Nothing Special   »   [go: up one dir, main page]

JPH0373570B2 - - Google Patents

Info

Publication number
JPH0373570B2
JPH0373570B2 JP58001125A JP112583A JPH0373570B2 JP H0373570 B2 JPH0373570 B2 JP H0373570B2 JP 58001125 A JP58001125 A JP 58001125A JP 112583 A JP112583 A JP 112583A JP H0373570 B2 JPH0373570 B2 JP H0373570B2
Authority
JP
Japan
Prior art keywords
degassing section
stirring
degassing
solvents
unreacted substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58001125A
Other languages
Japanese (ja)
Other versions
JPS59126411A (en
Inventor
Masao Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP112583A priority Critical patent/JPS59126411A/en
Publication of JPS59126411A publication Critical patent/JPS59126411A/en
Publication of JPH0373570B2 publication Critical patent/JPH0373570B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスチレン系重合反応物の後処理方法に
関し、詳しくは2段階による脱気処理を行なうス
チレン系重合反応物の後処理方法に関する。 スチレン系重合体は、その重合体中に未反応物
や溶剤等が残存していると、成形時に焼けが発生
したり、成形品の外観不良(シルバー、フラツシ
ユ)を起こし、成形品の物性を著しく低下させる
という欠点がある。そこで、これら未反応物や溶
剤等を該重合体から分離する方法が種々検討され
ており、たとえば特公昭56−39655号、特開昭53
−4089号などに開示されている。 しかしながら、未反応モノマーの含有量や溶剤
の量が多い場合、これらの方法では脱気に相当の
負荷がかかり、しかもこれら未反応物や溶剤等を
所定量脱気するまでにスチレン系重合体を長時間
高温かつ高剪断下に保持する必要がある。そのた
め、生産効率が悪く、かつ滞留により該重合体は
熱劣化し、物性が低下するという欠点があつた。 本発明は、上記のような欠点を解消したスチレ
ン系重合反応物の後処理方法の提供を目的として
おり、未反応物や溶剤等の含有量が少なく、かつ
熱劣化を防止して物性、特に耐衝撃性に優れたス
チレン系重合体を与える後処理方法である。 本発明は、重合反応終了後のスチレン系重合反
応物から未反応物や溶剤等を除去する後処理方法
において、加熱機構を有し、さらに複数本の回転
軸のそれぞれに少なくとも2個の撹拌翼を固着し
た撹拌機構を備えた第1脱気部および剪断作用に
よる加熱手段と薄膜蒸発用撹拌手段を備えた第2
脱気部にスチレン系重合反応物を順次導入すると
共に、該第1脱気部と第2脱気部のいずれ一方も
しくは両者に酸化防止剤を供給することによつて
前記スチレン系重合反応物と接触させ、かつ第1
脱気部においては温度150〜300℃、圧力0.1〜600
トルの条件で撹拌を行ない未反応物や溶剤等のス
チレン系重合体中の含有率が0.5〜50重量%にな
るまで脱気し、次の第2脱気部においては温度
200〜300℃、圧力50トル以下の条件で撹拌を行な
い未反応物や溶剤等のスチレン系重合体中の含有
率が1重量%以下となるように未反応物や溶剤等
を除去することを特徴とするスチレン系重合反応
物の後処理方法である。 本発明の方法が適用されるスチレン系重合反応
物には制限なく、スチレン,ビニルトルエン,α
−メチルスチレンなどのスチレン系モノマーの単
独重合物や共重合物のほかスチレン系モノマーと
アクリロニトリル,アクリル酸メチル,メタアク
リル酸メチルなどのモノマーとの共重合物やスチ
レン系モノマーと共重合可能なゴム状物との共重
合体などがあり、塊状重合、溶液重合などによつ
て得られる重合反応物について後処理を行なう。
本発明は後処理を2段階に分けて行なうことに特
色があり、第1図は本発明の方法のフローについ
て概略を説明したものである。 本発明における第1脱気部Bは第1図に示した
如く外形が筒状体の装置からなり、該筒状体1は
二重壁構造となつており、壁間にスチームまたは
熱媒体油を通して加熱し、スチレン系重合体を加
熱すると共に、脱気工程での揮発物の露点温度以
上に加熱する加熱機構2を有している。また、該
筒状体には平行に設けられた複数本の回転軸3,
3′があり、この回転軸のそれぞれに少なくとも
2個の撹拌翼4を固着してあり、撹拌翼は通常、
図示した如く一方の回転軸と他方の回転軸に適当
な間隔をあけて設ける。回転軸の回転方向は交互
に逆回転とすることが好ましい。また、必要に応
じて回転軸内に加熱手段を設けることもできる。
撹拌翼は、前記したように少なくとも2個であ
り、一般的には2〜8個が適当である。偶数個の
場合は、回転軸を中心に対称形に設ける。なお、
撹拌翼は図示した如く回転軸に対向して相互に
180度の位相角にて取付けるほか、120度あるいは
90度の位相角にて複数個取付けることもできる。
撹拌翼の形状は特に制限はなく、第2図a〜cは
その態様を示したものである。この撹拌翼を膨出
状にすると脱気効果が向上し、また膨出した部分
の中央近辺に透孔16を設けると脱気効果がさら
に向上するばかりでなく、動力を減少させること
ができる。撹拌翼4の先端には該撹拌翼と直交す
るように剥離板15に設けてあり、これにより撹
拌効果が大となり、筒状体内部にデツドスペース
が生じることを防止でき、かつスチレン系重合体
の表面更新効果を大きくすることができる。この
剥離板は筒状体の内壁に近接して設けることが好
ましく、さらに剥離板に透孔を設けてもよい。 上記第1脱気部Bにおいては、反応槽Aからの
粘稠なスチレン系重合反応物を上部から供給し、
液位を適宜調節し150〜300℃、好ましくは150〜
260℃の温度、0.1〜600トル、好ましくは100〜
500トル、さらに好ましくは150〜350トルの圧力
の条件で撹拌を行なうことによりスチレン系重合
体中の未反応物や溶剤等の含有率が0.5〜50重量
%、好ましくは0.5〜30重量%となるまで脱気す
る。こゝで温度が150℃未満ではスチレン反応物
の粘度が上がり高負荷、高剪断により好ましくな
い。一方、300℃を超えると解重合が起こり好ま
しくない。特に共重合物の場合に架橋度が上がり
耐衝撃性が低下し好ましくない。また、圧力が
0.1トル未満では、特に共重合物の場合、ゴム分
のサラミ構造の破壊を招き好ましくなく、600ト
ルを超えると、脱気効率が落ち生産性が劣ること
となる。第1脱気部における脱気処理を未反応物
や溶剤等の含有量が0.5重量%未満とすると、特
に架橋反応が進行し難くなり耐衝撃性が低下す
る。一方、50重量%を超える脱気処理では架橋反
応が過度に進行し、重合体の物性低下をきたす。 次に、第2脱気部Cは第1図に示した如く縦型
筒状の装置からなり、剪断作用による加熱手段9
と薄膜蒸発用撹拌手段10を備えたものであり、
具体的には特公昭47−13041号、特公昭57−22325
号、特開昭56−45704号などに開示された遠心薄
膜蒸発機が好ましい。 上記第2脱気部Cにおいては、第1脱気部から
のスチレン系重合反応物を200〜300℃、好ましく
は210〜285℃の温度、50トル以下、好ましくは10
トル以下の圧力の条件で撹拌を行ない未反応物や
溶剤等の含有率が1重量%以下となるように脱気
する。こゝで温度が200℃未満ではスチレン系重
合反応物の粘度が上昇し脱気効率が低下する。一
方、300℃を越える超熱劣化が生起するので好ま
しくない。また、圧力が50トル以上で未反応物や
溶剤等の飽和濃度が増大し、そのため脱気効果が
低下し未反応物や溶剤等が残留することとなる。
この第2脱気部において未反応物や溶剤等の含有
率が1重量%を超えるような脱気処理を行なう
と、スチレン系重合体は残存する未反応物や溶剤
等に起因してヤケ、外観不良(シルバー,フラツ
シユ)等を生じ、また機械的物性も低下し好まし
くない。 本発明において上記第1脱気部と第2脱気部の
いずれか一方もしくは両者に加えてスチレン系重
合反応物と接触させる酸化防止剤は融点35℃以上
のものが好ましく、特にフエノール系のものが好
ましい。フエノール系酸化防止剤を具体的に例示
すると、4−ヒドロキシメチル−2,6−ジブチ
ルフエノール、n−オクタデシル−β−(4′−ヒ
ドロキシ−3′,5′−ジ−t−ブチルフエニル)プ
ロピオネート、2−t−ブチル−4−メトキシフ
エノール、2,6−ジ−t−ブチル−4−メチル
フエノール、2,2′−メチレンビス(4−メチル
−6−t−ブチルフエノール)、2,2′−メチレ
ンビス(4−エチル−6−t−ブチルフエノー
ル)、ビス(3−シクロヘキシル−2−ヒドロキ
シ−5−メチルフエニル)メタン、ビス(3,
3′−ビス(4′−ヒドロキシ−3′−t−ブチルフエ
ニル)ブチリツクアシツド)グリコールエステ
ル、4,4′−ブチリデンビス(6−t−ブチル−
m−クレゾール)、4,4′−チオビス(3−メチ
ル−6−t−ブチルフエノール)、1,1,3−
トリス(2−メチル−4−ヒドロキシ−5−t−
ブチルフエニル)ブタン、1,3,5−トリメチ
ル−2,4,6−トリス(3,5−ジ−t−ブチ
ル−4−ヒドロキシベンジン)ベンゼン、テトラ
キス〔メチレン−3−(3′,5′−ジ−t−ブチル
−4−ヒドロキシフエニル)プロピオネート〕メ
タン、2,4,5−トリヒドロキシブチロフエノ
ン、p−t−ブチルフエニルサリシレートなどが
ある。酸化防止剤の添加量は樹脂溶融体100重量
部に対して0.005〜2.0重量部の範囲とすればよ
い。酸化防止剤の第1脱気部と第2脱気部への供
給比については特に制限はないが、前者:後者=
100〜20:0〜80の範囲、好ましくは70〜80:20
〜30の範囲で選択することにより生産効率を高め
ることができる。 本発明ではスチレン系重合反応物からの脱気工
程を2段階としたことにより該重合反応物中の未
反応物や溶剤等の含有量に応じてスチレン系重合
体を劣化させることなく、しかも最適の運転条件
を選択して効率よく生産することができる。未反
応物や溶剤等を多量に含むものにあつては第1脱
気部において粗脱気し、第2脱気部において精密
脱気を行なうことによつて未反応物や溶剤等を効
率よく、かつ精留することができる。また、酸化
防止剤を第1脱気部に導入すると撹拌手段によつ
て該酸化防止剤を重合反応物中に均一に分散させ
ることが可能であり、スチレン系重合体の熱劣化
を効果的に防止することができる。 なお、スチレン系重合体の製品中の揮発物(未
反応物や溶剤等)の許容濃度は0.1%以下であり、
またアイゾツド衝撃強度は8.0以上、YIは2.5以下
であることが必要である。 次に、本発明を実施例により説明する。 実施例 1〜11 第1図に示した装置を用いて実施した。なお、
第1脱気部Bとして40容の筒状脱気装置で各回
転軸(軸間距離11cm)には各々10枚のひようたん
形の撹拌翼(長径15cm)を10cm間隔で設け、かつ
該撹拌翼の先端には直立するように3cm×2cmの
剥離板を設けたものを使用した。また、二重壁構
造とした筒状脱気装置の壁間に熱媒を循環させ
た。第2脱気部Cとして15容の縦型筒状脱気装
置で、供給口付近に直径15cm、長さ20cmの剪断加
熱用ローターを取付け、その下方に2枚の撹拌翼
(5cm×40cm)を有する薄膜蒸発用の撹拌手段を
備えたものを使用した。また、この装置にも第1
脱気部と同様にジヤケツトを装備し、熱媒を循環
させた。 ポリブタジエン(ムーニー粘度35(100℃))を
スチレン単量体中に溶解し、下記の原料組成にて
重合し、樹脂溶融体とした。 スチレン単量体 91部 ポリブタジエン 6部 エチルベンゼン 3部 得られた樹脂溶融体には未反応のスチレン単量
体15重量%、エチルベンゼン3重量%が含まれて
いた。この樹脂溶融体を前記第1脱気部および第
2脱気部に表示した条件にて通して後処理を行な
つた。 得られたスチレン系重合体の性状を脱気条件と
共に第1表に示す。 比較例 1〜8 脱気条件を変更したこと以外は実施例に準じて
行なつた。結果を第1表に示す。
The present invention relates to a method for post-treatment of a styrene polymerization reaction product, and more particularly to a method for post-treatment of a styrene polymerization reaction product that performs a two-step degassing treatment. If unreacted substances or solvents remain in the styrene polymer, it may cause burns during molding, cause poor appearance of the molded product (silver, flash), and deteriorate the physical properties of the molded product. It has the disadvantage of significantly lowering the Therefore, various methods of separating these unreacted substances, solvents, etc. from the polymer have been studied, such as Japanese Patent Publication No. 56-39655 and Japanese Patent Application Laid-open No. 53
-Disclosed in No. 4089, etc. However, if the content of unreacted monomers or the amount of solvent is large, these methods require a considerable amount of degassing, and moreover, the styrene polymer must be removed before a predetermined amount of these unreacted substances and solvents can be degassed. Must be held at high temperatures and under high shear for long periods of time. Therefore, the production efficiency was poor, and the polymer was thermally degraded due to stagnation, resulting in a decrease in physical properties. The present invention aims to provide a post-treatment method for styrenic polymerization reactants which eliminates the above-mentioned drawbacks, and which reduces the content of unreacted substances and solvents, prevents thermal deterioration, and improves physical properties, especially This is a post-treatment method that provides a styrenic polymer with excellent impact resistance. The present invention provides a post-treatment method for removing unreacted substances, solvents, etc. from a styrene-based polymerization reaction product after completion of a polymerization reaction, which includes a heating mechanism and further includes at least two stirring blades on each of a plurality of rotating shafts. a first degassing section equipped with an agitation mechanism fixed to the
By sequentially introducing the styrene-based polymerization reactant into the degassing section and supplying an antioxidant to either or both of the first degassing section and the second degassing section, the styrene-based polymerization reaction product is removed. contact, and the first
In the degassing section, the temperature is 150 to 300℃ and the pressure is 0.1 to 600.
Stirring is carried out under the conditions of 1.5 to
Stirring is performed under conditions of 200 to 300℃ and a pressure of 50 Torr or less to remove unreacted substances and solvents so that the content of such substances in the styrenic polymer is 1% by weight or less. This is a characteristic post-treatment method for styrenic polymerization reactants. The styrenic polymerization reactants to which the method of the present invention is applied include, but are not limited to, styrene, vinyltoluene, α
- Homopolymers and copolymers of styrene monomers such as methylstyrene, copolymers of styrene monomers with monomers such as acrylonitrile, methyl acrylate, and methyl methacrylate, and rubbers that can be copolymerized with styrene monomers There are copolymers with polymers, etc., and post-treatment is performed on polymerization reaction products obtained by bulk polymerization, solution polymerization, etc.
The present invention is characterized in that the post-processing is carried out in two stages, and FIG. 1 schematically explains the flow of the method of the present invention. The first degassing section B in the present invention consists of a device having a cylindrical outer shape as shown in FIG. It has a heating mechanism 2 that heats the styrenic polymer by heating the styrenic polymer through the styrene polymer and heats the styrene polymer to a temperature higher than the dew point temperature of the volatiles in the degassing step. In addition, the cylindrical body has a plurality of rotating shafts 3 provided in parallel,
3', and at least two stirring blades 4 are fixed to each of these rotating shafts, and the stirring blades are usually
As shown in the figure, one rotating shaft and the other rotating shaft are provided with an appropriate interval. It is preferable that the rotating directions of the rotating shafts are alternately rotated in opposite directions. Further, a heating means can be provided within the rotating shaft if necessary.
As mentioned above, there are at least two stirring blades, and generally two to eight stirring blades are suitable. In the case of an even number, they are arranged symmetrically around the rotation axis. In addition,
As shown in the figure, the stirring blades are arranged opposite to the rotating shaft and mutually connected to each other.
In addition to mounting with a phase angle of 180 degrees, it can also be installed with a phase angle of 120 degrees or
Multiple units can be installed at a 90 degree phase angle.
There is no particular restriction on the shape of the stirring blade, and FIGS. 2a to 2c show its embodiments. When the stirring blade is made into a bulging shape, the deaeration effect is improved, and when the through hole 16 is provided near the center of the bulge, the deaeration effect is further improved, and the power can be reduced. A peeling plate 15 is provided at the tip of the stirring blade 4 so as to be perpendicular to the stirring blade, which increases the stirring effect, prevents dead space from forming inside the cylindrical body, and prevents the styrene polymer from forming. The surface renewal effect can be increased. This peeling plate is preferably provided close to the inner wall of the cylindrical body, and the peeling plate may also be provided with a through hole. In the first degassing section B, the viscous styrene polymerization reaction product from the reaction tank A is supplied from the upper part,
Adjust the liquid level appropriately to 150-300℃, preferably 150-300℃
Temperature of 260℃, 0.1~600 Torr, preferably 100~
By stirring at a pressure of 500 torr, more preferably 150 to 350 torr, the content of unreacted substances, solvents, etc. in the styrenic polymer is reduced to 0.5 to 50% by weight, preferably 0.5 to 30% by weight. Degas until completely dry. If the temperature is below 150°C, the viscosity of the styrene reactant increases, which is undesirable due to high load and high shear. On the other hand, if the temperature exceeds 300°C, depolymerization occurs, which is not preferable. Particularly in the case of copolymers, the degree of crosslinking increases and impact resistance decreases, which is not preferable. Also, the pressure
If it is less than 0.1 Torr, especially in the case of a copolymer, the salami structure of the rubber component will be destroyed, which is undesirable, and if it exceeds 600 Torr, the degassing efficiency will decrease and productivity will be poor. If the content of unreacted substances, solvent, etc. is less than 0.5% by weight in the degassing treatment in the first degassing section, the crosslinking reaction will be particularly difficult to proceed, resulting in a decrease in impact resistance. On the other hand, if the deaeration treatment exceeds 50% by weight, the crosslinking reaction will proceed excessively and the physical properties of the polymer will deteriorate. Next, the second degassing section C consists of a vertical cylindrical device as shown in FIG.
and a stirring means 10 for thin film evaporation,
Specifically, Special Publication No. 47-13041, Special Publication No. 57-22325
A centrifugal thin film evaporator disclosed in JP-A-56-45704 and the like is preferred. In the second degassing section C, the styrene polymerization reaction product from the first degassing section is heated to a temperature of 200 to 300°C, preferably 210 to 285°C, 50 Torr or less, preferably 10
Stirring is performed at a pressure of less than Torr, and the mixture is degassed so that the content of unreacted substances, solvent, etc. is 1% by weight or less. If the temperature is below 200°C, the viscosity of the styrene polymerization reaction product will increase and the degassing efficiency will decrease. On the other hand, it is not preferable because ultrathermal deterioration occurs at temperatures exceeding 300°C. Further, when the pressure is 50 torr or more, the saturation concentration of unreacted substances, solvent, etc. increases, which reduces the degassing effect and causes unreacted substances, solvent, etc. to remain.
If deaeration treatment is performed in this second degassing section in such a way that the content of unreacted substances, solvent, etc. exceeds 1% by weight, the styrenic polymer will fade due to the remaining unreacted substances, solvent, etc. This is not preferable because it causes poor appearance (silver, flash), etc., and also deteriorates mechanical properties. In the present invention, the antioxidant brought into contact with the styrene polymerization reactant in addition to one or both of the first degassing section and the second degassing section is preferably one having a melting point of 35°C or higher, and in particular a phenol type antioxidant. is preferred. Specific examples of phenolic antioxidants include 4-hydroxymethyl-2,6-dibutylphenol, n-octadecyl-β-(4'-hydroxy-3',5'-di-t-butylphenyl) propionate, 2-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-4-methylphenol, 2,2'-methylenebis(4-methyl-6-t-butylphenol), 2,2'- Methylenebis(4-ethyl-6-t-butylphenol), bis(3-cyclohexyl-2-hydroxy-5-methylphenyl)methane, bis(3,
3'-bis(4'-hydroxy-3'-t-butylphenyl)butyric acid) glycol ester, 4,4'-butylidenebis(6-t-butyl-
m-cresol), 4,4'-thiobis(3-methyl-6-t-butylphenol), 1,1,3-
Tris(2-methyl-4-hydroxy-5-t-
butylphenyl)butane, 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzine)benzene, tetrakis[methylene-3-(3',5'- Examples include di-t-butyl-4-hydroxyphenyl propionate]methane, 2,4,5-trihydroxybutylphenone, and pt-butylphenyl salicylate. The amount of antioxidant added may be in the range of 0.005 to 2.0 parts by weight per 100 parts by weight of the resin melt. There is no particular restriction on the supply ratio of the antioxidant to the first degassing section and the second degassing section, but the former: the latter =
100-20:0-80 range, preferably 70-80:20
Production efficiency can be increased by selecting within the range of ~30. In the present invention, the degassing process from the styrene polymerization reaction product is carried out in two stages, so that the styrene polymer is not deteriorated depending on the content of unreacted substances, solvents, etc. in the polymerization reaction product, and is optimal. It is possible to select the operating conditions for efficient production. If the material contains a large amount of unreacted substances or solvents, unreacted substances or solvents can be efficiently removed by rough degassing in the first degassing section and precise degassing in the second degassing section. , and can be rectified. In addition, when the antioxidant is introduced into the first degassing section, it is possible to uniformly disperse the antioxidant in the polymerization reaction product using the stirring means, and the thermal deterioration of the styrenic polymer can be effectively prevented. It can be prevented. The permissible concentration of volatile substances (unreacted substances, solvents, etc.) in styrene polymer products is 0.1% or less.
In addition, the Izod impact strength must be 8.0 or more, and the YI must be 2.5 or less. Next, the present invention will be explained by examples. Examples 1 to 11 Examples were carried out using the apparatus shown in FIG. In addition,
The first degassing section B is a cylindrical deaerator with a capacity of 40, and each rotating shaft (distance between the axes is 11 cm) is equipped with 10 gourd-shaped stirring blades (major diameter 15 cm) at 10 cm intervals. A stirring blade with a peeling plate of 3 cm x 2 cm installed at the tip so as to stand upright was used. In addition, a heat medium was circulated between the walls of the cylindrical deaerator with a double-walled structure. The second degassing section C is a 15-capacity vertical cylindrical deaerator, with a shear heating rotor of 15 cm in diameter and 20 cm in length installed near the supply port, and two stirring blades (5 cm x 40 cm) below it. A device equipped with a stirring means for thin film evaporation was used. This device also has a first
A jacket was installed in the same way as the degassing section to circulate the heat medium. Polybutadiene (Mooney viscosity 35 (100°C)) was dissolved in styrene monomer and polymerized with the following raw material composition to obtain a resin melt. Styrene monomer: 91 parts Polybutadiene: 6 parts Ethylbenzene: 3 parts The resulting resin melt contained 15% by weight of unreacted styrene monomer and 3% by weight of ethylbenzene. This resin melt was passed through the first degassing section and the second degassing section under the indicated conditions for post-treatment. The properties of the obtained styrenic polymer are shown in Table 1 together with the degassing conditions. Comparative Examples 1 to 8 The same procedures as in Examples were carried out except that the degassing conditions were changed. The results are shown in Table 1.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法のフローの概略を示す説
明図、第2図a〜cは本発明の方法に用いる撹拌
翼の態様の正面図である。 A……反応槽、B……第1脱気部、C……第2
脱気部、1……筒状体、2……加熱機構、3,
3′……回転軸、4……撹拌翼、5……供給口、
6……排出口、7……脱気口、8……ポンプ、9
……剪断加熱用ローター、10……薄膜蒸発用撹
拌手段、11……軸封装置、12……モーター、
13……供給口、14……排出口、15……剥離
板、16……透孔。
FIG. 1 is an explanatory diagram showing an outline of the flow of the method of the present invention, and FIGS. 2 a to 2 c are front views of embodiments of stirring blades used in the method of the present invention. A...Reaction tank, B...First degassing section, C...Second
Degassing section, 1... Cylindrical body, 2... Heating mechanism, 3,
3'... Rotating shaft, 4... Stirring blade, 5... Supply port,
6...Discharge port, 7...Deaeration port, 8...Pump, 9
... rotor for shear heating, 10 ... stirring means for thin film evaporation, 11 ... shaft sealing device, 12 ... motor,
13... Supply port, 14... Discharge port, 15... Peeling plate, 16... Through hole.

Claims (1)

【特許請求の範囲】 1 重合反応終了後のスチレン系重合反応物から
未反応物や溶剤等を除去する後処理方法におい
て、加熱機構を有し、さらに複数本の回転軸のそ
れぞれに少なくとも2個の撹拌翼を固着した撹拌
機構を備えた第1脱気部および剪断作用による加
熱手段と薄膜蒸発用撹拌手段を備えた第2脱気部
にスチレン系重合反応物を順次導入すると共に、
該第1脱気部と第2脱気部のいずれか一方もしく
は両者に酸化防止剤を供給することによつて前記
スチレン系重合反応物と接触させ、かつ第1脱気
部においては温度150〜300℃、圧力0.1〜600トル
の条件で撹拌を行ない未反応物や溶剤等のスチレ
ン系重合体中の含有率が0.5〜50重量%になるま
で脱気し、次の第2脱気部においては温度200〜
300℃、圧力50トル以下の条件で撹拌を行ない未
反応物や溶剤等のスチレン系重合体中の含有率が
1重量%以下となるように未反応物や溶剤等を除
去することを特徴とするスチレン系重合反応物の
後処理方法。 2 酸化防止剤がフエノール系化合物である特許
請求の範囲第1項記載の方法。 3 第1脱気部の撹拌翼の先端に、該撹拌翼と直
交する剥離板を設けた特許請求の範囲第1項記載
の方法。
[Scope of Claims] 1. A post-treatment method for removing unreacted substances, solvents, etc. from a styrene polymerization reaction product after completion of a polymerization reaction, which comprises a heating mechanism, and further includes at least two heating mechanisms on each of a plurality of rotating shafts. The styrenic polymerization reactant is sequentially introduced into a first degassing section equipped with a stirring mechanism having a stirring blade fixed thereto, and a second degassing section equipped with a heating means by shearing action and a stirring means for thin film evaporation, and
An antioxidant is supplied to either or both of the first degassing section and the second degassing section to bring them into contact with the styrene polymerization reaction product, and the temperature in the first degassing section is 150 to 150. Stirring is performed under conditions of 300℃ and pressure of 0.1 to 600 torr to degas the content of unreacted substances and solvents in the styrenic polymer to 0.5 to 50% by weight, and then in the second degassing section. The temperature is 200~
It is characterized by stirring under conditions of 300°C and a pressure of 50 torr or less to remove unreacted substances and solvents so that their content in the styrenic polymer is 1% by weight or less. A post-treatment method for styrenic polymerization reactants. 2. The method according to claim 1, wherein the antioxidant is a phenolic compound. 3. The method according to claim 1, wherein a peeling plate is provided at the tip of the stirring blade of the first deaeration section, the peeling plate being perpendicular to the stirring blade.
JP112583A 1983-01-10 1983-01-10 After-treatment of styrene polymerization product Granted JPS59126411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP112583A JPS59126411A (en) 1983-01-10 1983-01-10 After-treatment of styrene polymerization product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP112583A JPS59126411A (en) 1983-01-10 1983-01-10 After-treatment of styrene polymerization product

Publications (2)

Publication Number Publication Date
JPS59126411A JPS59126411A (en) 1984-07-21
JPH0373570B2 true JPH0373570B2 (en) 1991-11-22

Family

ID=11492722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP112583A Granted JPS59126411A (en) 1983-01-10 1983-01-10 After-treatment of styrene polymerization product

Country Status (1)

Country Link
JP (1) JPS59126411A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227938A (en) * 1983-06-10 1984-12-21 Mitsui Toatsu Chem Inc Polymer composition
EP0575104B1 (en) * 1992-06-17 1996-05-08 Nippon Shokubai Co., Ltd. Maleimide-based copolymer and process for producing it
US6100366A (en) * 1998-09-18 2000-08-08 Nippon Shokubai Co., Ltd. Cyclic imino ether group containing polymer and production process therefor
CN113877498A (en) * 2021-09-30 2022-01-04 长春工业大学 Device and method for preparing SAN resin with stable composition and low volatile component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543121A (en) * 1978-09-22 1980-03-26 Hitachi Ltd Removal of monomer from polystyrene resin
JPS57135814A (en) * 1981-02-17 1982-08-21 Nippon Steel Chem Co Ltd Production of styrene/methyl methacrylate copolymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543121A (en) * 1978-09-22 1980-03-26 Hitachi Ltd Removal of monomer from polystyrene resin
JPS57135814A (en) * 1981-02-17 1982-08-21 Nippon Steel Chem Co Ltd Production of styrene/methyl methacrylate copolymer

Also Published As

Publication number Publication date
JPS59126411A (en) 1984-07-21

Similar Documents

Publication Publication Date Title
US4198383A (en) Apparatus for continuous preparation of acrylonitrilebutadienstyrene copolymer
US4909898A (en) Polymer recovery from solution
US5548033A (en) Process for the short-time treatment of a plastic melt with a liquid treatment agent and the plastic thus produced
JP5231390B2 (en) Method and apparatus for processing high viscosity products
US4361462A (en) Method and apparatus for removing volatile matter from highly viscous material
US4146589A (en) Method for preparing a monoalkenyl aromatic polyblend having a dispersed rubber phase as particles with a bimodal particle size distribution
TW200838889A (en) Methods for devolatilizing resin solutions and resins produced thereby
EP0015752B1 (en) A continuous mass polymerization process for the production of polyblends having a dispersed rubber phase with bimodal rubber particle size
CN115260481A (en) Method for devolatilizing polymer melt
US20050197489A1 (en) Process for stripping monomers and other volatile constituents from polymer melts
JPH0373570B2 (en)
US4252911A (en) Mass polymerization process for ABS polyblends
FI95475C (en) Process for preparing an impact-resistant vinyl aromatic resin directly from butadiene
JPS5818363B2 (en) Renzoku Kaiji Youji Yugohouhou
EP0046696B1 (en) Rotating disc evapo-extrusion process and apparatus therefor
JPH0525881B2 (en)
US4362850A (en) Process for the continuous polymerization of polyblends
EP0015751B1 (en) Process for the continuous production of polyblends derived from an alkenyl aromatic monomer and a diene rubber
JP3011254U (en) Devolatilizer for polymer solution
CA1119337A (en) Mass polymerization process for polyblends
JP2001521577A (en) Finishing treatment method for syndiotactic vinyl aromatic polymer
US4308360A (en) Process for obtaining narrow molecular weight distribution in vinyl aromatic mass polymerization system
JPS5917126B2 (en) Process for producing improved impact-resistant styrenic polymers
US4713421A (en) Process for obtaining narrow molecular weight distribution in vinyl aromatic mass polymerization system
CN112225889B (en) Method for continuously synthesizing chlorohydrin rubber by using kneading reactor