
The charge retention medium obtained above was charged by corona charging to a surface potential of -100V, and its charge retention performance was measured.

常温常湿で30日放置後測定した表面電位は、−93V
であった。また加速試験として60℃、20%R,H,
30日間放置の環境下でも一70Vの表面電位を保持し
ており、40℃、95%R,I(,30日間放置の多湿
条件下でも表面電荷として一90Vを維持していた。
The surface potential measured after being left at room temperature and humidity for 30 days was -93V.
Met. In addition, as an accelerated test, 60℃, 20% R, H,
It maintained a surface potential of -70V even after being left for 30 days, and maintained a surface charge of -90V even under humid conditions at 40°C and 95% R,I.

〔実施例9〕 1+nm厚のガラス基板上に、真空蒸着(10−’T。[Example 9] Vacuum evaporation (10-'T) onto a 1+nm thick glass substrate.

rr)法でAj!電極を1000人の膜厚で積層する。rr) Law Aj! The electrodes are stacked to a thickness of 1000 layers.

その^β電極上に、前記−綴代(1)(n=1)と−(
CF、−CF)− C5Fy の繰り返し単位からなり、パーフルオロアリルビニルエ
ーテルから誘導される環構造単位が89重量%であり、
かつ固有粘度〔η〕がフロリナートFC〜75(商品名
、3M■製のパーフルオロ(2−ブチルテトラヒドロフ
ラン)を主成分とする溶媒中30℃で0.35であり、
ガラス転移温度61t’、吸水率0.01%、比抵抗l
Xl0”Ω’cmの重合体を、パーフルオロ(2−ブチ
ルテトラヒドロフラン)中に溶解し、その5%溶液をス
ピンコータにより塗布し、乾燥後膜要約3μmの電荷保
持媒体を作製した。
On the ^β electrode, the - binding margin (1) (n = 1) and -(
It consists of repeating units of CF, -CF)-C5Fy, and the ring structural unit derived from perfluoroallyl vinyl ether is 89% by weight,
and the intrinsic viscosity [η] is 0.35 at 30°C in a solvent mainly composed of perfluoro(2-butyltetrahydrofuran) manufactured by Fluorinert FC~75 (trade name, 3M ■),
Glass transition temperature 61t', water absorption 0.01%, specific resistance l
A polymer having a diameter of X10''Ω'cm was dissolved in perfluoro(2-butyltetrahydrofuran), and a 5% solution thereof was applied using a spin coater to produce a charge retention medium having a film thickness of 3 μm after drying.

以上により得られた電荷保持媒体上にコロナ帯電により
一100vの表面電位になるように帯電させ、その電荷
保持性能を測定した。
The charge retention medium obtained above was charged by corona charging to a surface potential of -100V, and its charge retention performance was measured.

常温常温で30日放置後測定した表面電位は、−90v
であった。また加速試験として60℃、20%R111
,30日間放置の環境下でも一60Vの表面電位を保持
しており、40℃、95%R,8,30日間放置の多湿
条件下でも表面電荷として一90Vを維持していた。
The surface potential measured after being left at room temperature for 30 days was -90v.
Met. In addition, as an accelerated test, 60℃, 20% R111
It maintained a surface potential of -60 V even after being left for 30 days, and maintained a surface charge of -90 V even under humid conditions of 40° C., 95% R, and 8.30 days.

〔参考例1〕・・・単層系有機感光体(PVK −TN
P )作製方法 ポIJ−N−ビニルカルバゾール10g(亜南香料(株
)製)、2.4.7−)ジニトロフルオレ2210g1
ポリエステル樹脂2g(バインダー;バイロン200東
洋817(株)製)、テトラハイドロフラン(THF)
90gの組成を有する混合液を暗所で作製し、InJs
−3n02を約1000人の膜厚でスパッターしたガラ
ス基板(1mm厚)に、ドクターブレードを用いて塗布
し、60℃で約1時間通風乾燥し、膜厚的10μmの光
導電層を有する感光体を得た。又完全に乾燥を行うため
に、更に1日自然乾燥を行って用いた。
[Reference Example 1]...Single-layer organic photoreceptor (PVK-TN
P) Preparation method Po IJ-N-vinylcarbazole 10g (manufactured by Anan Perfumery Co., Ltd.), 2.4.7-) dinitrofluorore 2210g 1
2 g of polyester resin (binder; manufactured by Byron 200 Toyo 817 Co., Ltd.), tetrahydrofuran (THF)
A mixed solution having a composition of 90 g was prepared in a dark place, and InJs
-3n02 was applied to a glass substrate (1 mm thick) sputtered to a thickness of about 1000 using a doctor blade, and dried with ventilation at 60°C for about 1 hour. I got it. In addition, in order to completely dry the sample, it was further air-dried for one day before use.

〔実施例4〕・・・静電情報記録再生方法第3図に示す
ように参考例1で作製した単層系有機感光体(PVK 
−TNF) 1と、実施例1で作製した電荷保持媒体と
を、膜厚IOμmのポリエステルフィルムをスペーサー
とし、電荷保持媒体表面を上記感光体の光導電層面に対
向させて接地した。
[Example 4] Electrostatic information recording and reproducing method As shown in FIG.
-TNF) 1 and the charge retention medium prepared in Example 1 were grounded using a polyester film having a thickness of IO μm as a spacer, with the charge retention medium surface facing the photoconductive layer surface of the photoreceptor.

次いで両電極間に、感光体側を正、樹脂層側を負にして
、100Vの直流電圧を印加した。
Next, a DC voltage of 100 V was applied between both electrodes, with the photoreceptor side being positive and the resin layer side being negative.

電圧の印加状態で、感光体側より照度1000ルツクス
のハロゲンランプを光源とする露光を1秒間行い、静電
潜像の形成が終了する。
With the voltage applied, exposure is performed from the photoconductor side for 1 second using a halogen lamp with an illuminance of 1000 lux as a light source, and the formation of the electrostatic latent image is completed.

次いで第4TXJに示すようにして電極と媒体表面との
電位差を測定した結果、媒体表面に100Vの表面電位
が表面電位計により測定されたが、未露光部での表面電
位はOVであった。
Next, as shown in No. 4 TXJ, the potential difference between the electrode and the medium surface was measured. As a result, a surface potential of 100 V was measured on the medium surface using a surface potentiometer, but the surface potential in the unexposed area was OV.

〔発明の効果〕〔Effect of the invention〕

本発明の電荷保持媒体は、電荷保持層が比抵抗lXl0
14Ω・cm以上の弗素を含有した樹脂から構成するこ
とにより、その電荷保持層に蓄積された情報電荷は永続
的に保持することができ、また蓄積された電荷により形
成される表面電荷は、電極との電位差を計測する電位読
み取り方法により容易に検出することができ、更にその
静電潜像に対応した電気信号を出力させ、CRT表示、
或いはプリンタによりプリントアウトすることができる
ものである。
In the charge retention medium of the present invention, the charge retention layer has a specific resistance of lXl0
By being made of a resin containing fluorine of 14 Ωcm or more, the information charge accumulated in the charge retention layer can be permanently retained, and the surface charge formed by the accumulated charge can be transferred to the electrode. It can be easily detected by a potential reading method that measures the potential difference between the electrostatic latent image and the electrostatic latent image.
Alternatively, it can be printed out using a printer.

また情報蓄積手段が静電荷単位であるために、電荷保持
媒体に蓄積される情報は高品質、高解像であり、更に処
理工程が簡便で、長時間の記憶が可能であり、またその
記憶した情報を目的に応じた画質で、任意に反復再生す
ることができるものである。
In addition, since the information storage means is a unit of electrostatic charge, the information stored in the charge retention medium is of high quality and resolution, and the processing process is simple and can be stored for a long time. This information can be repeatedly played back at any desired image quality depending on the purpose.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電荷保持媒体の各態様を断面で示す図
、第2図は各種のフレキシブル電荷保持媒体を示す斜視
図、第3図は本発明の電荷保持媒4図は直流増幅型の電
位読み取り方法の例を示す図、第5図は本発明の電荷保
持媒体を使用した静電画像記録再生方法の概略構成を示
す図である。 図中1は感光体、3は電荷保持媒体、5は光導電層支持
体、7は感光体電極、9は光導電層、11は電荷保持層
、12は電荷保持層欠落部、13は電荷保持媒体電極、
15は電荷保持層支持体、16は接着層、17は電源、
18はパターン露光光、21は電位読み取り部、23は
検出電極、25はガード電極、27はコンデンサ。 其2 図 (a) (b) 第 (a) (b) (C) 第2 (c) (d) 1り
Fig. 1 is a cross-sectional view showing each aspect of the charge holding medium of the present invention, Fig. 2 is a perspective view showing various flexible charge holding media, and Fig. 3 is a charge holding medium of the present invention. 5 is a diagram showing an example of a potential reading method, and FIG. 5 is a diagram showing a schematic configuration of an electrostatic image recording and reproducing method using the charge retention medium of the present invention. In the figure, 1 is a photoconductor, 3 is a charge retention medium, 5 is a photoconductive layer support, 7 is a photoconductor electrode, 9 is a photoconductive layer, 11 is a charge retention layer, 12 is a charge retention layer missing portion, and 13 is a charge holding medium electrode,
15 is a charge retention layer support, 16 is an adhesive layer, 17 is a power source,
18 is a pattern exposure light, 21 is a potential reading section, 23 is a detection electrode, 25 is a guard electrode, and 27 is a capacitor. Part 2 (a) (b) Part (a) (b) (C) Part 2 (c) (d) 1.

Claims (6)

【特許請求の範囲】[Claims] (1)少なくとも電極層と電荷保持層とを有する電荷保
持媒体において、該電荷保持層が弗素を含有した樹脂か
らなることを特徴とする電荷保持媒体。
(1) A charge retention medium having at least an electrode layer and a charge retention layer, wherein the charge retention layer is made of a resin containing fluorine.
(2)上記弗素を含有した樹脂が、テトラフルオロエチ
レン−ヘキサフルオロプロピレン共重合体である請求項
1記載の電荷保持媒体。
(2) The charge retention medium according to claim 1, wherein the fluorine-containing resin is a tetrafluoroethylene-hexafluoropropylene copolymer.
(3)上記弗素を含有した樹脂が、テトラフルオロエチ
レン−パーフルオロアルキルビニルエーテル共重合体で
ある請求項1記載の電荷保持媒体。
(3) The charge retention medium according to claim 1, wherein the fluorine-containing resin is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer.
(4)上記弗素を含有した樹脂が、ポリテトラフルオロ
エチレンである請求項1記載の電荷保持媒体。
(4) The charge retention medium according to claim 1, wherein the fluorine-containing resin is polytetrafluoroethylene.
(5)上記弗素を含有した樹脂が、一般式 ▲数式、化学式、表等があります▼ 及び/又は、一般式 ▲数式、化学式、表等があります▼ (但し、nは1又は2) で示される環構造の繰り返し単位からなり、50℃での
固有粘度が少なくても0.1であるような分子量を有す
る含弗素熱可塑性樹脂である請求項1記載の電荷保持媒
体。
(5) The above fluorine-containing resin is expressed by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ and/or the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, n is 1 or 2) 2. The charge retention medium according to claim 1, which is a fluorine-containing thermoplastic resin consisting of repeating units having a ring structure, and having a molecular weight such that the intrinsic viscosity at 50° C. is at least 0.1.
(6)上記弗素を含有した樹脂が、一般式 ▲数式、化学式、表等があります▼ 及び/又は、一般式 ▲数式、化学式、表等があります▼ (但し、nは1又は2) で示される環構造の繰り返し単位(a)と、一般式、 ▲数式、化学式、表等があります▼ (但し、XはF、Cl、−O−CF_2CF_2CF_
3、−O−CF_2CF(CF_3)OCF_2CF_
2SO_3F、−O−CF_2CF_2CF_2COO
CH_3)で示される繰り返し単位(b)からなり、少
なくても80重量%の繰り返し単位(a)を含み、50
℃での固有粘度が少なくとも0.1であるような分子量
を有する含弗素熱可塑性樹脂である請求項1記載の電荷
保持媒体。
(6) The above fluorine-containing resin is expressed by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ and/or the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, n is 1 or 2) There are repeating units (a) of the ring structure, general formulas, ▲mathematical formulas, chemical formulas, tables, etc.▼ (However, X is F, Cl, -O-CF_2CF_2CF_
3, -O-CF_2CF(CF_3)OCF_2CF_
2SO_3F, -O-CF_2CF_2CF_2COO
consisting of repeating units (b) represented by CH_3), containing at least 80% by weight of repeating units (a), and containing 50% by weight of repeating units (a)
The charge retention medium according to claim 1, which is a fluorine-containing thermoplastic resin having a molecular weight such that the intrinsic viscosity at ℃ is at least 0.1.
JP5735190A 1988-05-17 1990-03-08 Electrostatic information recording / reproducing method Expired - Fee Related JP2902036B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP5735190A JP2902036B2 (en) 1989-03-16 1990-03-08 Electrostatic information recording / reproducing method
US07/616,445 US5439768A (en) 1988-05-17 1990-11-20 Electrostatic information recording medium and electrostatic information recording and reproducing method
DE69119998T DE69119998T2 (en) 1990-03-08 1991-03-04 ELECTROSTATIC INFORMATION RECORDING MEDIUM
PCT/JP1991/000283 WO1991014206A1 (en) 1990-03-08 1991-03-04 Electrostatic information recording medium
EP91905337A EP0471851B1 (en) 1990-03-08 1991-03-04 Electrostatic information recording medium
US08/451,158 US5731116A (en) 1989-05-17 1995-05-26 Electrostatic information recording medium and electrostatic information recording and reproducing method
US08/935,301 US5981123A (en) 1988-05-17 1997-09-22 Electrostatic information recording medium and electrostatic information recording and reproducing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6426389 1989-03-16
JP1-64263 1989-03-16
JP5735190A JP2902036B2 (en) 1989-03-16 1990-03-08 Electrostatic information recording / reproducing method

Publications (2)

Publication Number Publication Date
JPH037942A true JPH037942A (en) 1991-01-16
JP2902036B2 JP2902036B2 (en) 1999-06-07

Family

ID=26398378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5735190A Expired - Fee Related JP2902036B2 (en) 1988-05-17 1990-03-08 Electrostatic information recording / reproducing method

Country Status (1)

Country Link
JP (1) JP2902036B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488601A (en) * 1992-10-26 1996-01-30 Dai Nippon Printing Co., Ltd. Photoelectric sensor, information recording system, and information recording method
US5903296A (en) * 1993-04-26 1999-05-11 Dai Nippon Printing Co., Ltd. Photoelectric sensor, information recording system and information recording and reproducing method
JP2000259102A (en) * 1999-01-08 2000-09-22 Canon Inc Electrophorectic display device
DE102016208290B4 (en) 2015-05-19 2021-12-09 Toyota Boshoku Kabushiki Kaisha HEADREST AND VEHICLE SEAT WITH THE HEADREST

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488601A (en) * 1992-10-26 1996-01-30 Dai Nippon Printing Co., Ltd. Photoelectric sensor, information recording system, and information recording method
US5629920A (en) * 1992-10-26 1997-05-13 Dai Nippon Printing Co., Ltd. Photoelectric sensor, information recording system, and information recording method
US5903296A (en) * 1993-04-26 1999-05-11 Dai Nippon Printing Co., Ltd. Photoelectric sensor, information recording system and information recording and reproducing method
JP2000259102A (en) * 1999-01-08 2000-09-22 Canon Inc Electrophorectic display device
DE102016208290B4 (en) 2015-05-19 2021-12-09 Toyota Boshoku Kabushiki Kaisha HEADREST AND VEHICLE SEAT WITH THE HEADREST

Also Published As

Publication number Publication date
JP2902036B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
US5731116A (en) Electrostatic information recording medium and electrostatic information recording and reproducing method
US5721042A (en) Electrostatic information recording medium
US5439768A (en) Electrostatic information recording medium and electrostatic information recording and reproducing method
KR100223698B1 (en) Electrostatic information recording mediem and electrostatic information recording and producing method
JP2902036B2 (en) Electrostatic information recording / reproducing method
US5492783A (en) Electrostatic information-recording media and process for recording and reproducing electrostatic information
JP3200451B2 (en) Electrostatic information recording medium
JP3122495B2 (en) Internal charge holding medium and method of manufacturing the same
JP3118224B2 (en) Electrostatic image recording / reproducing method
JP3170001B2 (en) Electrostatic information recording medium
EP0454869B1 (en) Electrostatic information recording medium and electrostatic information recording/reproducing method
EP0471851B1 (en) Electrostatic information recording medium
JPH02275960A (en) Charge holding medium and charge holding method
JPH02244155A (en) Electric charge retaining medium
JP2826119B2 (en) Photoreceptor having photoelectron doubling effect and electrostatic image recording method
JP2980349B2 (en) Electrostatic information recording method
JPH03158857A (en) Charge holding medium
JPH02203353A (en) Charge holding medium having protective film
EP0818712B1 (en) Electrostatic information-recording media and process for recording and reproducing electrostatic information
JPH01290366A (en) Electrostatic charge image recording and reproducing method
JPH037943A (en) Electrostatic information recording medium and electrostatic information recording method
JPH02244053A (en) Manufacture of electric charge retaining medium
JPH0256557A (en) Charge holding medium
JP3157306B2 (en) Electrostatic information recording medium and electrostatic information recording method
JPH0473769A (en) Charge holding medium and electrostatic information recording method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees