Nothing Special   »   [go: up one dir, main page]

JPH03156977A - Vertical mosfet - Google Patents

Vertical mosfet

Info

Publication number
JPH03156977A
JPH03156977A JP29690889A JP29690889A JPH03156977A JP H03156977 A JPH03156977 A JP H03156977A JP 29690889 A JP29690889 A JP 29690889A JP 29690889 A JP29690889 A JP 29690889A JP H03156977 A JPH03156977 A JP H03156977A
Authority
JP
Japan
Prior art keywords
region
conductivity type
well region
diffusion region
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29690889A
Other languages
Japanese (ja)
Inventor
Norihiro Shigeta
重田 典博
Toshimaro Koike
小池 理麿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29690889A priority Critical patent/JPH03156977A/en
Publication of JPH03156977A publication Critical patent/JPH03156977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To protect a MOS cell from breakdown due to parasitic transistors by providing an N-type diffused region in contact with a well region, the avalanche withstand voltage is lower than that of the MOS cell. CONSTITUTION:A MOS cell is surrounded by a P-type well 25, which is in contact with a source electrode 32. An N-type diffused region 33 is formed between the well region 25 and a guard ring 26 at the surface of an N- semiconductor layer 23. The diffused layer 33 provides a P-N junction that has a higher concentration than the P-N junction between the well region 25 and the semiconductor layer 23. Accordingly, the avalanche withstand voltage of the well region 25 is lower than that of the MOS cell. In this device, therefore, the avalanche breakdown occurs in the well region 25, and the breakdown current (i) is allowed to flow through the well region 25 to a source electrode 32. This structure thus protects the MOS cell from breakdown due to parasitic transistors.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はアバランシェ耐量を増大した縦型MO8FET
に関する。
Detailed description of the invention (a) Industrial application field The present invention provides a vertical MO8FET with increased avalanche resistance.
Regarding.

(口〉従来の技術 縦型MOS F ETは、第3図に示すように、底部に
高濃度N+型層(1)を有するN−型シリコン基板(2
)をドレインとして、その表面上に所定の間l− − 隔でゲート電極(ポリSiゲート) (3)が配置され
、このゲート電極(3)の下にチャンネル部を作るよう
に基体(2)表面にP型拡散領域(4)とN+型ソース
領域(5)を形成したもので、ゲートへの電圧印加によ
ってゲート下のP型拡散領域(4)(チャンネル部)を
通るドレイン電流■D8を制御するようにMOSFET
を動作させるものである(例えば、特開昭63−260
176号公報)。(6)はへ〇電極、(7)はガードリ
ングである。
(Note) A conventional vertical MOS FET, as shown in Fig. 3, consists of an N- type silicon substrate (2
) is used as a drain, and gate electrodes (poly-Si gates) (3) are arranged on the surface thereof at predetermined distances of l--, and the substrate (2) is placed so as to form a channel section under the gate electrode (3). A P-type diffusion region (4) and an N+-type source region (5) are formed on the surface, and by applying a voltage to the gate, the drain current D8 passing through the P-type diffusion region (4) (channel part) under the gate is generated. MOSFET to control
(For example, Japanese Patent Application Laid-Open No. 63-260
Publication No. 176). (6) is an electrode, and (7) is a guard ring.

斯る縦型MO8FETは、大電流高速スイッチングが可
能なので、モータ制御、スイッチングレギュレータ、C
RT偏向用として多用されている。
Such a vertical MO8FET is capable of high-speed switching of large currents, so it can be used in motor control, switching regulators, and C
It is widely used for RT deflection.

(ハ)発明が解決しようとする課題 しかしながら、第4図のようにリアクトル負荷(8)を
MO8I−ランジスタ(9〉でスイッチングする場合、
リアクトル負荷(8)を遮断した瞬間に高い電流変化率
di/dtで大きなサージ電圧(10)が発生し、この
ようなサージ電圧がMOSトランジスタ(9)のソース
・ドレイン間に印加されることによりMOSトランジス
タ(9)は容易にアバランシェ領域まで印加される。
(c) Problems to be solved by the invention However, when switching the reactor load (8) with the MO8I-transistor (9>) as shown in FIG.
At the moment when the reactor load (8) is cut off, a large surge voltage (10) is generated with a high current change rate di/dt, and this surge voltage is applied between the source and drain of the MOS transistor (9). The MOS transistor (9) is easily applied to the avalanche region.

アバランシェ領域まで印加されたMO9+−ランジスタ
(9)は、第5図に示すように主にP型拡散領域(4)
とN−型基板(2)とが形成する接合ダイオード(11
〉がなだれ降伏することにより電流を吸収しようとする
。ところが、MO3+−ランジスタ(9〉はN+ソース
領域(5)をエミッタ、P型拡散領域(4)をベース、
N−型基板(2)をコレクタとする寄生トランジスタ(
12)が不可避的に形成されてしまい、また、N+ソー
ス領域(5)の底部はピンチ構造となるため、ソース領
域(5)とP型拡散領域(4)とのPN接合はピンチ抵
抗(13)により順バイアスされる電位差に容易に達し
て寄生トランジスタ(12)が導通してしまう。−旦寄
生トランジスタ(12)が導通すると、MOSトランジ
スタの阻止耐圧は寄生トランジスタ(12)のV。8o
まで低下するので、アバランシェ電流が制御がきかない
状態で能動化したセルを流れ、結果的に素子が破壊され
てしまう現象がある。
The MO9+- transistor (9) to which the voltage is applied up to the avalanche region is mainly connected to the P-type diffusion region (4) as shown in FIG.
and the N-type substrate (2) form a junction diode (11
) tries to absorb the current by avalanche breakdown. However, the MO3+- transistor (9) uses the N+ source region (5) as the emitter, the P-type diffusion region (4) as the base,
A parasitic transistor (with N-type substrate (2) as its collector)
12) is inevitably formed, and the bottom of the N+ source region (5) has a pinch structure, so the PN junction between the source region (5) and the P-type diffusion region (4) has a pinch resistance (13 ) easily reaches a forward biased potential difference, causing the parasitic transistor (12) to become conductive. - Once the parasitic transistor (12) becomes conductive, the blocking voltage of the MOS transistor is V of the parasitic transistor (12). 8o
As a result, avalanche current flows uncontrollably through the activated cell, resulting in destruction of the device.

4− (ニ)課題を解゛決するだめの手段 本発明は上記従来の課題に鑑みて成され、MOSセル部
分を囲むようにしてMOSセルとして動作しないP型ウ
ェル領域(25)を設けこのつ舌ル領域(25)にソー
ス電極(32)をコンタクトさせると共に、ウェル領域
(25)とガードリング(26)との間のN−型半導体
層(23〉表面に、前記ウェル領域(25)と前記N−
型半導体層(23)とのPN接合よりは高濃度接合を形
成するN型拡散領域(33)を設りることにより、アバ
ランシェ降伏時の素子破壊を防止し得る縦型MO8FE
Tを提供するものである。
4-(d) Means for Solving the Problems The present invention has been made in view of the above-mentioned conventional problems, and a P-type well region (25) that does not operate as a MOS cell is provided so as to surround the MOS cell portion. The source electrode (32) is brought into contact with the region (25), and the well region (25) and the N- −
By providing an N-type diffusion region (33) that forms a higher concentration junction than a PN junction with the type semiconductor layer (23), it is possible to prevent element destruction during avalanche breakdown.
It provides T.

(ホ)作用 本発明によれば、N型拡散領域(33〉がN−型半導体
層(32)よりは高濃度接合を形成するので、ウェル領
域(25)部分のアバランシェ耐圧をMOSセル内のア
バランシェ耐圧より小さくできる。そのため、素子のア
バランシェ降伏は先ずウェル領域(25)で生じ、その
降伏電流iをウェル領域(25)を介してソース電極(
32)に流すことが(゛き、降伏電流iをMOSセル内
に流さずに済む。
(E) Function According to the present invention, since the N-type diffusion region (33) forms a higher concentration junction than the N-type semiconductor layer (32), the avalanche breakdown voltage of the well region (25) can be lowered by the avalanche breakdown voltage in the MOS cell. Therefore, avalanche breakdown of the device first occurs in the well region (25), and the breakdown current i is passed through the well region (25) to the source electrode (
32), so that the breakdown current i does not need to flow into the MOS cell.

(へ)実施例 以下に本発明の一実施例を図面を参照しながら詳細に説
明する。第1図と第2図は夫々本発明を説明するための
断面図と平面図である。
(F) Example An example of the present invention will be described below in detail with reference to the drawings. FIG. 1 and FIG. 2 are a sectional view and a plan view, respectively, for explaining the present invention.

共通ドレインとなるシリコン半導体基体り21)は、裏
面電極形成用のN+型半導体層(22)と、N型半導体
層(23)との2層構造から成る。N−型半導体層(2
3)の表面には、第2図の如くP型拡散領域(24)が
格子状に形成され、その周囲を囲むようにしてP型のウ
ェル領域(25)がP型拡散領域(24)と分離して形
成されている。ウェル領域(25)のさらに外側には、
ウェル領域(25)t−囲むようにしてP型のガードリ
ング領域(26)が幾重にも形成されている。(27)
はN型チャンネルストッパ、(28)はフィールド電極
である。尚、縦型MO8FETのパターンには、P型拡
散領域(24)が点在しゲート電極が格子状になるメツ
シュゲート型と、P型拡散領域(24)が格子状になり
ゲート電極が点在するマルチゲート型の2通りがあるが
、第2図はこのうちマルチゲート型のものを示している
The silicon semiconductor substrate 21) serving as the common drain has a two-layer structure including an N+ type semiconductor layer (22) for forming a back electrode and an N type semiconductor layer (23). N-type semiconductor layer (2
3), a P-type diffusion region (24) is formed in a grid pattern as shown in FIG. 2, and a P-type well region (25) is separated from the P-type diffusion region (24) so as to surround it. It is formed by Further outside the well region (25),
P-type guard ring regions (26) are formed in multiple layers to surround the well region (25). (27)
is an N-type channel stopper, and (28) is a field electrode. Note that the patterns of the vertical MO8FET include a mesh gate type in which P-type diffusion regions (24) are dotted and the gate electrode is in a lattice shape, and a mesh gate type in which the P-type diffusion regions (24) are in a lattice shape and the gate electrode is dotted. There are two types of multi-gate type, and FIG. 2 shows the multi-gate type.

5− 6一 P型拡散領域(24〉の表面には、格子パターンの格子
を夫々囲むようにしてN+型ソース領域(29)が形成
され、ソース領域(29)とN−型半導体層(23)表
面で挾まれたP型拡散領域(24)の表面をチャンネル
部とする。チャンネル部上には、シリコン酸化膜から成
るゲート絶縁膜(30)を介してポリジノコンのゲート
電極(31〉が格子状パターンの各網目の」二を覆うよ
うにして配置されている。個々に独立したゲート電極(
31)は、櫛歯状のアルミ電極によって共通接続され外
部接続用の図示ぜぬポンディングパッドに接続されてい
る。P型拡散領域(24)の表面には、P型拡散領域(
24)とN+ソース領域(29)の両方にコンタクトす
るAl1 、 i −5i等のソース電極(32)が櫛
歯状に形成されて図示せぬソースポンディングパッドに
接続されている。
5-6 On the surface of the P type diffusion region (24), N+ type source regions (29) are formed so as to surround each of the lattices of the lattice pattern, and the source region (29) and the N− type semiconductor layer (23) surface are formed. The surface of the P-type diffusion region (24) sandwiched by The gate electrodes are arranged so as to cover each of the two meshes.Individually independent gate electrodes (
31) are commonly connected by a comb-shaped aluminum electrode and connected to a not-shown bonding pad for external connection. On the surface of the P-type diffusion region (24), a P-type diffusion region (
A source electrode (32) of Al1, i-5i, etc., which contacts both the N+ source region (24) and the N+ source region (29), is formed in a comb-like shape and connected to a source bonding pad (not shown).

P型ウェル領域(25)の表面にはN+ソース領域(2
9)は形成しない。これで、ウェル領域(25)はゲー
ト電極(31〉の有無に係わらずMO3動作できないフ
ローティングの状態となる。P型拡散領域(24)に導
入されるチA・ンネル拡故も、ウェル領域(25)には
導入しない。
An N+ source region (2) is formed on the surface of the P-type well region (25).
9) is not formed. The well region (25) is now in a floating state in which MO3 cannot operate regardless of the presence or absence of the gate electrode (31).The channel expansion introduced into the P-type diffusion region (24) also occurs in the well region ( 25) will not be introduced.

そして、ウェル領域(25)とガードリングク26)と
に挾まれたN−型半導体層(23)の表面に、N−型半
導体層(23)よりは高不純物濃度のN型拡散領域(3
3)を形成する。ガードリング(26)とガードリング
(26)の間、およびウェル領域(25)とP型拡散領
域(24〉の間にも導入してかまわないが、N型拡散領
域(33)はP型拡散領域(24)およびそのチャンネ
ル拡散部に接してはならない。結果、ウェル領域(25
)とN型拡散領域(33)がP型拡散領域(24)とN
−型半導体層(23)のPN接合よりは高濃度のPN接
合を形成するので、ウェル領域(25)部分のアバラン
シェ耐圧は、MOSセル内のアバランシェ耐圧より小さ
くできる。
Then, on the surface of the N-type semiconductor layer (23) sandwiched between the well region (25) and the guard link 26), an N-type diffusion region (3) having a higher impurity concentration than the N-type semiconductor layer (23) is formed.
3) Form. It may also be introduced between the guard rings (26) and between the well region (25) and the P-type diffusion region (24), but the N-type diffusion region (33) is replaced with the P-type diffusion region (33). region (24) and its channel diffusion.As a result, the well region (25)
) and the N type diffusion region (33) are connected to the P type diffusion region (24) and the N type diffusion region (24).
Since a PN junction with a higher concentration than the PN junction of the - type semiconductor layer (23) is formed, the avalanche breakdown voltage of the well region (25) can be smaller than the avalanche breakdown voltage of the MOS cell.

斯る構成の縦型MOS F ETにおいて、ソース・ド
レイン間にリアクトル負荷の逆起電圧によってアバラン
シェ領域を超える逆方向電圧が印加された場合、MOS
セル部分よりウェル領域(25)での耐圧が低いので、
降伏電流iはウェル領域(25)を介してソース電極(
32)へと流れる。ウェル領域(25)にはソース領域
(29)が無いので寄生トランジスタ効果が生じるはず
も無く、また、ウェル領域(25)とP型拡散領域(2
4〉とは分離されているから、降伏電流iがMOSセル
内に流入して寄生トランジスタを導通させることも無い
。従って、ウェル領域(25)で積極的に降伏電流iを
流すことにより、MOSセル内を寄生トランジスタによ
る破壊から保護できる。
In a vertical MOS FET with such a configuration, if a reverse voltage exceeding the avalanche region is applied between the source and drain due to the back electromotive force of the reactor load, the MOS
Since the withstand voltage in the well region (25) is lower than that in the cell region,
Breakdown current i flows through the well region (25) to the source electrode (
32). Since there is no source region (29) in the well region (25), there is no possibility that a parasitic transistor effect will occur, and the well region (25) and the P-type diffusion region (29)
4>, the breakdown current i will not flow into the MOS cell and make the parasitic transistor conductive. Therefore, by actively flowing the breakdown current i in the well region (25), the inside of the MOS cell can be protected from destruction caused by the parasitic transistor.

(ト)発明の効果 以上に説明した通り、本発明によればウェル領域(25
)に隣接してN型拡散領域(33)を設けることにより
ウェル領域(25)部分でのアバランシェ耐圧をMOS
セル内のものより小さくしたから、ウェル領域(25)
へ積極的に降伏電流を流すことができ、その結果MOS
セル内を寄生トランジスタ効果による破壊から保護する
ことができる。
(g) Effects of the invention As explained above, according to the invention, the well region (25
) By providing an N-type diffusion region (33) adjacent to the well region (25), the avalanche breakdown voltage in the well region (25) can be reduced by MOS.
The well area (25) is made smaller than the one inside the cell.
As a result, the breakdown current can be actively applied to the MOS
The inside of the cell can be protected from destruction due to parasitic transistor effects.

従って、MO8素子のアバランシェ破壊耐量が大きいの
で、電子機器に組み込む際にスナバ回路等の保護回路の
設計が容易となり、機器の簡素化を図れる。
Therefore, since the MO8 element has a large avalanche breakdown capacity, it is easy to design a protection circuit such as a snubber circuit when incorporating it into an electronic device, and the device can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は夫々本発明を説明するための断面図と
平面図、第3図〜第5図は夫々従来例を説明するだめの
断面図、回路図、および拡大断面図である。
1 and 2 are a sectional view and a plan view, respectively, for explaining the present invention, and FIGS. 3 to 5 are a sectional view, a circuit diagram, and an enlarged sectional view, respectively, for explaining a conventional example. .

Claims (2)

【特許請求の範囲】[Claims] (1)共通ドレインとなる一導電型の半導体基体と、 前記半導体基体の表面に形成した逆導電型の拡散領域と
、 前記逆導電型拡散領域とは分離され前記逆導電型拡散領
域を囲むように形成した逆導電型のウェル領域と、 前記ウェル領域のさらに外側を囲む逆導電型のガードリ
ングと、 前記逆導電型拡散領域の表面に形成した一導電型のソー
ス領域と、 前記ソース領域と前記基体の表面とに挾まれたチャンネ
ル部上に絶縁膜を介して配置したゲート電極と、 前記ソース領域と前記逆導電型拡散領域の両方にコンタ
クトし且つ前記ウェル領域にもコンタクトするソース電
極と、 前記ウェル領域と前記ガードリング間の基体表面に前記
基体よりは高不純物濃度のPN接合を形成するように設
けた一導電型の拡散領域とを具備し、 前記ガードリング部分のアバランシェ耐圧をMOSセル
部分のアバランシェ耐圧より小としたことを特徴とする
縦型MOSFET。
(1) A semiconductor substrate of one conductivity type serving as a common drain, a diffusion region of an opposite conductivity type formed on the surface of the semiconductor substrate, and a diffusion region of the opposite conductivity type that is separated from the diffusion region and surrounds the diffusion region of the opposite conductivity type. a well region of opposite conductivity type formed in the well region, a guard ring of opposite conductivity type surrounding the outer side of the well region, a source region of one conductivity type formed on the surface of the diffusion region of the opposite conductivity type, and the source region. a gate electrode disposed on a channel portion sandwiched between the surface of the substrate via an insulating film; and a source electrode in contact with both the source region and the reverse conductivity type diffusion region and also in contact with the well region. , a diffusion region of one conductivity type provided on the surface of the substrate between the well region and the guard ring so as to form a PN junction with a higher impurity concentration than the substrate, and an avalanche breakdown voltage of the guard ring portion is set to MOS A vertical MOSFET characterized by being smaller than the avalanche breakdown voltage of the cell part.
(2)前記一導電型拡散領域は前記ガードリング領域と
ガードリング領域の間にも形成されていることを特徴と
する請求項第1項に記載の縦型MOSFET。
(2) The vertical MOSFET according to claim 1, wherein the one conductivity type diffusion region is also formed between the guard ring regions.
JP29690889A 1989-11-15 1989-11-15 Vertical mosfet Pending JPH03156977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29690889A JPH03156977A (en) 1989-11-15 1989-11-15 Vertical mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29690889A JPH03156977A (en) 1989-11-15 1989-11-15 Vertical mosfet

Publications (1)

Publication Number Publication Date
JPH03156977A true JPH03156977A (en) 1991-07-04

Family

ID=17839721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29690889A Pending JPH03156977A (en) 1989-11-15 1989-11-15 Vertical mosfet

Country Status (1)

Country Link
JP (1) JPH03156977A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472771A (en) * 1990-07-13 1992-03-06 Matsushita Electron Corp Mosfet
US5313088A (en) * 1990-09-19 1994-05-17 Nec Corporation Vertical field effect transistor with diffused protection diode
US5563436A (en) * 1992-11-24 1996-10-08 Sgs-Thomson Microelectronics S.A. Forward overvoltage protection circuit for a vertical semiconductor component
KR19980055024A (en) * 1996-12-27 1998-09-25 김광호 Bipolar Transistor with Planar Ring Structure
JP2006344802A (en) * 2005-06-09 2006-12-21 Rohm Co Ltd Semiconductor device and its manufacturing method
JP2012175047A (en) * 2011-02-24 2012-09-10 Toyota Central R&D Labs Inc Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472771A (en) * 1990-07-13 1992-03-06 Matsushita Electron Corp Mosfet
US5313088A (en) * 1990-09-19 1994-05-17 Nec Corporation Vertical field effect transistor with diffused protection diode
US5563436A (en) * 1992-11-24 1996-10-08 Sgs-Thomson Microelectronics S.A. Forward overvoltage protection circuit for a vertical semiconductor component
KR19980055024A (en) * 1996-12-27 1998-09-25 김광호 Bipolar Transistor with Planar Ring Structure
JP2006344802A (en) * 2005-06-09 2006-12-21 Rohm Co Ltd Semiconductor device and its manufacturing method
JP2012175047A (en) * 2011-02-24 2012-09-10 Toyota Central R&D Labs Inc Semiconductor device

Similar Documents

Publication Publication Date Title
JP3346825B2 (en) Power semiconductor device and method of manufacturing the same
JP2692350B2 (en) MOS type semiconductor device
JP2982785B2 (en) Depletion type MOS semiconductor device and MOS power IC
JP6526981B2 (en) Semiconductor device and semiconductor module
JPS61182264A (en) Vertical type mos transistor
JPWO2016148156A1 (en) Semiconductor device and manufacturing method of semiconductor device
JP2019140203A (en) Silicon carbide semiconductor device
JPH02275675A (en) Mos type semiconductor device
KR100648276B1 (en) Vdmos device incorporating reverse diode
JP3400025B2 (en) High voltage semiconductor device
US11264451B2 (en) Semiconductor device exhibiting soft recovery characteristics
JP2004253454A (en) Semiconductor device
JPS62176168A (en) Vertical mos transistor
JPH0766975B2 (en) Compound diode device
US20200411680A1 (en) Wide gap semiconductor device
US5705842A (en) Horizontal MOSFET
JPH03156977A (en) Vertical mosfet
KR940008225B1 (en) Mos transistor for power switch
JP6774529B2 (en) Semiconductor devices and semiconductor modules
JPH03155167A (en) Vertical mosfet
JP4175750B2 (en) Insulated gate semiconductor device
JPH08130312A (en) Lateral semiconductor device and its use
JP7256254B2 (en) semiconductor equipment
JPH03155678A (en) Vertical mosfet
JP2596312B2 (en) Semiconductor device