JPH0293290A - Ferrite melting crucible - Google Patents
Ferrite melting crucibleInfo
- Publication number
- JPH0293290A JPH0293290A JP24702488A JP24702488A JPH0293290A JP H0293290 A JPH0293290 A JP H0293290A JP 24702488 A JP24702488 A JP 24702488A JP 24702488 A JP24702488 A JP 24702488A JP H0293290 A JPH0293290 A JP H0293290A
- Authority
- JP
- Japan
- Prior art keywords
- ferrite
- single crystal
- crucible
- platinum
- molten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 55
- 238000002844 melting Methods 0.000 title claims abstract description 21
- 230000008018 melting Effects 0.000 title claims abstract description 21
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 23
- 239000013078 crystal Substances 0.000 abstract description 25
- 230000005484 gravity Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
Landscapes
- Crucibles And Fluidized-Bed Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】 (M業上の利用分野) 本発明は、フェライト溶解るつぼの改良に関する。[Detailed description of the invention] (Field of use in M industry) The present invention relates to improvements in ferrite melting crucibles.
(従来の技術)
従来、フェライト単結晶を育成するには、第4図に示す
白金製の円筒状の単結晶育成るつぼ1にフェライト2を
入れ、るつぼ1全体を長時間(50〜100時間) 1
600〜1700℃に保持して、フェライト2を溶解の
下車結晶に育成していた。しかしこの方法では白金がフ
ェライト2中に溶出し、図示の如くフェライト単結晶3
の中心部は白金粒4の分布が少なかったが、外周部には
白金粒4が多量に分布した。(Prior art) Conventionally, in order to grow a ferrite single crystal, ferrite 2 is placed in a cylindrical single crystal growth crucible 1 made of platinum shown in FIG. 4, and the entire crucible 1 is heated for a long time (50 to 100 hours). 1
The temperature was maintained at 600 to 1700°C to grow ferrite 2 into melted crystals. However, in this method, platinum is eluted into the ferrite 2, and as shown in the figure, the platinum is eluted into the ferrite single crystal 3.
The distribution of platinum grains 4 was small in the center part, but a large amount of platinum grains 4 were distributed in the outer peripheral part.
この為、第5図に示す如く白金製の小径円筒状のフェラ
イト溶解るつぼ5にてフェライト2を溶解し、溶融フェ
ライト2を直ちに単結晶育成るつぼ1に流下導入し、フ
ェライト単結晶3を育成していた。この方法では、フェ
ライト単結晶3の上部の狭い範囲で溶融状態にある。従
って、単結晶育成るつぼlでの溶融時間が短いので、白
金粒4の混入が少ない。For this purpose, as shown in FIG. 5, ferrite 2 is melted in a small diameter cylindrical ferrite melting crucible 5 made of platinum, and the molten ferrite 2 is immediately introduced into a single crystal growth crucible 1 to grow a ferrite single crystal 3. was. In this method, the ferrite single crystal 3 is in a molten state in a narrow upper region. Therefore, since the melting time in the single crystal growth crucible 1 is short, platinum grains 4 are less likely to be mixed in.
(発明が解決しようとする課題)
ところで、上記第5図に示すフェライト単結晶の育成方
法では、フェライト溶解るつぼ5で溶融フェライト2中
に溶出した白金粒4が、単結晶育成るつぼlでフェライ
ト単結晶3全体に分布し、純度の高いフェライト単結晶
が得られなかった。(Problems to be Solved by the Invention) By the way, in the method for growing a ferrite single crystal shown in FIG. It was distributed throughout the entire crystal 3, and a highly pure ferrite single crystal could not be obtained.
そこで本発明は、フェライト溶解るつぼの溶融フェライ
トを単結晶育成るつぼに流下した際、溶融フェライト中
の白金粒が溶融フェライトと共に流下せず、溶融フェラ
イトのみ流下するようにしたフェライト溶解るつぼを提
供しようとするものである。Therefore, an object of the present invention is to provide a ferrite melting crucible in which, when the molten ferrite in the ferrite melting crucible flows down into a single crystal growth crucible, the platinum grains in the molten ferrite do not flow down together with the molten ferrite, but only the molten ferrite flows down. It is something to do.
(課題を解決するための手段)
上記課題を解決するための本発明のフェライト溶解るつ
ぼは、白金製の円筒状のフェライト溶解るつぼに於いて
、該るつぼの底の中心部に管状のノズルを内外に突出し
て真直に設けたことを特徴とする。(Means for Solving the Problems) The ferrite melting crucible of the present invention for solving the above problems is a cylindrical ferrite melting crucible made of platinum, and a tubular nozzle is installed inside and outside the center of the bottom of the crucible. It is characterized by being provided straight and protruding from the top.
(作用)
上述の如く構成された本発明のフェライト溶解るつぼで
フェライトを溶解すると、その溶解されたフェライト中
には主として周りから白金が溶出し、その白金粒はフェ
ライトより比重が大きい為、るつぼの底に沈降堆積する
が、るつぼの底の中心部に管状ノズルを内外に突出して
真直に設けであるので、その管状のノズルからは白金粒
が流下せず、溶融フェライトのみ流下する。従って、単
結晶育成用るつぼでは、純度の高いフェライト単結晶を
得ることができる。(Function) When ferrite is melted in the ferrite melting crucible of the present invention constructed as described above, platinum is eluted mainly from the surrounding area in the melted ferrite, and since the platinum grains have a higher specific gravity than the ferrite, the crucible melts. However, since a tubular nozzle is provided in the center of the bottom of the crucible in a straight manner, protruding inward and outward, platinum grains do not flow down from the tubular nozzle, but only molten ferrite flows down. Therefore, in the crucible for single crystal growth, a highly pure ferrite single crystal can be obtained.
(実施例)
本発明のフェライト溶解るつぼの一実施例を第1図によ
って説明すると、内径40mm5深さ 100+n+n
。(Example) An example of the ferrite melting crucible of the present invention will be described with reference to FIG. 1.Inner diameter 40 mm5 depth 100+n+n
.
肉厚0.5mmの白金より成る円筒状のフェライト溶解
るつぼ6における平坦な底の中心部に、内径3mm1長
さLlmm、肉厚Q、5mmの管状のノズル7を内方6
mm突出して真直に一体に設けである。A cylindrical ferrite melting crucible 6 made of platinum with a wall thickness of 0.5 mm has a tubular nozzle 7 with an inner diameter of 3 mm, a length of Ll mm, and a wall thickness of Q of 5 mm in the center of the flat bottom.
It is installed straight and integrally with a protrusion of mm.
このように構成されたフェライト溶解るつぼ6にて第2
図に示す如くフェライト2を溶解すると、その溶解され
たフェライト2中には主として周壁から白金が溶出し、
その白金粒4はフェライト2より比重が大きい為、るつ
ぼ6の平坦な底に沈降堆積するが、るつぼ6の底の中心
部に管状のノズル7を内方に6市突出して真直に設けで
あるので、その管状のノズル7からは白金粒4が流下せ
ず、溶融フェライト2のみ流下して単結晶育成るつぼ1
に充填される。従って単結晶育成るつぼ1では純度の高
いフェライト単結晶が得られる。In the ferrite melting crucible 6 configured in this way, a second
When the ferrite 2 is melted as shown in the figure, platinum is eluted into the melted ferrite 2 mainly from the peripheral wall.
Since the platinum grains 4 have a higher specific gravity than the ferrite 2, they settle and accumulate on the flat bottom of the crucible 6, but a tubular nozzle 7 is installed straight in the center of the bottom of the crucible 6 with six holes protruding inward. Therefore, the platinum particles 4 do not flow down from the tubular nozzle 7, and only the molten ferrite 2 flows down into the single crystal growth crucible 1.
is filled with. Therefore, in the single crystal growth crucible 1, a highly pure ferrite single crystal can be obtained.
尚、上記実施例のフェライト溶解るつぼ6は、底が平坦
であるが、第3図aに示す如くホッパー型でも良く、ま
た第3図すに示す如く円誰型であっても良いものである
。Although the ferrite melting crucible 6 of the above embodiment has a flat bottom, it may be of a hopper type as shown in FIG. 3A, or may be of a circular shape as shown in FIG. .
(発明の効果)
以上の説明で判るように本発明のフェライト溶解るつぼ
によれば、フェライトを溶解した際周壁から白金が溶出
し、その白金粒がるつぼの底に沈降堆積しても、るつぼ
の底の中心部に管状のノズルを内外に突出して真直に設
けであるので、この管状のノズルからは白金粒が流下せ
ず、溶融フェライトのみ流下して単結晶育成るつぼに充
填される結果、純度の高いフェライト単結晶を得ること
ができる。(Effects of the Invention) As can be seen from the above explanation, according to the ferrite melting crucible of the present invention, even if platinum is eluted from the peripheral wall when ferrite is melted and the platinum particles settle and accumulate on the bottom of the crucible, Since a tubular nozzle is installed straight at the center of the bottom, protruding inward and outward, platinum grains do not flow down from this tubular nozzle, and only molten ferrite flows down and fills the single crystal growth crucible, resulting in improved purity. It is possible to obtain a ferrite single crystal with high
第1図は本発明のフェライト溶解るつぼの一実施例を示
す縦断面図、第2図は第1図のフェライト溶解るつぼの
使用状態を示す縦断面図、第3図aSbは夫々本発明の
フェライト溶解るつぼの他の実施例を示す縦断面図、第
4図及び第5図は従来のフェライト単結晶の育成方法を
示す縦断面図である。
出願人 田中貴金属工業株式会社
第1図
第2図
7・・・背ル(Q)又−2し
第
図
(CI)
(b)
第
図
第
図FIG. 1 is a longitudinal sectional view showing an embodiment of the ferrite melting crucible of the present invention, FIG. 2 is a longitudinal sectional view showing the state of use of the ferrite melting crucible of FIG. 1, and FIG. 3 aSb is a ferrite melting crucible of the present invention. FIGS. 4 and 5 are vertical cross-sectional views showing other embodiments of the melting crucible, and FIGS. 4 and 5 are vertical cross-sectional views showing a conventional method for growing a ferrite single crystal. Applicant: Tanaka Kikinzoku Kogyo Co., Ltd. Figure 1 Figure 2 Figure 7...Back (Q) or -2 Figure (CI) (b) Figure Figure
Claims (1)
該るつぼの底の中心部に、管状のノズルを内外に突出し
て真直に設けたことを特徴とするフェライト溶解るつぼ
。1. In a cylindrical ferrite melting crucible made of platinum,
A ferrite melting crucible characterized in that a tubular nozzle is provided straight in the center of the bottom of the crucible, protruding inwardly and outwardly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24702488A JPH0293290A (en) | 1988-09-30 | 1988-09-30 | Ferrite melting crucible |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24702488A JPH0293290A (en) | 1988-09-30 | 1988-09-30 | Ferrite melting crucible |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0293290A true JPH0293290A (en) | 1990-04-04 |
Family
ID=17157270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24702488A Pending JPH0293290A (en) | 1988-09-30 | 1988-09-30 | Ferrite melting crucible |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0293290A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5459638A (en) * | 1990-09-13 | 1995-10-17 | Fujitsu Limited | Semiconductor device with heat radiating fin assembly and container for housing the same |
-
1988
- 1988-09-30 JP JP24702488A patent/JPH0293290A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5459638A (en) * | 1990-09-13 | 1995-10-17 | Fujitsu Limited | Semiconductor device with heat radiating fin assembly and container for housing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1052667A (en) | Apparatus for growing crystalline bodies from the melt | |
KR100439132B1 (en) | Single crystal pulling device | |
KR930003044B1 (en) | Method and apparatus for manufacturing silicon single crystal | |
JPH0733305B2 (en) | Method for manufacturing double quartz crucible | |
JPS59479B2 (en) | Crystal body growth device | |
JPH0293290A (en) | Ferrite melting crucible | |
JPS5854114B2 (en) | Crucible structure | |
KR920014956A (en) | Crystal Growth Method and Apparatus | |
MY102843A (en) | Apparatus for manufacturing semiconductor single crystals | |
JPH07110798B2 (en) | Single crystal manufacturing equipment | |
JPS5852292Y2 (en) | crucible support | |
JPH02172885A (en) | Production of silicon single crystal | |
JPH01294592A (en) | Growth of single crystal | |
ES2006067A6 (en) | PROCESS FOR PRODUCING p-XYLOL WITH A PURITY OF AT LEAST 99.5 % | |
JPS62278188A (en) | Crucible for single crystal production | |
JPH01286994A (en) | Production of silicon single crystal and apparatus therefor | |
JPH01119594A (en) | Crystal growing device | |
JPS54125190A (en) | Crystal growing mehtod | |
JPS62235286A (en) | Crucible for growing single crystal | |
JPS59141488A (en) | Device for growing single crystal | |
JPS6136192A (en) | Crucible for producing single crystal | |
KR950018696A (en) | Monocrystalline manufacturing method and apparatus used therefor | |
JPH02172888A (en) | Crucible for pulling up silicon single crystal | |
SU762256A1 (en) | Device for growing shaped crystal | |
JPH0711177Y2 (en) | Raw material supply mechanism for semiconductor single crystal manufacturing equipment |