JPH0263281B2 - - Google Patents
Info
- Publication number
- JPH0263281B2 JPH0263281B2 JP57036592A JP3659282A JPH0263281B2 JP H0263281 B2 JPH0263281 B2 JP H0263281B2 JP 57036592 A JP57036592 A JP 57036592A JP 3659282 A JP3659282 A JP 3659282A JP H0263281 B2 JPH0263281 B2 JP H0263281B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- voltage
- gap
- leg
- legs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F30/00—Fixed transformers not covered by group H01F19/00
- H01F30/06—Fixed transformers not covered by group H01F19/00 characterised by the structure
- H01F30/12—Two-phase, three-phase or polyphase transformers
- H01F30/14—Two-phase, three-phase or polyphase transformers for changing the number of phases
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transformers For Measuring Instruments (AREA)
Description
〔発明の技術分野〕
本発明は制御装置やリレー等に制御用電力を供
給する制御用変圧器に関する。
〔発明の技術的背景〕
一般にある種の電力用制御装置やリレー等(以
下、これを単にリレーと言う)は、3相電源側の
1線断線事故や2相短絡事故時においても正常に
動作することが要求される。このため、従来は第
1図に示すように例えば3相6600Vを3相V結線
変圧器で受電して適当な2次電圧に下げ、3相グ
レツツ結線で直流に変換し、得られる制御用電力
をリレーに供給していた。これによれば、3相
6600Vの配電線に1線断線事故や2相短絡事故が
発生したとき、直流出力電圧を喪失させずに単相
全波整流相当の電圧、即ち正常時の2/3の値をリ
レーに供給することができる。一方、動作中のリ
レーが印加電圧の低下により、動作状態を維持出
来なくなり、元の状態に復帰する電圧(以下復帰
電圧という)の下限値は、リレーに付属回路等を
用いることにより定格(正常時)の約30%と言わ
れている。従つて、前記回路条件では、正常時の
2/3の電圧が維持されるため、リレーは誤動作を
起こさないで済む。
〔背景技術の問題点〕
しかしながら、上記従来方式では、整流器やそ
れをサージから保護するためのコンデンサや抵抗
を付属させねばならず、装置が複雑になり、大形
化し、高価になる。しかも、部品数が多くなり、
システムとしての信頼性が低下する等の欠点があ
つた。
〔発明の目的〕
本発明はコンデンサや抵抗等の付属品を不要と
し、3相電源側の少なくとも1線断線事故におい
てもリレーを正常に動作させるに必要な最低電圧
を確保し得る制御用変圧器を提供することを目的
とする。
〔発明の概要〕
このため本発明は、鉄心の両側の脚にギヤツプ
を設け、それらの脚に各々1対のコイルを挿入し
て3相V結線とし、2つの2次コイルの巻回数の
比を1:0.37〜1:1で構成して両端子間から単
相用の制御電源を取り出すようにしたことを特徴
とする。
〔発明の実施例〕
第2図は本発明の一実施例に係る制御用変圧器
(以下、Trと言う)の概念図を示したもので、1
は図示していないが内側に2次コイル、外側に1
次コイルが同軸的に配置されるように巻回された
コイルである。その2つの1次コイルの巻回数は
等しくなつているが、2次コイルは一方を1とす
ると他は0.5になつている。これら1次コイルお
よび2次コイルは3相V結線に接続され、負荷は
u,w間に接続されている。2は3相3脚鉄心
で、前記コイル1を挿入する両側の脚2U,2W
と上下の継鉄との間にはギヤツプ3が設けられ
る。中央の脚2Vにはギヤツプを設けていない。
コイル1を挿入した脚2U,2Wは図示していな
いが締付クランプにより他の鉄心部分と一体に締
付けられている。
以上の構成によれば、脚2U,2Wにはギヤツ
プ3が設けられているために磁気抵抗が大きくな
る。従つて、‘次コイルに印加する電圧に相当す
る磁束を誘起するためにより多くの励磁電流が流
れることになる。即ち、U相,W相の励磁インピ
ーダンスZou,Zowは小さくなる。ギヤツプ3の
大きさを適当に選ぶことにより、Zou,Zowの値
を必要な値にすることができる。脚2Vにはギヤ
ツプがないので、磁気抵抗が小さく励磁インピー
ダンスZovは大きくなる。
今、UV間に単相電圧を印加すると、脚2Uに
は電圧に比例した磁束を生ずるが、その磁束は脚
2V,2Wに分流する。脚2Vを通る磁束に対す
る脚2Wの磁束の比をαとする。脚にギヤツプが
ないときは、磁路長に逆比例して磁束が通るので
αの値は約0.4となる。脚3相共に同じギヤツプ
長を設ければ、磁気抵抗は殆どギヤツプ長で決ま
るのでほぼ等しくなりα=0.5となる。脚の断面
積が5cm×5cm、窓寸法が3.5cm×10cmの3相鉄
心を用い、両側のの脚に1.05mmのギヤツプを設
け、中央部にはギヤツプを設けない状態でUV間
に単相電圧を印加したときのαの値は0.11であつ
た。また、本実施例のTrに3相電圧を印加した
とき、3相電圧のうち任意の相が欠相したとき、
および任意の2相短絡を生じたときの一次、二次
コイルの誘起電圧のベクトル図およびuw間の電
圧を表わすと、下記第1表の如くなる。但し、第
1表における数式は一般的なものであるが、数値
は2次コイルの定格電圧115.4(V)の場合かつ巻
回数の比が1:0.5の場合のものである。また、
第1表のベクトル図に示すように、V結線を構成
するU及びW相用2次コイルが等価的に直列接続
となつたuw間に所望の電圧を得るためには、1
次コイルと2次コイルの極性はU及びW相共に同
極性でなければならない。
[Technical Field of the Invention] The present invention relates to a control transformer that supplies control power to a control device, a relay, etc. [Technical Background of the Invention] Generally, certain types of power control devices, relays, etc. (hereinafter simply referred to as relays) operate normally even in the event of a one-wire disconnection accident or a two-phase short circuit accident on the three-phase power supply side. required to do so. For this reason, in the past, as shown in Figure 1, for example, 3-phase 6600V was received with a 3-phase V-connection transformer, lowered to an appropriate secondary voltage, and converted to DC using a 3-phase Gretz connection, resulting in control power. was being supplied to the relay. According to this, three-phase
When a single wire disconnection or two-phase short circuit occurs on a 6600V distribution line, the voltage equivalent to single-phase full-wave rectification, that is, 2/3 of the normal value, is supplied to the relay without loss of DC output voltage. be able to. On the other hand, the lower limit of the voltage at which an operating relay can no longer maintain its operating state due to a drop in the applied voltage and returns to its original state (hereinafter referred to as the "return voltage") can be determined by using a circuit attached to the relay. It is said to be about 30% of the time. Therefore, under the above circuit conditions, the voltage is maintained at 2/3 of the normal voltage, so the relay does not malfunction. [Problems with Background Art] However, in the above-mentioned conventional system, a rectifier and a capacitor and a resistor for protecting the rectifier from surges must be attached, making the device complicated, large-sized, and expensive. Moreover, the number of parts increases,
There were drawbacks such as decreased reliability as a system. [Object of the invention] The present invention provides a control transformer that eliminates the need for accessories such as capacitors and resistors, and that can secure the minimum voltage necessary for normal operation of the relay even in the event of a disconnection of at least one wire on the three-phase power supply side. The purpose is to provide [Summary of the Invention] For this reason, the present invention provides gaps on the legs on both sides of the iron core, inserts a pair of coils into each leg to form a three-phase V connection, and adjusts the ratio of the number of turns of the two secondary coils. It is characterized in that it is configured with a ratio of 1:0.37 to 1:1, and a single-phase control power source is taken out between both terminals. [Embodiment of the Invention] Fig. 2 shows a conceptual diagram of a control transformer (hereinafter referred to as Tr) according to an embodiment of the present invention.
Although not shown, there is a secondary coil inside and a secondary coil outside.
This is a coil wound so that the next coil is arranged coaxially. The number of turns of the two primary coils is the same, but for the secondary coil, one is set to 1 and the other is set to 0.5. These primary coils and secondary coils are connected to a three-phase V connection, and a load is connected between u and w. 2 is a three-phase, three-leg iron core, with legs 2U and 2W on both sides into which the coil 1 is inserted.
A gap 3 is provided between the upper and lower yokes. No gap is provided on the center leg 2V.
Although the legs 2U and 2W into which the coil 1 is inserted are not shown, they are tightened together with other core parts by tightening clamps. According to the above configuration, since the legs 2U and 2W are provided with the gaps 3, the magnetic resistance becomes large. Therefore, more excitation current flows in order to induce magnetic flux corresponding to the voltage applied to the secondary coil. That is, the excitation impedances Zou and Zow of the U phase and W phase become small. By appropriately selecting the size of gap 3, the values of Zou and Zow can be set to the required values. Since there is no gap in the leg 2V, the magnetic resistance is small and the excitation impedance Zov is large. Now, when a single-phase voltage is applied between UV, a magnetic flux proportional to the voltage is generated in leg 2U, but that magnetic flux is divided into legs 2V and 2W. Let α be the ratio of the magnetic flux of the leg 2W to the magnetic flux passing through the leg 2V. When there is no gap in the legs, the magnetic flux passes in inverse proportion to the magnetic path length, so the value of α is approximately 0.4. If the same gap length is provided for all three phases of the legs, the magnetic resistance is determined mostly by the gap length, so it becomes almost equal and α=0.5. Using a three-phase iron core with a leg cross-sectional area of 5cm x 5cm and a window size of 3.5cm x 10cm, a 1.05mm gap is provided on the legs on both sides, and a single-phase connection is made between the UVs with no gap in the center. The value of α when voltage was applied was 0.11. Furthermore, when a three-phase voltage is applied to the Tr of this embodiment, when any phase of the three-phase voltage is open,
The vector diagram of the induced voltage of the primary and secondary coils and the voltage between uw when any two-phase short circuit occurs is shown in Table 1 below. However, although the formulas in Table 1 are general, the numerical values are for the case where the rated voltage of the secondary coil is 115.4 (V) and the ratio of the number of turns is 1:0.5. Also,
As shown in the vector diagram in Table 1, in order to obtain the desired voltage across uw where the U and W phase secondary coils constituting the V connection are equivalently connected in series, 1
The polarity of the primary coil and the secondary coil must be the same for both the U and W phases.
【表】【table】
以上のように本発明によれば、抵抗、コンデン
サ等の付属回路を要することなく、1台の変圧器
のみで、その2つの2次コイルの巻回数の比を
1:0.37〜1:1とすることにより、配電線の少
なくとも1線断線事故時において、リレーの誤動
作を防止するに必要な電圧を確保することが出来
る。従つて、従来の場合より構造が簡単になり小
形、軽量、経済的にして信頼性の高い制御用変圧
器が得られる。
As described above, according to the present invention, the ratio of the number of turns of the two secondary coils can be set to 1:0.37 to 1:1 using only one transformer, without requiring additional circuits such as resistors and capacitors. By doing so, it is possible to secure the voltage necessary to prevent malfunction of the relay in the event of a disconnection accident in at least one of the distribution lines. Therefore, it is possible to obtain a control transformer that has a simpler structure than the conventional case, and is small, lightweight, economical, and highly reliable.
第1図は従来の制御用電源装置の回路図、第2
図は本発明の一実施例を示す制御用変圧器の概念
図、第3図は本発明の他の実施例に係る鉄心の説
明図である。
1……コイル、2……鉄心、3……ギヤツプ。
Figure 1 is a circuit diagram of a conventional control power supply device;
The figure is a conceptual diagram of a control transformer showing one embodiment of the invention, and FIG. 3 is an explanatory diagram of an iron core according to another embodiment of the invention. 1...Coil, 2...Iron core, 3...Gap.
Claims (1)
け、そのギヤツプを設けた各々の脚に1次コイ
ル、2次コイルを巻回するとともに3相V結線
し、そのうち、2つの2次コイルは巻回数の比
を、2相短絡を考慮する必要がない場合は1:
0.37ないし1:1、2相短絡を考慮する必要があ
る場合は1:0.37ないし1:0.74、にして両端子
間から単相の制御電源を取り出すように構成した
ことを特徴とする制御用変圧器。1. Provide a gap on any two legs of the 3-phase, 3-leg iron core, and wind the primary and secondary coils around each leg with the gap, and make a 3-phase V connection. is the ratio of the number of turns, and if there is no need to consider two-phase short circuits, it is 1:
0.37 to 1:1, or 1:0.37 to 1:0.74 when two-phase short circuit needs to be considered, and a control transformer configured to extract single-phase control power from between both terminals. vessel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57036592A JPS58154216A (en) | 1982-03-10 | 1982-03-10 | Transformer for control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57036592A JPS58154216A (en) | 1982-03-10 | 1982-03-10 | Transformer for control |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58154216A JPS58154216A (en) | 1983-09-13 |
JPH0263281B2 true JPH0263281B2 (en) | 1990-12-27 |
Family
ID=12474044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57036592A Granted JPS58154216A (en) | 1982-03-10 | 1982-03-10 | Transformer for control |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58154216A (en) |
-
1982
- 1982-03-10 JP JP57036592A patent/JPS58154216A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58154216A (en) | 1983-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4677401A (en) | Noise filter for three-phase four-wire system | |
US3509507A (en) | Grounded y - y three-phase transformer | |
US3210606A (en) | Protective relaying systems | |
JPH0263281B2 (en) | ||
US3440516A (en) | Transformer and capacitor apparatus for three-phase electrical systems | |
JPH0462444B2 (en) | ||
US1774944A (en) | Electric-current-transforming means | |
EP0282953A1 (en) | Rectifier transformer | |
JPH10201097A (en) | Single-phase three-wire low-voltage power distribution system | |
KR100737061B1 (en) | Double rated current transformer circuit | |
US2667617A (en) | Polyphase transformer system with grounded neutral | |
JP2682241B2 (en) | Power failure countermeasure device | |
JPH05205950A (en) | Single-phase load tap switching transformer | |
JPH0341455Y2 (en) | ||
JP3170002B2 (en) | Split winding transformer | |
JPS6346713A (en) | Transformer for two phase/three phase conversion | |
JPH06295832A (en) | Three-phase transformer | |
JPS6048082B2 (en) | 3 phase transformer equipment | |
JPS6140621A (en) | On-load adjuster | |
JPS6246316A (en) | Voltage phase regulating transformer | |
JPH0258762B2 (en) | ||
JPH08335521A (en) | Series transformer and phase adjuster using the same | |
JPS63106021A (en) | Voltage phase regulating autotransformer | |
JPS6110968B2 (en) | ||
JPS60169114A (en) | Phase adjustor |