JPH03157830A - Optical information recording medium - Google Patents
Optical information recording mediumInfo
- Publication number
- JPH03157830A JPH03157830A JP1296536A JP29653689A JPH03157830A JP H03157830 A JPH03157830 A JP H03157830A JP 1296536 A JP1296536 A JP 1296536A JP 29653689 A JP29653689 A JP 29653689A JP H03157830 A JPH03157830 A JP H03157830A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- recording
- change
- layer
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 44
- 239000010409 thin film Substances 0.000 claims abstract description 97
- 239000000463 material Substances 0.000 claims abstract description 43
- 239000010408 film Substances 0.000 claims description 28
- 230000031700 light absorption Effects 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 10
- 238000002834 transmittance Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 61
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 229910052984 zinc sulfide Inorganic materials 0.000 description 10
- 239000011241 protective layer Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 229910052714 tellurium Inorganic materials 0.000 description 5
- 230000008033 biological extinction Effects 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 3
- -1 MgO1G e O2 Chemical class 0.000 description 2
- 229910003069 TeO2 Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 150000001786 chalcogen compounds Chemical class 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明(よ 光・熱等を用いて高速かつ高密度に情報を
記録再生する光学的情報記録再生媒体に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical information recording/reproducing medium that records and reproduces information at high speed and high density using light, heat, etc.
従来の技術
レーザー光をレンズ系によって収束させると直径がその
光の波長のオーダーの小さな光スポットを作ることがで
きる。したがって小さい出力の光源からでも単位面積あ
たりのエネルギー密度の高い光スポットを作ることが可
能である。 したがって物質の微少な領域を変化させる
ことが可能であり、またその微少領域の変化を読みだす
ことも可能である。これを情報の記録・再生に利用した
ものが光学的情報記録媒体である。以下、 「光記録媒
体」あるいは単に「媒体」と記述する。BACKGROUND ART When laser light is focused by a lens system, it is possible to create a small light spot with a diameter on the order of the wavelength of the light. Therefore, it is possible to create a light spot with high energy density per unit area even from a light source with a small output. Therefore, it is possible to change a minute area of a substance, and it is also possible to read out changes in that minute area. Optical information recording media utilize this for recording and reproducing information. Hereinafter, it will be referred to as an "optical recording medium" or simply "medium."
光記録媒体の基本的な構造は表面が平坦な基材上にレー
ザースポット光照射によって何らかの状態が変化する記
録薄膜層を設けたものである。信号の記録・再生は以下
のような方法を用いる。すなわ板 平板状の媒体を例え
ばモーター等による回転手段や並進手段により移動させ
、この媒体の記録薄膜面上にレーザー光を収束し照射す
る。記録薄膜はレーザー光を吸収し昇温する。レーザー
光の出力をある閾値以上に大きくすると記録薄膜の状態
が変化して情報が記録される。この閾値は記録薄膜自体
の特性の他に基材の熱的な特性・媒体の光スポットに対
する相対速度等に依存する量である。記録された情報は
記録部に前記閾値よりも十分低い出力のレーザー光スポ
ットを照射しその透過光強度 反射光強度あるいはそれ
らの偏光方向等何らかの光学的特性が記録部と未記録部
で異なることを検出して再生する。The basic structure of an optical recording medium is that a recording thin film layer whose state changes in some way by laser spot light irradiation is provided on a base material with a flat surface. The following methods are used to record and reproduce signals. In other words, a plate-like medium is moved by rotation means or translation means such as a motor, and a laser beam is focused and irradiated onto the recording thin film surface of this medium. The recording thin film absorbs the laser light and heats up. When the output of the laser beam is increased above a certain threshold, the state of the recording thin film changes and information is recorded. This threshold value is a quantity that depends on not only the characteristics of the recording thin film itself but also the thermal characteristics of the base material, the relative speed of the medium with respect to the light spot, etc. The recorded information is obtained by irradiating the recording section with a laser beam spot with an output sufficiently lower than the threshold value, and detecting that some optical characteristics such as transmitted light intensity, reflected light intensity, or their polarization direction are different between the recorded section and the unrecorded section. Discover and play.
したがって、小さいレーザーパワーで状態が変化し 大
きな光学的変化を示す材料および構造が望まれる。Therefore, materials and structures that change state and exhibit large optical changes with small laser powers are desired.
記録薄膜としてはBi、Teあるいはこれらを主成分と
する金属薄[1LTeを含む化合物薄膜が知られている
。これらはレーザー光照射により薄膜が溶融あるいは蒸
発し小孔を形成する穴開は型の記録を行1.X、この記
録部とその周辺部からの反射光あるいは透過光の位相が
異なるため干渉で打ち消しあって、あるいは回折されて
検出系に至る反射光量あるいは透過光量が変化すること
を検出して再生を行う。また 他に相変化型と呼ばれゑ
形状の変化を伴わずに光学的な変化をする記録媒体があ
る。材料としてはアモルファスカルコゲン化物薄肱 テ
ルルおよび酸化テルルからなるTe−TeO2を主成分
とする酸化物系薄膜がある(特公昭54−3725号公
報)。まL T e Te02−Pdを主成分とす
る薄膜も知られている(特開昭61−68296号公報
)。これらはレーザー光照射により薄膜の消衰係数ある
いは屈折率のうち少なくともいずれか1つが変化して記
録を行(\ この部分で透過光あるいは反射光の振幅が
変化し その結果検出系に至る透過光量あるいは反射光
量が変化することを検出して信号を再生する。As the recording thin film, a thin metal film containing Bi, Te, or a metal containing these as main components [1LTe-containing compound thin film is known. The thin film is melted or evaporated by laser beam irradiation to form small holes.1. X. Reproduction is performed by detecting changes in the amount of reflected or transmitted light that are reflected or transmitted from the recording section and its surroundings and cancel each other out due to interference, or are diffracted and reach the detection system. conduct. There is also a recording medium called a phase change type that undergoes an optical change without a change in shape. As a material, there is an oxide thin film whose main component is Te-TeO2, which is made of amorphous chalcogenide tellurium and tellurium oxide (Japanese Patent Publication No. 3725/1983). A thin film containing L Te Te02-Pd as a main component is also known (Japanese Unexamined Patent Publication No. 68296/1983). These record by changing at least one of the extinction coefficient or refractive index of the thin film by laser light irradiation (\ The amplitude of the transmitted light or reflected light changes in this part, and as a result, the amount of transmitted light reaching the detection system Alternatively, a change in the amount of reflected light is detected and the signal is reproduced.
光は波動であり振幅と位相によって記述される。Light is a wave and is described by amplitude and phase.
上記のように信号の再生は透過光量あるいは反射光も−
の変化によって検出されるカミ その原因としCは膜自
体の微少領域の透過光振幅あるいは反射光振幅が変化す
る場合(振幅変化記録)と、透過光あるいは反射光の位
相が変化する場合(位相変化記録)がある。As mentioned above, signal reproduction depends on the amount of transmitted light or reflected light.
The causes C are when the amplitude of transmitted light or reflected light in a minute area of the film itself changes (amplitude change recording), and when the phase of transmitted light or reflected light changes (phase change). record).
発明か解決(7ようとする課題
以上のような光記録媒体の中で穴開は型のものは反射光
量変化は大きく取ね、位相変化記録であるため記録密度
が大きい記録が行えるカミ きれいな穴を形成するこ七
が難しく再生時のノイズが大きい。ま)& 密着(−だ
保護構造がとれずミ いわゆるエアーザンドイッチ構造
といわれる複雑な中空構造をとる必要があり、製造が雛
しくコスト高である。また 変形記録であるので消去書
き換えが不可能である。Invention or solution (7) Among the optical recording media mentioned above, those with holes do not allow large changes in the amount of reflected light, and because they are phase change recording, recording with high recording density is possible. The structure is difficult to form and the noise during playback is large. Also, since it is a deformed record, it cannot be erased or rewritten.
これに比べて相変化型の記録媒体は形状変化を伴わない
ので簡単な構造がとれ製造が容易で低コストの媒体であ
る力(反射振幅変化記録であるため穴開は型の記録にく
らべて記録密度が小さいという課題がある。さらi、′
Z、位相変化型の記録媒体である凹凸ピッ)・による複
製盤(オーディオディス久 ビデオディスク等)との互
換が取りにくいという課題もある。In comparison, phase-change recording media do not involve shape changes, so they have a simple structure, are easy to manufacture, and are low-cost media. There is a problem that the recording density is small.
There is also the problem that it is difficult to maintain compatibility with reproduction discs (audio discs, video discs, etc.) using Z, a phase change type recording medium (concave/convex recording medium).
課題を解決するための手段
基材上に レーザー光照射によって光学定数が変化する
薄膜材料層を少なくとも2層設けて、変化の前後で入射
した光の反射光あるいは透過光の位相が変化しこの位相
変化による4体の反射光量あるいは透過光景の変化を検
知する構成とする。Means for solving the problem: At least two thin film material layers whose optical constants change when irradiated with laser light are provided on the base material, and the phase of the reflected light or transmitted light of the incident light changes before and after the change, and this phase changes. It is configured to detect changes in the amount of reflected light from the four bodies or in the transmitted scenes due to changes.
さらに その際に変化の前後で反射率あるいは透過率は
変化がなIA あるいは小さい構成とする。Furthermore, in this case, the reflectance or transmittance is configured to have no change before and after the change, or to have a small IA configuration.
具体的に(:L 基材−にに基材と屈折率が異なる第1
の透明層を設i)l、その上に第1の記録薄膜層を設(
沢 その上に第2の透明層を設(す、その上に第2の記
録薄膜層を投法 その上に第3の透明層を設(づ、その
上に反射層を設けた構成を用へ 前記第1の透明層 第
1の記録薄膜層 第2の透明風箱2の記録薄膜層 第3
の記録薄膜層および反射層の膜厚を記録材料の変化に際
して入射した光の透過光あるいは反射光の位相が変化す
るように選ぶことにより実現できる。Specifically (:L base material - the first material having a different refractive index from the base material)
A transparent layer is provided (i)l, and a first recording thin film layer is provided thereon (i).
A configuration is used in which a second transparent layer is disposed on top of the second transparent layer, and a second recording thin film layer is disposed on top of the third transparent layer. First transparent layer First recording thin film layer Second recording thin film layer of transparent wind box 2 Third
This can be achieved by selecting the film thicknesses of the recording thin film layer and the reflective layer so that the phase of transmitted light or reflected light of incident light changes when the recording material changes.
作用
上記のような構成にすると光学的には凹凸による位相変
化記録と等価な記録が行える。従って、相変化記録テあ
りながら記録密度の大きい記録が行なえ、凹凸ビットに
よる複製盤(オーディオディス久 ビデオディスク等)
との互換も取り易1i〜また 相変化記録は形状変化を
伴わず材料を選ぶことによ−)で記録した状態をもとに
戻1ミ すなわち消去・書き換えも可能であり、書き換
え型の位相変化記録が実現できる。Effect: With the above-described configuration, recording optically equivalent to phase change recording using unevenness can be performed. Therefore, it is possible to perform high-density recording even though there is a phase change recording method, and it is possible to perform reproduction discs (audio discs, video discs, etc.) using uneven bits.
Also, by selecting the material without changing the shape, phase change recording can be easily erased and rewritten. It is possible to record changes.
従来の相変化形光記録媒体の構造の一例を第2図に示す
。相変化形記録材料は1ノーザー光を照射して発熱昇温
させその相を変化させると複素屈折率が変化する。その
変化は一般的に屈折率と消衰係数が同方向に変化する。An example of the structure of a conventional phase change optical recording medium is shown in FIG. The complex refractive index of a phase change recording material changes when it is irradiated with 1-noser light to heat up and change its phase. Generally, the change is such that the refractive index and the extinction coefficient change in the same direction.
例えばアモルファス状態が結晶状態に変化すると一般に
屈折率と消衰係数が増大する。この様な記録薄膜層の反
射率は記録薄膜層3の膜厚t2に依存する。基材1側か
ら光を入射した場合の記録薄膜の反射率Rは記録薄膜の
光入射側の界面からの反射光とその反対側の界面からの
反射光の多重干渉の結果である。膜厚t2を変化させる
と反射率は干渉の結果、波長と屈折ヰによって決まる周
期で増減するが膜厚が増加するにしたがい吸収により光
入射側と反対の界面に到達して反射する光量が減少する
ため干渉の効果がなくなっていく。その結果として干渉
による増減が膜厚の増加にともないしだいに減衰する曲
線を描く。複素屈折率が大きくなると屈折率の増加によ
り干渉による膜厚周期が小さくなると同時に消衰係数の
増加により減衰する膜厚が小さい方向にシフトする。以
上の結果 相変化(7た時の反射率差△Rも膜厚により
変化するが一般には複素屈折率の小さい相で反射率が極
小になる膜厚で極大になる。一方このような構成では反
射光の位相の相変化の前後での変化は小さ(〜 すなわ
ち反射率変化は反射光の振幅変化によるものである。For example, when an amorphous state changes to a crystalline state, the refractive index and extinction coefficient generally increase. The reflectance of such a recording thin film layer depends on the film thickness t2 of the recording thin film layer 3. The reflectance R of the recording thin film when light is incident from the substrate 1 side is the result of multiple interference between the light reflected from the interface on the light incident side of the recording thin film and the reflected light from the interface on the opposite side. When the film thickness t2 is changed, the reflectance increases or decreases as a result of interference at a period determined by the wavelength and refraction, but as the film thickness increases, the amount of light that reaches the interface opposite to the light incident side and is reflected decreases as the film thickness increases. Therefore, the effect of interference disappears. As a result, a curve is drawn in which the increase and decrease due to interference gradually attenuates as the film thickness increases. When the complex refractive index increases, the film thickness period due to interference becomes smaller due to the increase in the refractive index, and at the same time, the attenuating film thickness shifts toward a smaller value due to the increase in the extinction coefficient. As a result of the above, the reflectance difference △R at the time of phase change (7) also changes depending on the film thickness, but generally it becomes maximum at the film thickness where the reflectance becomes minimum in the phase with a small complex refractive index.On the other hand, in such a configuration The change in the phase of the reflected light before and after the phase change is small (~ In other words, the change in reflectance is due to the change in the amplitude of the reflected light.
従来相変化形の記録媒体はこの反射率変化が極大になる
膜厚で用いてい島 従って記録状態の再生はこの反射率
の差を検出することによってなされQ−
0−
る。 ミクロンオーダーの微小な領域の記録再生の場合
に(友 記録された部分の大きさと再生に用いる光ビー
ムの大きさが同じオーダーになる。例えば 波長800
nm前後のレーザー光をN A O。Conventionally, phase-change recording media are used with a film thickness that maximizes this change in reflectance. Therefore, reproduction of the recorded state is performed by detecting this difference in reflectance. In the case of recording and reproducing a minute area on the order of microns, the size of the recorded area and the size of the light beam used for reproduction are of the same order.For example, the wavelength is 800.
NAO laser light around nm.
5程度のレンズ系で絞ると半値幅が約0.9μmのビー
ムに絞れる。この様なビームを用いて強いパワーで記録
を行うと約0.5〜1μm前後の範囲が相変化をおこし
て記録状態となる。これを同じビームで読みだす場合を
考えると、読み出しビームの光強度は一般的にはガウス
分布をしており相変化した記録状態よりも外側に広がっ
ているため反射光量は記録状態の反射率と回りの未記録
状態の反射率にそれぞれの面積と光強度分布を加重して
平均した値に比例する。したがって、読み出しビームの
大きさに比べて十分大きな範囲の記録状態の面積がない
と十分な再生信号が得られなt、%この大きさによって
記録密度が制限される。When narrowed down with a lens system of about 5.5, the beam can be narrowed down to a beam with a half-width of about 0.9 μm. When recording is performed using such a beam with strong power, a phase change occurs in a range of approximately 0.5 to 1 μm, resulting in a recorded state. Considering the case where this is read out with the same beam, the light intensity of the readout beam generally has a Gaussian distribution and spreads outward from the recorded state where the phase has changed, so the amount of reflected light is equal to the reflectance of the recorded state. It is proportional to the average value obtained by weighting the surrounding unrecorded reflectance by each area and light intensity distribution. Therefore, unless the area of the recorded state is sufficiently large compared to the size of the read beam, a sufficient reproduced signal cannot be obtained.This size limits the recording density.
一方、穴開は形の場合には記録状態は凹凸の形状であり
周辺部と記録部からの反射光の位相が異なり、それらが
干渉しあって反射光量が変化することを利用している。On the other hand, when the holes are shaped, the recorded state is an uneven shape, and the phase of the reflected light from the peripheral part and the recorded part is different, and the reflected light quantity changes due to interference between them. This is utilized.
従って周辺部と穴部での反射光の位相差が(1±2n)
π(nは整数)のとき最も反射光量変化が大きく、この
値に近いことカミ 特に略々等しいことが望ましJ、
また 読み出しビームの強度分布として穴部に入射す
る強度と周辺部に入射する強度が等しいとき最も干渉の
効果が大きく、従って反射光強度変化が太きt℃すなわ
ち、読み出しビームの大きさよりも小さい記録状態のと
きが再生信号が大きくとれる。Therefore, the phase difference between the reflected light at the periphery and the hole is (1±2n)
The change in the amount of reflected light is greatest when π (n is an integer), and it is desirable that it be close to this value.
In addition, the interference effect is greatest when the intensity distribution of the readout beam is equal to the intensity incident on the hole and the peripheral area, and therefore the reflected light intensity change is thick t°C, that is, recording is smaller than the size of the readout beam. When in this state, the reproduced signal will be large.
以上から同じ再生光ビームで再生する場合反射率変化記
録よりも位相変化記録の方が小さな面積の記録状態で信
号量が大きくとれべ すなわち高密度な記録再生が出来
ることがわかる。From the above, it can be seen that when reproducing with the same reproducing light beam, phase change recording allows a larger signal amount to be obtained with a smaller recording area than reflectance change recording, that is, it is possible to record and reproduce at a higher density.
従って相変化記録において位相変化を得ることが出来れ
ば凹凸記録並の記録密度が得られゑ しかも反射率変化
は無いことあるいは小さいことかが望ましし−
相変化型の記録薄膜材料を用いて上述のような位相変化
型の光記録媒体を構成するに(上 記録薄膜層の少なく
とも片面に基材あるいは保護層と使用
2−
用するレーザー光の波長において屈折率の異なる透明層
を設けることによって実現できる。記録薄膜に接する材
料の屈折率が変化すると各界面での反射光が変化する。Therefore, if a phase change can be obtained in phase change recording, a recording density comparable to concave/convex recording can be obtained.Moreover, it is desirable that there be no or small change in reflectance. To construct a phase-change optical recording medium such as If the refractive index of the material in contact with the recording thin film changes, the reflected light at each interface changes.
記録薄膜からの反射光は記録薄膜の光入射側の界面から
の反射光とその反対側の界面からの反射光の多重干渉の
結果である。記録薄膜が十分薄く記録薄膜の光入射側と
反対の界面まで到達する光の大きさが十分大きい場合に
(よ未記録状態の光学定数の小さいときは光入射側と反
対の界面まで到達して反射される光が光入射側の界面か
らの反射光よりも大きく、記録状態の光学定数の大きい
ときは逆に光入射側の界面からの反射光が光入射側と反
対の界面まで到達して反射される光よりも大きくなる条
件が存在する。両者は光路長が異なるため位相差を持っ
ている。この位相差が大きければ干渉による打ち消しあ
いの結果 記録により光学定数が変化した時に全体の反
射光の位相が大きく変化することが可能になる。The reflected light from the recording thin film is the result of multiple interference of the reflected light from the light incident side interface of the recording thin film and the reflected light from the opposite interface. When the recording thin film is sufficiently thin and the size of the light that reaches the interface opposite to the light incident side of the recording thin film is sufficiently large (if the optical constant in the unrecorded state is small, the light reaches the interface opposite to the light incident side). When the reflected light is larger than the reflected light from the interface on the light incident side and the optical constant of the recording state is large, conversely, the reflected light from the interface on the light incident side reaches the interface opposite to the light incident side. There is a condition in which the light is larger than the reflected light.Since the optical path lengths of the two are different, there is a phase difference.If this phase difference is large, it is the result of cancellation due to interference.When the optical constant changes due to recording, the total reflected light It becomes possible for the phase of
さらに両者の振幅の差が記録の前後でほぼ等しければ(
もちろん大小関係は逆転するのであるが)反射光振幅の
変化はほとんどないということが可能である。Furthermore, if the difference in amplitude between the two is almost the same before and after recording (
Of course, the magnitude relationship is reversed), but it is possible that there is almost no change in the reflected light amplitude.
さらに基材上に基材と屈折率が異なる第1の透明層を設
ζす、その上に第1の記録薄膜層を設ζす、その上に第
2の透明層を設(す、その上に第2の記録薄膜層を設(
す、その上に第3の透明層を設置す、その上に反射層を
設けた構成を用し入 前記第1の透明層 第1の記録薄
膜層 第2の透明層 第2の記録薄膜層 第3の記録薄
膜層および反射層の膜厚を選ぶことによってより効率的
な位相変化型の光記録媒体を得ることができる。それは
2層の記録薄膜層の間に透明層が存在すると透過率が大
きくかつ相変化に際しての位相変化も大きいため2層の
記録薄膜層を透過した光が反射層によって反射されて上
記の干渉による打ち消し合いが効率的に行なわれるから
である。Further, a first transparent layer having a refractive index different from that of the substrate is provided on the substrate, a first recording thin film layer is provided thereon, and a second transparent layer is provided thereon. A second recording thin film layer is provided on top (
A third transparent layer is provided on top of the third transparent layer, and a reflective layer is provided on top of the third transparent layer.First transparent layer First recording thin film layer Second transparent layer Second recording thin film layer By selecting the thicknesses of the third recording thin film layer and the reflective layer, a more efficient phase change type optical recording medium can be obtained. This is because when a transparent layer exists between the two recording thin film layers, the transmittance is large and the phase change during phase change is also large, so the light that has passed through the two recording thin film layers is reflected by the reflective layer, resulting in the above interference. This is because cancellation is performed efficiently.
一方、光ディスク等の光記録媒体においては溝状の基材
の凹凸を用いたトラッキングの手法が一般的に用いられ
る。 (例えば 尾上守夫監修「光デイスク技術」ラジ
オ技術社T’L 第1章 1.2゜=13=
14−
5 p79〜 参照) この場合の凹凸溝も入射光の反
射光の位相を変化させてl・ラッキングに必要な情報を
検出系にあたえる。従って、溝トラツクを使−ってトラ
ッキングを行いながら位相変化の記録再生を行うときに
は溝による位相変化と記録による位相変化が重畳する。On the other hand, in optical recording media such as optical disks, a tracking method using groove-like irregularities of a base material is generally used. (For example, see "Optical Disk Technology" supervised by Morio Onoue, Radio Gijutsusha T'L, Chapter 1 1.2° = 13 = 14-5 p79~) In this case, the uneven grooves also change the phase of the reflected light of the incident light. l. Provide information necessary for racking to the detection system. Therefore, when recording and reproducing a phase change while performing tracking using a groove track, the phase change due to the groove and the phase change due to recording are superimposed.
従って、 トラッキング機能を損なわずに位相変化の記
録再生を行うための配慮が必要である。Therefore, consideration must be given to recording and reproducing phase changes without impairing the tracking function.
具体的に(戴 溝トラツクの深さは通常第4図のに示ず
ようにlノーザ光10の入射側に凸の形状をし2ており
−π/2の位相差を与えるように設計されているた八
相変化の記録による位相差が±πの場合には両者が重畳
してトータルの位相差は+π/2あるいは一3/2×π
となってトラッキング信号の極性が反転(7てl〜まう
。 (詳しくは前掲書参照)この様な場合に(友トラッ
キングに影響を与えずに充分な再生信弓を得るには相変
化記録による位相変化は一トπ/2のとなるようにして
トタルの位相差が反転するのを防ぐ必要があもこれは記
録層9として前記の多層構造を用いた第5図に示す構成
で実現できる。この場合には記録部の記録による位相差
と溝による位相差のトータルの位相差は0となるため未
記録部との平均的な位相差の極性はマイナスのままで逆
転しなし−また位相差がOということ(ム あたかも溝
がなくなった状態と等価となることを意味し 溝をとぎ
れさせて番地等の信号をあらかじめ形成しまた部分から
の再生光と等価な再生先が得られるという利点もある。Specifically (the depth of the groove track is usually designed to have a convex shape on the incident side of the noser beam 10 and give a phase difference of -π/2, as shown in Fig. 4). Terutahachi
If the phase difference recorded by the phase change is ±π, the two will overlap and the total phase difference will be +π/2 or 1 3/2 × π.
In this case, the polarity of the tracking signal is reversed (see the above-mentioned book for details). It is necessary to prevent the total phase difference from reversing by ensuring that the phase change is 1 to π/2. This can be achieved with the configuration shown in FIG. 5 using the above-mentioned multilayer structure as the recording layer 9. In this case, the total phase difference between the recording phase difference in the recorded area and the phase difference due to the groove is 0, so the polarity of the average phase difference with the unrecorded area remains negative and does not reverse. The fact that the phase difference is O (mu) means that it is equivalent to the state where the groove is no longer present.The advantage is that by cutting off the groove, a signal such as an address can be formed in advance, and a reproduction destination equivalent to the reproduction light from the part can be obtained. There is also.
ま1.ス 第4図とは反対に溝トラツクの形状がレー
ザ光lOの入射側からろて凹になっている場合も考えら
れる力(その場合には溝による位相差はπ/2であるの
で相変化記録における位相変化はπ/2となるようにす
ればよ(℃
ドラッギング用の溝形状の形態として第6図に示すよう
ないわゆる「オンランド」と言われる方式も知られてい
る。 (前掲書参照)このような場合には溝によるトラ
ッキング信号には影響を与えないので相変化記録の位相
差を最大限の±πとすることが可能であ4
5−
6−
−)ぎに 具体的な実施例を使って説明をする。1. Contrary to Fig. 4, a force may also be considered when the shape of the groove track is concave from the incident side of the laser beam IO (in that case, the phase difference due to the groove is π/2, so the phase change The phase change during recording should be π/2 (°C) The so-called "on-land" method shown in Figure 6 is also known as a groove shape for dragging. (Ibid. (See) In such a case, the tracking signal from the groove is not affected, so it is possible to maximize the phase difference of phase change recording to ±π. This will be explained using an example.
実施例
記録媒体の構成としては第1図に示すように暴利l上に
透明な誘電体等の透明層2、記録薄膜層3、第2の透明
な誘電体等の透明層4、第2の記録薄膜層5、第3の透
明な誘電体等の透明層6、反射層7を順次設ける。さら
にその上に透明な密着した保護層8を設ける。この他に
図には示さないが保護層を施さない構成でもよしも こ
の場合は保護層8の代わりに空気(屈折率1.0)を考
えると光学的には同等であり同じ効果が得られる。As shown in FIG. 1, the structure of the recording medium of the embodiment includes a transparent layer 2 such as a transparent dielectric material, a recording thin film layer 3, a second transparent layer 4 such as a transparent dielectric material, and a second transparent layer 4, such as a transparent dielectric material. A recording thin film layer 5, a transparent layer 6 such as a third transparent dielectric, and a reflective layer 7 are sequentially provided. Furthermore, a transparent, close-fitting protective layer 8 is provided thereon. Although not shown in the figure, it is also possible to have a configuration without a protective layer.In this case, if air (refractive index 1.0) is used instead of the protective layer 8, it is optically equivalent and the same effect can be obtained. .
透明層2には基祠1と屈折率の異なる材質を用いる。The transparent layer 2 is made of a material having a different refractive index from that of the base material 1.
これらの記録薄膜の厚さt2、 t4、透明層の厚さt
lS t3、 t5および反射層の厚さt6を適当に選
ぶことによって位相変化の大きい媒体を得ることができ
る。Thicknesses t2 and t4 of these recording thin films, thickness t of the transparent layer
By appropriately selecting lS t3, t5 and the thickness t6 of the reflective layer, a medium with a large phase change can be obtained.
基祠1としてはガラス・樹脂等の透明で平滑な平板を用
いる。また基材表面にトラッキングガイド用の溝状の凹
凸があってもよい。As the base shrine 1, a transparent and smooth flat plate made of glass, resin, etc. is used. Further, the surface of the base material may have groove-like irregularities for tracking guides.
保護層8と17では樹脂を溶剤に溶かして塗布・乾燥し
たものや樹脂板を接着剤で接着したもの等が使える。For the protective layers 8 and 17, a material obtained by dissolving resin in a solvent, applying and drying it, or a material obtained by bonding a resin plate with an adhesive, etc. can be used.
記録薄膜層3、5に用いる記録薄膜材料としてはアモル
ファス・結晶間の相変化をする材料たとえば5bTe&
InTeK GeTe5nKSbSeK Te
5eSb& 5nTeSe&InSe& TeGe
5nOX、TeGe5nAuX、TeGe5nSb&
TeGeSb等のカルコゲン化合物を用いる。Te−
TeO2&Te−Te02−Au& Te−Te02
−Pd系等の酸化物系材料も使える。また 結晶・結晶
間の相転移をするAgZnK InSb系等の金属化
合物も使えも
透明層2.4、6としては5i02、SI 01Ti0
2、MgO1G e O2等の酸化塩 Si3N4、B
NS AIN等の窒化1$3.ZnS、 Zn5e、
Z n T e、 P b S等の硫化物あるい
はこれらの混合物が使えも
反射層8と17ではAu、AI、Cu等の金属材7
8−
料あるいは所定の波長における反射率の大きな誘電体多
層膜等が使える。The recording thin film material used for the recording thin film layers 3 and 5 is a material that undergoes a phase change between amorphous and crystalline, such as 5bTe&
InTeK GeTe5nKSbSeK Te
5eSb&5nTeSe&InSe&TeGe
5nOX, TeGe5nAuX, TeGe5nSb&
A chalcogen compound such as TeGeSb is used. Te-
TeO2 & Te-Te02-Au & Te-Te02
-Oxide-based materials such as Pd-based materials can also be used. In addition, metal compounds such as AgZnK InSb that undergo crystal-to-crystal phase transition may also be used, but transparent layers 2.4 and 6 may be made of 5i02, SI01Ti0, etc.
2. Oxidized salts such as MgO1G e O2, Si3N4, B
Nitriding such as NS AIN 1$3. ZnS, Zn5e,
Although sulfides such as ZnTe, PbS, or mixtures thereof can be used, the reflective layers 8 and 17 may be made of metallic materials such as Au, AI, Cu, or a dielectric multilayer with high reflectance at a predetermined wavelength. Membrane etc. can be used.
これらの材料を作る方法としては多元蒸着源を用いた真
空蒸着法やモザイク状の複合ターゲットを用いたスパッ
タリング法その他が使える。As a method for producing these materials, a vacuum evaporation method using a multi-source evaporation source, a sputtering method using a mosaic composite target, and the like can be used.
比較例
記録薄膜として相変化材料であるGe2Sb2Te5の
組成を持つゲルマニラへ アンチモンおよびテルルの3
元化合物を用いる。形成法としてGe、Sb、Teの3
つの蒸発源を用いた電子ビーム蒸着法を用いも 記録薄
膜はアモルファス状態で形成される。ガラス板上に上記
組成のGe2Sb2Te5だけを蒸着したアモルファス
状態の光学定数を測定したとこへ 波長830nmにお
いて複素屈折率n+k iが4. 8+1. 3iであ
った これを不活性雰囲気中で300℃で5分間熱処理
して結晶状態にすると5. 8+3. 6iに変化すも
この膜をポリカーボネート樹脂板(PC,屈折率1.5
8)上に蒸着しさらに同じ屈折率の材質の樹脂をコーテ
ィングした第2図のような従来例の構成の場合の熱処理
前後すなわちアモルファス状態と結晶状態での波長83
0nmの光の反射率(反射光振幅)Rの変化ΔRのおよ
び反射光の位相変化の膜厚依存性の計算値を第3図に示
す。Comparative example Recording thin film of gel manila with the composition of Ge2Sb2Te5, which is a phase change material, antimony and tellurium 3
Use the original compound. Formation methods include Ge, Sb, and Te.
Even when electron beam evaporation using two evaporation sources is used, the recording thin film is formed in an amorphous state. The optical constants of an amorphous state in which only Ge2Sb2Te5 of the above composition was deposited on a glass plate were measured. At a wavelength of 830 nm, the complex refractive index n+k i was 4. 8+1. 3i. When this is heat treated at 300°C for 5 minutes in an inert atmosphere to make it into a crystalline state, it becomes 5. 8+3. 6i, this film was placed on a polycarbonate resin plate (PC, refractive index 1.5).
8) Wavelength 83 before and after heat treatment, that is, in the amorphous state and the crystalline state, in the case of the conventional configuration shown in Fig. 2, in which a resin of the same refractive index is deposited on the top and further coated with a resin having the same refractive index.
FIG. 3 shows the calculated values of the film thickness dependence of the change ΔR in the reflectance (amplitude of reflected light) of 0 nm light and the phase change of the reflected light.
反射率および反射光の位相の計算には各層の複素屈折率
と膜厚からマトリックス法で計算し九(たとえ(戴 久
保田広著「波動光学」岩波書忠1971年 第3章参照
)また 基材1と密着保護層は6は無限大の膜厚をもつ
ものとして(基材空気界面、密着保護層−空気界面の効
果を無視)、反射率Rは基材から入射した光の基材中に
出射してくる比率としてもと数 位相は基材lと透明層
2の界面での位相を基準としてもとめ九 位相は2πの
周期で等価であるので図中ではこれを考慮しである。The reflectance and phase of reflected light are calculated using the matrix method from the complex refractive index and film thickness of each layer. Assuming that 1 and the adhesion protective layer 6 have infinite film thickness (ignoring the effect of the base material air interface and the adhesion protective layer-air interface), the reflectance R is the reflectance R of the light incident on the base material. The phase is based on the phase at the interface between the base material 1 and the transparent layer 2. Since the phase is equivalent to a period of 2π, this is taken into account in the diagram.
アモルファス状態と結晶状態の反射率差ΔRは膜厚15
nmおよび85%mで極大になりそれぞれ14%および
24%になるが位相変化は殆どなくπ/6以下である。The reflectance difference ΔR between the amorphous state and the crystalline state is the film thickness 15
It reaches a maximum at nm and 85% m, reaching 14% and 24%, respectively, but there is almost no phase change and it is less than π/6.
9−
一加一
実施例1
本発明の1実施例として第1図に示すように基材1とし
てポリカーボネート樹脂板(PC,屈折率1.58(波
長830nm′T:o 以下同様))上に透明層2とし
て硫化亜鉛(ZnS、屈折率2゜20)をエレクトロン
ビーム蒸着法で厚さt1蒸着したうえに記録薄膜層3と
して実施例1に示した記録薄膜Ge2Sb2Te5を実
施例1と同様の方法で厚さt2形成しさらに透明層4と
してZnSを厚さt3同様に蒸着し さらに記録薄膜層
5として同様に実施例1に示した記録薄膜Ge2Sb2
Te5を実施例1と同様の方法で厚さt4蒸着しさらに
透明層6としてZnSを厚さt5蒸着した この上に反
射層7として金(Au、屈折率0. 20+5. 04
i)を厚さt6=50nmエレクトロンビーム蒸着法で
形成し さらに保護層6として基材と同じ屈折率の材質
の樹脂をコーティングし九
このような構成の場合の熱処理前後すなわちアモルファ
ス状態と結晶状態での反射率(振幅反射率)をそれぞれ
Rw、Rdとしその差△R(=Rw −Rd )、反射
光の位相をそれぞれφW、φdとしその変化Δφ(=φ
d−φW)を各層の膜厚t1、 t2、 t3、 t4
、 t5を変化させて計算し九 その結果△φがほぼπ
あるいはπ/2に近くΔRがゼロに近い膜厚条件が存在
することがわかった その条件と計算結果を第1表に示
to 第1表には代表的なものとして2つの記録層の
厚さが等しい条件(t2=t4)で5nm刻みで計算し
た結果を示しである。9- Addition Example 1 As an example of the present invention, as shown in FIG. As the transparent layer 2, zinc sulfide (ZnS, refractive index 2°20) was deposited to a thickness of t1 by electron beam evaporation, and as the recording thin film layer 3, the recording thin film Ge2Sb2Te5 shown in Example 1 was deposited by the same method as in Example 1. Then, as a transparent layer 4, ZnS was deposited to the same thickness as t3, and then as a recording thin film layer 5, a recording thin film Ge2Sb2 similar to that shown in Example 1 was formed.
Te5 was deposited to a thickness of t4 in the same manner as in Example 1, and ZnS was further deposited to a thickness of t5 as a transparent layer 6. Gold (Au, refractive index 0.20 + 5.04) was deposited thereon as a reflective layer 7.
i) is formed to a thickness t6=50 nm by electron beam evaporation, and is further coated with a resin having the same refractive index as the base material as a protective layer 6. Let the reflectance (amplitude reflectance) of
d-φW) as the film thickness of each layer t1, t2, t3, t4
, calculated by changing t5. As a result, △φ is almost π
Alternatively, it was found that there exists a film thickness condition where ΔR is close to π/2 and ΔR is close to zero.The conditions and calculation results are shown in Table 1.Table 1 shows the thickness of two recording layers as representative ones. This figure shows the results calculated in 5 nm increments under the condition that t2 = t4.
(以下、余白)
21
−皮−
第1表
(t6=50nm)
さらに5゛イ細に検利するために各記録薄膜層の吸収を
計算したところ膜厚t2、 t4が15nm以十では2
つの記録薄膜層の吸収が異なるがIOnm以下ではほぼ
等【7いことがわかっフ、−1この吸収が異なると記録
に際して2つの層の記録状態の大きさが異なり所望の再
生信号が得られなくなもしたがって両者は等しいことが
望ましL%以上の結果から8層の厚さを適当に選ぶこと
によって反射率の変化がほとんどなく、反射光の位相だ
けが変化する構成を得ることがわかる。この計算をもと
に以下の実験を行っに
基Hに厚さ1. 2rom−i!径200mmのPC樹
脂円板を用いこれを真空中で回転させながら上記の方法
でZnS薄膜を165nm蒸着し さらに記録薄膜Ge
2Sb2Te5を同様に5nmの膜厚でアモルファス状
態で蒸着し さらにZnS薄膜を厚さ153 nm蒸着
し さらに記録薄膜Ge2Sb2Te5を同様に5nm
の膜厚でアモルファス状態で形成し さらにZnS薄膜
を厚さ71nm蒸着LAuを厚さ50nm蒸着し九 ま
た同じ構成の多層薄膜を18X18mm厚さ0゜2mm
のガラス基材上にも形成した さらに樹脂3−
一ツ
円盤−1−に成膜l〜たものは同じPC樹脂円盤を紫外
線硬化性の接着祠で張すイカ」けて密着保護層を設は光
記録媒体を形成(−へ
ガラス基材上に形成したサンプルを300℃で5分間ア
ルゴン雰囲気中で加熱して全面を結晶化(7結晶化前後
で基材側からの反則率を測定したところともに約8%で
変化がなかっ九
この媒体を回転させ線速度10m/secの線速度で波
長830 nmの半導体レーザー高を開口数0.5のl
メンズ系で絞って記録薄膜上に焦点をあわせて照射しれ
記録薄膜面上で12mWの出力で中6−・周波数5
M Hz変調度50%で変It、た光を照射して記録薄
膜を部分的に結晶化させて記録を行LX、、 1mWの
連続出力を照射してその反射光をフォトディテクターで
検出(7て再生を行ったとこへ 再生信号振幅が観測さ
れソラ
前記のガラス基材上のサンプルにおいては結晶化で反射
率変化が見られないことからこの再生信号は記録部と未
記録部で反射光の位相が異なることによるものであるこ
とがわかる。(The following is a blank space) 21 - Skin - Table 1 (t6 = 50 nm) In order to examine the details in more detail, the absorption of each recording thin film layer was calculated, and when the film thicknesses t2 and t4 were 15 nm or more,
It turns out that the absorption of the two recording thin film layers is different, but below ION nm, they are almost equal (-1) If the absorption is different, the magnitude of the recording state of the two layers differs during recording, and the desired reproduction signal cannot be obtained. Therefore, it is desirable that the two be equal, and from the results of L% or more, it can be seen that by appropriately selecting the thickness of the eight layers, a configuration can be obtained in which there is almost no change in reflectance and only the phase of the reflected light changes. Based on this calculation, the following experiment was conducted to make the base H have a thickness of 1. 2rom-i! Using a PC resin disk with a diameter of 200 mm, a ZnS thin film of 165 nm was deposited by the above method while rotating it in a vacuum, and then a recording thin film of Ge was deposited.
2Sb2Te5 was similarly deposited in an amorphous state to a thickness of 5 nm, a ZnS thin film was further deposited to a thickness of 153 nm, and a recording thin film Ge2Sb2Te5 was similarly deposited to a thickness of 5 nm.
Further, a ZnS thin film was evaporated to a thickness of 71 nm, LAU was evaporated to a thickness of 50 nm, and a multilayer thin film with the same structure was formed to a thickness of 18 x 18 mm and a thickness of 0° 2 mm.
Furthermore, the same PC resin disk was pasted with an ultraviolet curable adhesive to form an adhesive protective layer. Formed an optical recording medium (-) A sample formed on a glass substrate was heated at 300°C for 5 minutes in an argon atmosphere to crystallize the entire surface (7) The fouling rate from the substrate side was measured before and after crystallization. There was no change at about 8% in both cases.9 This medium was rotated and a semiconductor laser with a wavelength of 830 nm was heated at a linear velocity of 10 m/sec with a numerical aperture of 0.5.
Focus on the recording thin film using a men's lens and irradiate the recording thin film with an output of 12 mW at medium 6-frequency 5.
The recording thin film was partially crystallized by irradiating variable light with a MHz modulation degree of 50%, and recording was performed by irradiating it with a continuous output of 1 mW and detecting the reflected light with a photodetector (7 The amplitude of the reproduced signal was observed, and since no change in reflectance was observed due to crystallization in the sample on the glass substrate mentioned above, this reproduced signal was determined by the difference in the reflected light between the recorded and unrecorded areas. It can be seen that this is due to the difference in phase.
さらに記録する信号の周波数を変化させて記録再生を行
ったとこへ 第2図に示すような従来例の記録薄膜の膜
厚85nmの構成に比べて周波数特性が高域側に伸びる
ことが確認されkまた信号を記録した上に線速度10m
/secで記録薄膜面」二で18mWの出力で同様に1
ノーザーを連続的に照射したところ記録薄膜が熔融して
アモルファス状態に変化し すでに記録されていた信号
が消去されたことが確認された。Furthermore, when recording and reproducing were performed by changing the frequency of the recorded signal, it was confirmed that the frequency characteristics extended toward higher frequencies compared to the conventional recording thin film configuration with a film thickness of 85 nm as shown in Figure 2. kAlso record the signal and set the linear velocity to 10m.
Similarly, the output of 18 mW was 1 at the thin film surface recorded at 1/sec.
It was confirmed that when the norther was continuously irradiated, the recording thin film melted and changed to an amorphous state, erasing the previously recorded signal.
実施例2
第12図に示すように基材にあらかじめ幅0゜6μm・
深さ65nmの溝トラツクを形成した厚さl、 2mm
−直径200mmのPC樹脂円板を用いこれを真空中で
回転させながら上記の方法でZnS薄膜を94nmi着
j−さらに記録薄膜Ge2Sb2Te5を同様に10n
mの膜厚でアモルファス状態で蒸着し ざらにZ nS
薄膜を厚さ177nm蒸着し さらに記録薄膜Gc2S
b2Te5を同様に10nmの膜厚でアモルファス状態
で形成l−さらにZnS薄膜を厚さ47 nm蒸あ−
一加−
着LAuを厚さ50nm蒸着した また同じ構成の多層
薄膜を18x18mm厚さ0.2mmのガラス基材上に
も形成した さらに樹脂円盤上に成膜したものは同じP
C樹脂円盤を紫外線硬化性の接着材で張り付けて密着保
護層を設は光記録媒体を形成し九
ガラス基材上に形成したサンプルを300℃で5分間ア
ルゴン雰囲気中で加熱して全面を結晶化し結晶化前後で
基材側からの反射率を測定したところともに約15%で
変化がなかった
樹脂円盤上に形成した媒体を回転させ線速度10m/s
eeの線速度で波長830nmの半導体レーザー高を開
口数0.5のレンズ系で絞って記録薄膜上に焦点をあわ
せて溝トラツクにトラッキング制御をかけながら照射し
丸 記録薄膜面上で8.5mWの出力で単一周波数5M
Hz変調度50%で変調した光を照射して記録薄膜を部
分的に結晶化させて記録を行っ九 記録後もトラッキン
グ制御は安定であり、さらに1mWの連続出力を照射し
てその反射光をフォトディテクターで検出して再生を行
ったとこへ 再生信号振幅が観測され九
前記のガラス基材上のサンプルにおいては結晶化で反射
率変化が見られないことからこの再生信号は記録部と未
記録部で反射光の位相が異なることによるものであるこ
とがわかる。また その位相差がトラッキング制御に悪
影響を与えない範囲のものであることが確認される。Example 2 As shown in Fig. 12, the base material has a width of 0°6 μm.
Thickness l, 2 mm, with groove tracks 65 nm deep.
- Using a PC resin disk with a diameter of 200 mm and rotating it in a vacuum, a ZnS thin film of 94 nm was deposited using the above method - Furthermore, a recording thin film of 10 nm was deposited in the same manner as Ge2Sb2Te5.
Z nS was deposited in an amorphous state with a film thickness of m.
A thin film was deposited to a thickness of 177 nm, and a recording thin film Gc2S was added.
Similarly, b2Te5 was formed in an amorphous state with a thickness of 10 nm. Furthermore, a ZnS thin film was evaporated to a thickness of 47 nm. A thin film of LAu was deposited to a thickness of 50 nm. A multilayer thin film with the same structure was formed into a film of 18 x 18 mm and a thickness of 0.2 mm. The same P film was also formed on the glass substrate.
An optical recording medium is formed by pasting C resin disks with an ultraviolet curable adhesive to form an adhesive protective layer.9 The sample formed on the glass substrate is heated at 300°C for 5 minutes in an argon atmosphere to crystallize the entire surface. When the reflectance from the substrate side was measured before and after crystallization, it was approximately 15% and remained unchanged.The medium formed on the resin disk was rotated at a linear velocity of 10 m/s.
A semiconductor laser with a wavelength of 830 nm is focused at a linear velocity of ee using a lens system with a numerical aperture of 0.5, focused on the recording thin film, and irradiated with tracking control on the groove track to generate a circular output of 8.5 mW on the recording thin film surface. Single frequency 5M with output of
Recording was performed by irradiating light modulated with a Hz modulation degree of 50% to partially crystallize the recording thin film.9 Tracking control remained stable even after recording, and the reflected light was further irradiated with a continuous output of 1 mW. When detected by a photodetector and reproduced, the amplitude of the reproduced signal was observed, and since no change in reflectance was observed due to crystallization in the sample on the glass base material described above, this reproduced signal was detected in the recorded area and in the unrecorded area. It can be seen that this is due to the fact that the phase of the reflected light differs depending on the area. It is also confirmed that the phase difference is within a range that does not adversely affect tracking control.
さらに記録する信号の周波数を変化させて記録再生を行
ったとこへ 第2図に示すような従来例の記録薄膜の膜
厚85nmの構成に比べて周波数特性が高域側に伸びる
ことが確認されたまた信号を記録した上に線速度10m
/seeで記録薄膜面上で記録時の出力より大きい19
mWの出力で同様にレーザーを連続的に照射したところ
記録薄膜が熔融してアモルファス状態に変化し すでに
記録されていた信号が消去されたことが確認された
発明の効果
本発明によれば光学的には凹凸による位相変化27−
−公−
記録と等価な記録が行える。従って、相変化記録であり
ながら記録密度の大きい記録が行え 凹凸ビットによる
複製盤(オーディオディス久 ビデオディスク等)との
互換も取り易(〜
さら艮 凹凸によりあらかじめ形成した情報信号の記録
状態からの再生光と相変化記録を行った状態からの再生
光が等価となり同じ再生光学系および信号処理回路を用
いて情報信号の再生が行えも
また 相変化記録は形状変化を伴わず、材料を選ぶこと
によって記録した状態をもとに戻す、すなわち消去・書
き換えも可能であり、書き換え型の位相変化記録が実現
できる。Furthermore, when recording and reproducing were performed by changing the frequency of the recorded signal, it was confirmed that the frequency characteristics extended toward higher frequencies compared to the conventional recording thin film configuration with a film thickness of 85 nm as shown in Figure 2. In addition to recording the signal, the linear velocity was 10 m.
/see is larger than the output during recording on the recording thin film surface19
When similarly continuously irradiated with a laser with an output of mW, it was confirmed that the recording thin film melted and changed to an amorphous state, erasing the already recorded signal. Effects of the Invention According to the present invention, optical Phase change due to unevenness 27 - - Public - Recording equivalent to recording can be performed. Therefore, it is possible to perform high-density recording even though it is a phase change recording, and it is also easily compatible with reproduction discs (audio discs, video discs, etc.) using uneven bits. The reproduction light and the reproduction light from the phase change recording state are equivalent, and the information signal can be reproduced using the same reproduction optical system and signal processing circuit. It is also possible to restore the recorded state to its original state, that is, erase and rewrite, and rewritable phase change recording can be realized.
第1図は本発明の1実施例の構成を示す断面模式医 第
2図は比較のための従来例の構成を示す断面模式医 第
3図は従来例の構成での反射率変化と反射光の位相変化
の記録薄膜の膜厚依存性を示すグラフ、第4図は本発明
の他の実施例を示す模式医 第5図は本発明の他の実施
例の構成を示ず断面模式匝
す模式図である。
1・・・・・
2、4、6・
3、5・・・
7・・・・・
8・・・・・FIG. 1 is a schematic cross-sectional diagram showing the configuration of an embodiment of the present invention. FIG. 2 is a schematic cross-sectional diagram showing the configuration of a conventional example for comparison. FIG. 3 is a schematic cross-sectional diagram showing the configuration of a conventional example. A graph showing the dependence of the phase change on the thickness of the recording thin film, FIG. 4 is a schematic diagram showing another embodiment of the present invention, and FIG. 5 is a schematic cross-sectional diagram showing the structure of another embodiment of the present invention. It is a schematic diagram. 1... 2, 4, 6, 3, 5... 7... 8...
Claims (9)
し得る変化を生じる記録薄膜層を設けた光学的情報記録
媒体であって、 前記記録薄膜層が少なくとも2つの層からなり、薄膜材
料はレーザー光照射により光学定数が変化し、検知し得
る変化が主として入射した光の反射光あるいは透過光の
位相の変化によるものであることを特徴とする光学的情
報記録媒体。(1) An optical information recording medium in which a recording thin film layer that causes an optically detectable change upon laser beam irradiation is provided on a base material, the recording thin film layer consisting of at least two layers, and a thin film material An optical information recording medium characterized in that its optical constants change upon irradiation with laser light, and the detectable change is mainly due to a change in the phase of reflected light or transmitted light of the incident light.
射光振幅の変化が小さいことを特徴とする請求項1記載
の光学的情報記録媒体。(2) The optical information recording medium according to claim 1, wherein the change in transmitted light amplitude or reflected light amplitude of the incident light is small before and after the change.
1の記録薄膜層、第2の透明層、第2の記録薄膜層、第
3の透明層、反射層をそれぞれ順次設けた構造の光学的
情報記録媒体であって、前記第1の透明層、第1の記録
薄膜層、第2の透明層、第2の記録薄膜層、第3の記録
薄膜層および反射層の膜厚を記録材料の変化に際して入
射した光の透過光あるいは反射光の位相が変化するよう
に選ぶことを特徴とする請求項1または2記載の光学的
情報記録媒体。(3) A first transparent layer, a first recording thin film layer, a second transparent layer, a second recording thin film layer, a third transparent layer, and a reflective layer each having a different refractive index from the base material on the base material. An optical information recording medium having a structure in which the first transparent layer, the first recording thin film layer, the second transparent layer, the second recording thin film layer, the third recording thin film layer and the reflective layer are sequentially provided. 3. The optical information recording medium according to claim 1, wherein the film thickness of the optical information recording medium is selected so that the phase of transmitted light or reflected light of incident light changes when the recording material changes.
情報記録媒体。(4) The optical information recording medium according to claim 1 or 2, wherein the phase change is approximately (1±2n)πn: an integer.
し得る変化を生じる記録薄膜層を設けた光学的情報記録
媒体であって、 基材の記録薄膜層を設ける面に入射した光の反射光ある
いは透過光の位相を変化させる凹凸をあらかじめ形成し
、 記録薄膜層が少なくとも2つの層からなり、薄膜材料は
レーザー光照射により光学定数が変化し、検知し得る変
化が主として入射した光の反射光あるいは透過光の位相
の変化によるものであることを特徴とする光学的情報記
録媒体。(5) An optical information recording medium in which a recording thin film layer that causes an optically detectable change when irradiated with a laser beam is provided on a base material, in which the light incident on the surface of the base material on which the recording thin film layer is provided is The recording thin film layer is made up of at least two layers, and the optical constants of the thin film material change when irradiated with laser light, so that the detectable change is mainly caused by the change in the incident light. An optical information recording medium characterized by a change in the phase of reflected light or transmitted light.
射光振幅の変化が小さいことを特徴とする請求項5記載
の光学的情報記録媒体。(6) The optical information recording medium according to claim 5, wherein the change in transmitted light amplitude or reflected light amplitude of the incident light is small before and after the change.
1の記録薄膜層、第2の透明層、第2の記録薄膜層、第
3の透明層、反射層をそれぞれ順次設けた構造の光学的
情報記録媒体であって、前記第1の透明層、第1の記録
薄膜層、第2の透明層、第2の記録薄膜層、第3の記録
薄膜層および反射層の膜厚を記録材料の変化に際して入
射した光の透過光あるいは反射光の位相が変化するよう
に選ぶことを特徴とする請求項5または6記載の光学的
情報記録媒体。(7) A first transparent layer, a first recording thin film layer, a second transparent layer, a second recording thin film layer, a third transparent layer, and a reflective layer each having a different refractive index from the base material on the base material. An optical information recording medium having a structure in which the first transparent layer, the first recording thin film layer, the second transparent layer, the second recording thin film layer, the third recording thin film layer and the reflective layer are sequentially provided. 7. The optical information recording medium according to claim 5, wherein the film thickness of the recording material is selected so that the phase of transmitted light or reflected light of the incident light changes when the recording material changes.
情報記録媒体。(8) The optical information recording medium according to claim 5 or 6, wherein the phase change is approximately (±1/2±2n)πn: an integer.
ほぼ等しいことを特徴とする請求項1または5記載の光
学的情報記録媒体。(9) The optical information recording medium according to claim 1 or 5, wherein the first recording thin film layer and the second recording thin film layer have approximately the same light absorption.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1296536A JP2661293B2 (en) | 1989-11-15 | 1989-11-15 | Optical information recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1296536A JP2661293B2 (en) | 1989-11-15 | 1989-11-15 | Optical information recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03157830A true JPH03157830A (en) | 1991-07-05 |
JP2661293B2 JP2661293B2 (en) | 1997-10-08 |
Family
ID=17834799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1296536A Expired - Fee Related JP2661293B2 (en) | 1989-11-15 | 1989-11-15 | Optical information recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2661293B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5493561A (en) * | 1992-06-17 | 1996-02-20 | Matsushita Electric Industrial Co., Ltd. | Optical information recording medium and information recording and reproducing method thereof |
US6587420B1 (en) | 1997-03-27 | 2003-07-01 | Matsushita Electric Industrial Co., Ltd. | Recording and reproducing method for optical information recording medium and optical information recording medium |
US6606293B1 (en) | 1999-01-11 | 2003-08-12 | Nec Corporation | Optical information recording medium and methods for recording, reading, and erasing information thereupon |
US6835531B1 (en) * | 1999-07-20 | 2004-12-28 | Samsung Electronics, Co., Ltd. | Phase change optical disc |
US7464390B2 (en) | 2003-08-07 | 2008-12-09 | Ricoh Company, Ltd. | Optical information recording medium, and recording and reproducing apparatus of the same |
US7572496B2 (en) | 2002-05-16 | 2009-08-11 | Samsung Electronics Co., Ltd. | Recording medium having high melting point recording layer, information recording method thereof, and information reproducing apparatus and method therefor |
-
1989
- 1989-11-15 JP JP1296536A patent/JP2661293B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5493561A (en) * | 1992-06-17 | 1996-02-20 | Matsushita Electric Industrial Co., Ltd. | Optical information recording medium and information recording and reproducing method thereof |
US6587420B1 (en) | 1997-03-27 | 2003-07-01 | Matsushita Electric Industrial Co., Ltd. | Recording and reproducing method for optical information recording medium and optical information recording medium |
US6744724B2 (en) | 1997-03-27 | 2004-06-01 | Matsushita Electric Industrial Co., Ltd. | Recording and reproducing method for optical information recording medium and optical information recording medium |
US6606293B1 (en) | 1999-01-11 | 2003-08-12 | Nec Corporation | Optical information recording medium and methods for recording, reading, and erasing information thereupon |
US6835531B1 (en) * | 1999-07-20 | 2004-12-28 | Samsung Electronics, Co., Ltd. | Phase change optical disc |
US7572496B2 (en) | 2002-05-16 | 2009-08-11 | Samsung Electronics Co., Ltd. | Recording medium having high melting point recording layer, information recording method thereof, and information reproducing apparatus and method therefor |
US7464390B2 (en) | 2003-08-07 | 2008-12-09 | Ricoh Company, Ltd. | Optical information recording medium, and recording and reproducing apparatus of the same |
Also Published As
Publication number | Publication date |
---|---|
JP2661293B2 (en) | 1997-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2909913B2 (en) | Optical information recording medium, method of manufacturing the same, and optical information recording method | |
US5249175A (en) | Optical information recording medium and information recording and reproducing method therefor | |
JP2001243655A (en) | Optical information recording medium, method for producing same, recoding and reproducing method and recording and reproducing equipment | |
JP3076412B2 (en) | Optical information recording medium and optical information recording / reproducing method | |
JPH03157830A (en) | Optical information recording medium | |
EP0360466B1 (en) | Optical information recording medium and information recording and reproducing method therefor | |
JP2778237B2 (en) | Optical information recording medium and optical recording / erasing method | |
JP3752177B2 (en) | Write-once optical information recording medium and manufacturing method thereof | |
JP2001023236A (en) | Optical information recording medium and its initialization method | |
JP3356488B2 (en) | Optical recording medium recording method and manufacturing method | |
JPH02113451A (en) | Optical information recording medium | |
JPH0273537A (en) | Optical information recording medium | |
JPH0528535A (en) | Optical recording medium | |
JPS63153728A (en) | Information recorder | |
JP3156418B2 (en) | Optical information recording medium and optical information recording / reproducing method | |
JPH0341638A (en) | Optical information recording medium and information recording and reproducing method thereof | |
JP2782910B2 (en) | Optical information recording method, reproducing method and erasing method | |
JP2979620B2 (en) | Optical information recording medium and optical information recording / reproducing method | |
JPH0793806A (en) | Information recording medium and information recording method | |
JPH0675301B2 (en) | Optical disc media | |
JPH02178086A (en) | Optical recording medium | |
JP2780589B2 (en) | optical disk | |
JPH0834006B2 (en) | Optical information recording method | |
JP2000260061A (en) | Phase change optical disk and method for reproducing the same | |
JPH10199039A (en) | Optical disk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080613 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090613 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |