JPH0250365B2 - - Google Patents
Info
- Publication number
- JPH0250365B2 JPH0250365B2 JP61009975A JP997586A JPH0250365B2 JP H0250365 B2 JPH0250365 B2 JP H0250365B2 JP 61009975 A JP61009975 A JP 61009975A JP 997586 A JP997586 A JP 997586A JP H0250365 B2 JPH0250365 B2 JP H0250365B2
- Authority
- JP
- Japan
- Prior art keywords
- waste
- furnace
- incinerator
- decomposition
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 claims description 41
- 239000002699 waste material Substances 0.000 claims description 31
- 239000007789 gas Substances 0.000 claims description 25
- 238000000354 decomposition reaction Methods 0.000 claims description 20
- 239000011358 absorbing material Substances 0.000 claims description 13
- 150000004045 organic chlorine compounds Chemical class 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 10
- 230000009970 fire resistant effect Effects 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 150000001247 metal acetylides Chemical class 0.000 claims description 3
- 229910052755 nonmetal Inorganic materials 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims 1
- 150000004706 metal oxides Chemical class 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 9
- 229910002091 carbon monoxide Inorganic materials 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 230000004907 flux Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 231100000614 poison Toxicity 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000003440 toxic substance Substances 0.000 description 3
- 239000002912 waste gas Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000010808 liquid waste Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002910 solid waste Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Constitution Of High-Frequency Heating (AREA)
- Gasification And Melting Of Waste (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は有機塩素系化合物(例えばPCB、ダ
イオキシンあるいは殺虫剤等の農薬)、又は該有
機塩素系化合物を含む廃棄物を処理する装置、詳
しくはマイクロ波エネルギーにより該化合物又は
廃棄物を加熱し該化合物を分解、燃焼する装置に
関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for treating organic chlorine compounds (for example, PCBs, dioxins, or agricultural chemicals such as insecticides) or waste containing the organic chlorine compounds. relates to an apparatus for heating the compound or waste with microwave energy to decompose and burn the compound.
従来、この種廃棄物の処理装置としては、バー
ナを備えた焼却炉、紫外線照射を利用する分解装
置、オゾンによる酸化分解装置などが知られてい
る。
Conventionally, as devices for treating this type of waste, incinerators equipped with burners, decomposition devices using ultraviolet irradiation, oxidation decomposition devices using ozone, and the like are known.
しかしながら、上記装置のうち焼却炉では炉内
温度は1200〜1400℃と高温が必要であり、バーナ
により高温を得るものであるため温度斑が生じ易
く、有害な二次生成物が生成する問題点を伴うも
のでなつた。すなわち、局部温度が生じ易いた
め、炉の構成材料として高価なものを採用する必
要があるだけでなく、熱分解効率が安定し難い欠
点があり、例えば廃棄物がPCBの場合、ダイオ
キシンやジベンゾフランなど猛毒の物質が生成し
たり、廃棄物の種類によつては、その分解や燃焼
により二次公害の原因となる未然カーボン、炭化
水素類、タール、一酸化炭素(CO)あるいはシ
アン(HCN)が副生する場合があり、実用性に
欠ける問題があつた。
However, among the above devices, the incinerator requires a high internal temperature of 1,200 to 1,400 degrees Celsius, and because the burner is used to obtain the high temperature, temperature unevenness tends to occur and harmful secondary products are generated. It was accompanied by. In other words, local temperatures tend to occur, which not only necessitates the use of expensive materials for the construction of the furnace, but also has the disadvantage that thermal decomposition efficiency is difficult to stabilize. Depending on the type of waste, highly toxic substances may be generated, and depending on the type of waste, the decomposition or combustion of the waste may generate unused carbon, hydrocarbons, tar, carbon monoxide (CO), or cyanide (HCN), which can cause secondary pollution. There were cases where by-products were produced, and there was a problem of lack of practicality.
一方、紫外線やオゾンによる分解装置では、焼
却炉と同様二次生成物が生成する場合があるし、
オゾンがリークして排出され二次公害が生じるお
それもあり、分解効率が充分でない場合もあつ
て、実用性に欠けるものであつた。 On the other hand, decomposition equipment using ultraviolet rays or ozone may produce secondary products, similar to incinerators.
There is a risk that ozone will leak and be discharged, causing secondary pollution, and the decomposition efficiency may not be sufficient, making it impractical.
さらに、この種の装置では微量でも猛毒の物質
を扱うため、安定運転が可能かつ相当に高効率の
性能を有する装置の開発が待たれていたものであ
る。 Furthermore, since this type of device handles highly toxic substances even in minute amounts, there has been a long-awaited development of a device that can operate stably and has considerably high efficiency.
本発明は、上記問題点及び現在の要求に鑑みて
なされたもので、有機塩素系化合物を高効率で、
かつ温度斑を伴うことなく分解、燃焼でき、二次
公害の原因となる二次生成物が発生するおそれの
ない有効な分解、燃焼装置を提供することを目的
とするものである。 The present invention has been made in view of the above-mentioned problems and current demands, and is capable of producing organic chlorine compounds with high efficiency.
Another object of the present invention is to provide an effective decomposition and combustion device that can decompose and burn without temperature unevenness and is free from the risk of generating secondary products that cause secondary pollution.
本発明は、有機塩素系化合物又は有機塩素系化
合物を含む廃棄物を分解、燃焼する装置におい
て、炉内底部に顆粒状で耐火性のマイクロ波吸収
材よりなる充填層を形成すると共に該充填層内に
撹拌機構を、該充填層よりも下方に酸素含有ガス
供給部材をそれぞれ配備した焼却炉と、炉材及
び/又は炉壁の少なくとも一部が耐火性マイクロ
波吸収材より成る二次燃焼炉とを備え、これら焼
却炉、二次燃焼炉のそれぞれにマイクロ波導波管
を介してマイクロ波発生装置を接続したことを特
徴とする有機塩素系化合物又は有機塩素系化合物
を含む廃棄物の分解・燃焼装置である。
The present invention provides an apparatus for decomposing and burning organic chlorine compounds or waste containing organic chlorine compounds, in which a packed bed made of a granular, fire-resistant microwave absorbing material is formed at the bottom of the furnace, and the packed bed is an incinerator equipped with a stirring mechanism inside and an oxygen-containing gas supply member below the packed bed, and a secondary combustion furnace in which at least a part of the furnace material and/or the furnace wall is made of a refractory microwave absorbing material. and a microwave generator is connected to each of the incinerator and the secondary combustion furnace via a microwave waveguide. It is a combustion device.
本発明の実施例を第1図に基づいて説明する
と、図示された廃棄物処理施設は、廃棄物の受入
槽1と定量フイーダ2を備えた廃棄物受入・供給
装置11と、廃棄物分解・燃焼装置21と、廃ガ
ス処理装置31とにより構成されている。
An embodiment of the present invention will be described based on FIG. 1. The illustrated waste treatment facility includes a waste reception/supply device 11 equipped with a waste reception tank 1 and a quantitative feeder 2, and a waste decomposition/supply device 11. It is composed of a combustion device 21 and a waste gas treatment device 31.
廃棄物分解・燃焼装置21は、焼却炉22とそ
の上部に直結して設けた二次燃焼炉23とを備え
ており、焼却炉22の炉内底部には顆粒状で耐火
性のマイクロ波吸収材による充填槽24が形成さ
れ、該充填層24内には回転駆動装置25により
駆動される撹拌羽根26等の撹拌機構が配備され
ている。この撹拌羽根26は気体噴出口を有する
中空部材であつて、回転駆動装置25を介して送
気フアン27に連絡され、酸素含有ガス供給部材
を兼ねている。また、二次燃焼炉23は、その炉
材及び/又は炉壁の一部が焼却炉22と同様の耐
火性マイクロ波吸収材によつて構成されている。
そして、該二次燃焼炉23の上方部にはマイクロ
波発生装置28が設けられ、該マイクロ波発生装
置28はそれぞれマイクロ波導波管291,292
を介して焼却炉22、二次燃焼炉23に接続され
ている。 The waste decomposition/combustion device 21 includes an incinerator 22 and a secondary combustion furnace 23 that is directly connected to the upper part of the incinerator 22. At the bottom of the incinerator 22, there is a granular fire-resistant microwave absorbing material. A filling tank 24 made of a material is formed, and a stirring mechanism such as a stirring blade 26 driven by a rotary drive device 25 is provided in the filling bed 24. This stirring blade 26 is a hollow member having a gas jet port, is connected to an air supply fan 27 via a rotational drive device 25, and also serves as an oxygen-containing gas supply member. Further, the secondary combustion furnace 23 has a furnace material and/or a part of the furnace wall made of the same refractory microwave absorbing material as the incinerator 22 .
A microwave generator 28 is provided above the secondary combustion furnace 23, and the microwave generator 28 has microwave waveguides 29 1 and 29 2 , respectively.
It is connected to an incinerator 22 and a secondary combustion furnace 23 via.
なお、撹拌羽根26は撹拌用に専用し、別途に
燃焼用空気供給管(図示せず)を設けてもよい。 Note that the stirring blade 26 may be used exclusively for stirring, and a combustion air supply pipe (not shown) may be provided separately.
前記廃ガス処理装置31はオフガスフアン3
2、吸収液タンク33及び吸収液循還ポンプ34
を備えた排ガス洗浄塔35と、前記吸収液タンク
33に接続した廃液処理槽36と、排ガス洗浄塔
35の塔頂に接続した煙突37とにより構成さ
れ、前記オフガスフアン32の吸込側は前記二次
燃焼炉23の上方部に接続されている。 The waste gas treatment device 31 includes an off-gas fan 3
2. Absorption liquid tank 33 and absorption liquid circulation pump 34
It is composed of an exhaust gas cleaning tower 35 with It is connected to the upper part of the secondary combustion furnace 23.
しかして、焼却炉22内に導入されたマイクロ
波は充填層24を形成するマイクロ波吸収材に選
択的に吸収されて炉内に高温状態が形成され、受
入槽1から定量フイーダ2により焼却炉22内に
供給された固体状又は液状の廃棄物中のPCBは、
高温のマイクロ波吸収材表面部で瞬時にして分解
し、燃焼する。すなわち、撹拌流動状態にある高
温のマイクロ波吸収材の表面に供給された廃棄物
が、即燃焼しながら炉全面に分散され、炉内は高
温で十分な酸化雰囲気に保たれるため、炉内全域
で良好な分解、燃焼が達せられる。 The microwaves introduced into the incinerator 22 are selectively absorbed by the microwave absorbing material forming the packed bed 24 and a high temperature state is formed in the incinerator. PCBs in solid or liquid waste supplied to
It instantly decomposes and burns on the surface of the high-temperature microwave absorber. In other words, the waste supplied to the surface of the high-temperature microwave absorbing material in a stirred and fluidized state is instantly combusted and dispersed over the entire surface of the furnace, and the inside of the furnace is maintained at high temperature and with a sufficient oxidizing atmosphere. Good decomposition and combustion can be achieved in the entire area.
焼却炉22で発生する排ガスは二次燃焼炉23
に導入され、マイクロ液を吸収して高温となつた
炉材及び/又は炉壁により加熱されて該排ガス中
に残留する可燃物の分解、燃焼が効率良く進行す
る。かくして、二次燃焼炉23からの排ガス中の
PCB濃度は痕跡値となる。 The exhaust gas generated in the incinerator 22 is transferred to the secondary combustion furnace 23.
The exhaust gas is introduced into the exhaust gas and is heated by the furnace material and/or the furnace wall, which absorbs the micro liquid and reaches a high temperature, so that the decomposition and combustion of combustibles remaining in the exhaust gas proceed efficiently. In this way, the exhaust gas from the secondary combustion furnace 23
PCB concentration is a trace value.
そして、二次燃焼炉23からの分解、燃焼後の
排ガスはオフガスフアン32により排ガス洗浄塔
35に送られ、該塔上方から散布される吸収液中
の吸収剤により洗浄され、廃棄物から生成した塩
素及び塩化水素が除去される。吸収液は吸収液タ
ンク33に補給され、吸収液循環ポンプ34によ
り循環使用される。 The exhaust gas after decomposition and combustion from the secondary combustion furnace 23 is sent to the exhaust gas cleaning tower 35 by an off-gas fan 32, where it is cleaned by the absorbent in the absorption liquid sprayed from above the tower, and the exhaust gas generated from the waste is Chlorine and hydrogen chloride are removed. The absorption liquid is supplied to the absorption liquid tank 33 and circulated by the absorption liquid circulation pump 34.
循環する吸収液の一部は廃液処理槽36におい
て処理され、有害ガスを洗浄除去されたガスは煙
突37から排出される。 A part of the circulating absorption liquid is treated in a waste liquid treatment tank 36, and the gas from which harmful gases have been removed is discharged from a chimney 37.
焼却炉22内における廃棄物の加熱温度つまり
炉壁温度(実際の運転では該炉壁温度を測定し制
御している)は好ましくは800〜1500℃、特に好
ましくは1000〜1400℃とするが、廃棄物の種類や
形状、後述の添加剤の種類等により異なる。例え
ば、廃棄物が殺虫剤の場合は比較的低い温度でも
よいが、PCBの場合は1000℃以上の高温が必要
である。また前記添加剤として後記する融剤や燃
焼促進剤を加えた場合は廃棄物の分解、燃焼が促
進されるので、比較的低い温度でよい。 The heating temperature of the waste in the incinerator 22, that is, the furnace wall temperature (in actual operation, the furnace wall temperature is measured and controlled) is preferably 800 to 1500°C, particularly preferably 1000 to 1400°C, It varies depending on the type and shape of waste, the type of additives described below, etc. For example, if the waste is pesticides, a relatively low temperature may be sufficient, but if the waste is PCBs, a high temperature of 1000°C or higher is required. Furthermore, when a fluxing agent or a combustion accelerator, which will be described later, is added as the additive, the decomposition and combustion of the waste is promoted, so a relatively low temperature is sufficient.
二次燃焼炉23内の温度は通常800〜1500℃と
するが、最適温度は焼却炉22と同様に廃棄物の
種類や炉の形状(滞留時間)などにより異なる。 The temperature in the secondary combustion furnace 23 is normally 800 to 1500°C, but the optimum temperature, like the incinerator 22, varies depending on the type of waste, the shape of the furnace (residence time), etc.
このように、本発明では焼却炉22(加熱炉)
と二次燃焼炉23とを組み合せて処理するので、
有機塩素系化合物を含む廃棄物の分解、燃焼を極
めて高効率で、かつ安定して行うことが出来る。 In this way, in the present invention, the incinerator 22 (heating furnace)
Since the processing is performed in combination with the secondary combustion furnace 23,
It is possible to decompose and burn waste containing organic chlorine compounds with extremely high efficiency and stability.
前記マイクロ波吸収材8の材質としては、マイ
クロ波を吸収して発熱するものであれば何でも良
く金属又は非金属の、酸化物又は炭化物が一般的
で、これらを任意に組わみ合わせて併用すること
もできる。具体例としては炭化ケイ素、酸化チタ
ンが実用的で好都合である。 The material of the microwave absorbing material 8 may be any material as long as it absorbs microwaves and generates heat, and metals or non-metals, oxides or carbides are generally used, and these may be used in any combination. You can also. As specific examples, silicon carbide and titanium oxide are practical and convenient.
また、マイクロ波吸収材の直径は、一般的には
直径5〜20mmとする。 Further, the diameter of the microwave absorbing material is generally 5 to 20 mm.
前記融剤としては水酸化アルカリ、炭酸アルカ
リ等の塩基性融剤、KHSO4、K2S2O7等の酸性融
剤、KNO3、PbOあるいは、Na2CO3とK2CO3の
混合物、Na2CO3とKNO3の混合物、Na2CO3と
MgOの混合物等、各種のものが適用できるが、
これらのうちNa2CO3、K2CO3、KOHのような
塩基性融剤が好ましく、また後処理、効率の観点
からはKOHが好ましい。これらを2種以上混合
して使用してもよい。これら融剤の添加量は
5W/W以上で用いられるが、経済性や効率の観
点から5〜50W/W%の範囲内で用いるのが好ま
しい。 Examples of the flux include basic fluxes such as alkali hydroxide and alkali carbonate, acidic fluxes such as KHSO 4 and K 2 S 2 O 7 , KNO 3 , PbO, or a mixture of Na 2 CO 3 and K 2 CO 3 . , a mixture of Na 2 CO 3 and KNO 3 , Na 2 CO 3 and
Various materials can be applied, such as mixtures of MgO,
Among these, basic fluxes such as Na 2 CO 3 , K 2 CO 3 and KOH are preferred, and KOH is preferred from the viewpoint of post-treatment and efficiency. Two or more of these may be used in combination. The amount of these fluxes added is
Although it is used at 5 W/W or more, it is preferably used within the range of 5 to 50 W/W% from the viewpoint of economy and efficiency.
一方、前記燃焼促進剤としては酸素、微粉炭及
び油が好ましい、酸素以外の燃焼促進剤の添加量
は10W/W%以上の範囲内の量で用いられるが、
経済性や効率の観点から10〜100W/W%の範囲
内で用いるのが好ましい。また酸素は、酸素含有
量25〜50%(容積)の酸素含有ガスとして炉中に
導入するのが一般的である。なお、酸素の供給方
法としては深冷分離法、収着法及び酸素富化膜法
であるが、コスト及び操作性から酸素富化膜法が
好ましい。 On the other hand, the combustion accelerator is preferably oxygen, pulverized coal, and oil, and the amount of the combustion accelerator other than oxygen is within the range of 10 W/W% or more,
From the viewpoint of economy and efficiency, it is preferable to use it within the range of 10 to 100 W/W%. Further, oxygen is generally introduced into the furnace as an oxygen-containing gas having an oxygen content of 25 to 50% (by volume). Methods for supplying oxygen include a cryogenic separation method, a sorption method, and an oxygen-enriched membrane method, and the oxygen-enriched membrane method is preferred from the viewpoint of cost and operability.
このような融剤や燃焼促進剤を添加することに
より分解、燃焼が促進され高効率の処理が出来る
し、融剤としてKOHのような水酸基を含有する
物質を添加した場合、マイクロ波がKOHの水酸
基に迅速に感応する特性を有するので、加熱速度
が大となるなど加熱効率が著しく向上する効果が
ある。 By adding such fluxing agents and combustion accelerators, decomposition and combustion are promoted and highly efficient processing is possible.If a substance containing hydroxyl groups such as KOH is added as a fluxing agent, microwaves can Since it has the property of rapidly responding to hydroxyl groups, it has the effect of significantly improving heating efficiency, such as increasing heating rate.
また、融剤や燃焼促進剤を用いる場合、予め被
処理物にこれらの添加剤を付着、吸収などさせて
おく前処理が出来るので、取扱いを簡便・安全に
行うことができる(有機塩素系化合物は、微量で
あつても猛毒なため取扱いが難しかつた)。 In addition, when using fluxing agents or combustion accelerators, it is possible to perform pre-treatment such as adhering and absorbing these additives to the object to be treated, which allows for easy and safe handling (organic chlorine compounds, etc.). It was difficult to handle because it was highly toxic even in small amounts).
次に、第1図に示す構造の廃棄物分解、燃焼装
置により行つた実験例について説明する。 Next, an example of an experiment conducted using a waste decomposition and combustion apparatus having the structure shown in FIG. 1 will be explained.
炉内底部に顆粒状の炭化ケイ素を充填した50
の焼却炉にマイクロ波を印加し、該充填層を撹拌
しつつ、かつ炉下部から空気を送気しながら該充
填層1200℃とし、また、炉壁材及び材の一部を
炭化ケイ素で構成した二次燃焼炉に同じくマイク
ロ波を印加してこれを1200℃に保持しておき、
PCBを10%含有する試料5.0gを前記充填層上部
に供給し、焼却炉で生成する排ガスを二次焼却炉
に導入し、出口排ガスw(第1図を参照)を分析
してPCB除去率を調べた。
50 filled with granular silicon carbide at the bottom of the furnace
Microwaves are applied to the incinerator to heat the packed bed to 1200°C while stirring the packed bed and blowing air from the bottom of the furnace, and the furnace wall material and part of the material are made of silicon carbide. Similarly, microwaves were applied to the secondary combustion furnace and maintained at 1200℃.
5.0 g of a sample containing 10% PCB was supplied to the top of the packed bed, the exhaust gas generated in the incinerator was introduced into the secondary incinerator, and the outlet exhaust gas w (see Figure 1) was analyzed to determine the PCB removal rate. I looked into it.
その結果、焼却炉及び二次燃焼炉全体のPCB
除去率は99.9999%であつた。 As a result, PCBs throughout the incinerator and secondary combustion furnace
The removal rate was 99.9999%.
本発明装置はマイクロ波を使用する焼却炉と、
同じくマイクロ波を使用する二次焼却炉とを組み
合わせて構成すると共に、前記焼却炉内低部に顆
粒状で耐火性のマイクロ波吸収材よりなる充填層
を形成すると共に該充填層内に撹拌機構を、該充
填層よりも下方に酸素含有ガス供給部材をそれぞ
れ配備したものであり、焼却炉内では顆粒状で高
温のマイクロ波吸収材を固体状又は液状の廃棄物
と共に撹拌して処理するようにしたから、炉内温
度が高度に均一となるうえ、前記吸収材と廃棄物
との接触も顕著に良好となり、有機塩素系化合物
を含む廃棄物の分解、燃焼処理を極めて円滑、安
定つ効率良く実施することができ、しかも二次燃
焼炉では焼却炉からの排ガス中に残留する可燃物
が効率良く確実に分解、燃焼されるので、二次燃
焼炉からの排ガス中の有機塩素系化合物濃度は痕
跡値となり該廃棄物の分解、燃焼による猛毒性物
質や未燃カーボン、炭化水素類、タール、一酸化
炭素、シアン等の生成が無くなり、二次公害及び
後処理の問題がないなどの効果が得られるもので
ある。
The device of the present invention includes an incinerator that uses microwaves,
It is configured in combination with a secondary incinerator that also uses microwaves, and a packed bed made of a granular, fire-resistant microwave absorbing material is formed in the lower part of the incinerator, and a stirring mechanism is installed in the packed bed. An oxygen-containing gas supply member is installed below the packed bed, and in the incinerator, granular high-temperature microwave absorbing material is stirred together with solid or liquid waste for treatment. As a result, the temperature inside the furnace becomes highly uniform, and the contact between the absorbent material and the waste is also significantly improved, making the decomposition and combustion of waste containing organic chlorine compounds extremely smooth, stable, and efficient. In addition, the secondary combustion furnace efficiently and reliably decomposes and burns the combustibles remaining in the exhaust gas from the incinerator, so the concentration of organochlorine compounds in the exhaust gas from the secondary combustion furnace can be reduced. is a trace value, and there is no production of highly toxic substances, unburned carbon, hydrocarbons, tar, carbon monoxide, cyanide, etc. due to decomposition and combustion of the waste, and there are no secondary pollution or post-treatment problems. is obtained.
第1図は、本発明の実施例を示すフローシート
である。
1……受入槽、2……定量フイーダ、11……
廃棄物受入・供給装置、21……廃棄物分解・燃
焼装置、22……焼却炉、23……二次燃焼炉、
24……充填層、25……回転駆動装置、26…
…撹拌羽根、27……送気フアン、28……マイ
クロ波発生装置、291,292……マイクロ波導
波管、31……廃ガス処理装置、32……オフガ
スフアン、33……吸収液タンク、34……吸収
液循環ポンプ、35……排ガス洗浄塔、36……
廃液処理槽、37……煙突。
FIG. 1 is a flow sheet showing an embodiment of the present invention. 1... Receiving tank, 2... Quantitative feeder, 11...
Waste reception/supply device, 21...Waste decomposition/combustion device, 22...Incinerator, 23...Secondary combustion furnace,
24... Filled bed, 25... Rotation drive device, 26...
... Stirring blade, 27 ... Air supply fan, 28 ... Microwave generator, 29 1 , 29 2 ... Microwave waveguide, 31 ... Waste gas treatment device, 32 ... Off-gas fan, 33 ... Absorption liquid Tank, 34... Absorbent circulation pump, 35... Exhaust gas cleaning tower, 36...
Waste liquid treatment tank, 37...chimney.
Claims (1)
む廃棄物を分解、燃焼する装置において、炉内底
部に顆粒状で耐火性のマイクロ波吸収材よりなる
充填層を形成すると共に該充填層内に撹拌機構
を、該充填層よりも下方に酸素含有ガス供給部材
をそれぞれ配備した焼却炉と、炉材及び/又は炉
壁の少なくとも一部が耐火性マイクロ波吸収材よ
り成る二次燃焼炉とを備え、これら焼却炉、二次
燃焼炉のそれぞれにマイクロ波導波管を介してマ
イクロ波発生装置を接続したことを特徴とする有
機塩素系化合物又は有機塩素系化合物を含む廃棄
物の分解・燃焼装置。 2 前記マイクロ波吸収材が金属の酸化物、金属
の炭化物、非金属の酸化物及び非金属の炭化物よ
りなる群から任意に一種類又は複数種類選択した
ものである特許請求の範囲第1項記載の分解・燃
焼装置。 3 前記マイクロ波吸収材が、炭化ケイ素及び/
又は酸化チタンである特許請求の範囲第2項記載
の分解・燃焼装置。[Scope of Claims] 1. In an apparatus for decomposing and burning organic chlorine compounds or waste containing organic chlorine compounds, a packed layer made of a granular fire-resistant microwave absorbing material is formed at the bottom of the furnace, and An incinerator comprising a stirring mechanism in the packed bed and an oxygen-containing gas supply member below the packed bed; An organic chlorine compound or waste containing an organic chlorine compound, characterized in that the incinerator and the secondary combustion furnace are each connected to a microwave generator via a microwave waveguide. decomposition and combustion equipment. 2. Claim 1, wherein the microwave absorbing material is one or more kinds arbitrarily selected from the group consisting of metal oxides, metal carbides, nonmetal oxides, and nonmetal carbides. decomposition and combustion equipment. 3 The microwave absorbing material is made of silicon carbide and/or
or titanium oxide, the decomposition/combustion device according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP997586A JPS62169913A (en) | 1986-01-22 | 1986-01-22 | Disposing method and device for organic chlorine series compound or waste containing organic chlorine series compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP997586A JPS62169913A (en) | 1986-01-22 | 1986-01-22 | Disposing method and device for organic chlorine series compound or waste containing organic chlorine series compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62169913A JPS62169913A (en) | 1987-07-27 |
JPH0250365B2 true JPH0250365B2 (en) | 1990-11-02 |
Family
ID=11734913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP997586A Granted JPS62169913A (en) | 1986-01-22 | 1986-01-22 | Disposing method and device for organic chlorine series compound or waste containing organic chlorine series compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62169913A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62182520A (en) * | 1986-02-06 | 1987-08-10 | Ebara Res Co Ltd | Disposal of organic chlorine family compound or waste containing organic chlorine family compound and its device |
JP2624267B2 (en) * | 1987-11-09 | 1997-06-25 | 中部電力株式会社 | Waste treatment equipment |
WO2014142114A1 (en) * | 2013-03-11 | 2014-09-18 | 有限会社明幸経営企画研究所 | Microwave type incineration method, and power generation device and recycling-based power generation system which utilize same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4867204A (en) * | 1971-12-17 | 1973-09-13 | ||
JPS55105188A (en) * | 1979-02-06 | 1980-08-12 | Mitsubishi Electric Corp | Microwave heating furnace |
JPS5672400A (en) * | 1979-11-16 | 1981-06-16 | Toyo Engineering Corp | Method and device for heating radioactive organic waste |
JPS61153308A (en) * | 1984-12-25 | 1986-07-12 | Ebara Corp | Incineration of waste ion exchange resin or the like effected by microwave |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58190303U (en) * | 1982-06-15 | 1983-12-17 | 株式会社日立ホームテック | High frequency heating device |
-
1986
- 1986-01-22 JP JP997586A patent/JPS62169913A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4867204A (en) * | 1971-12-17 | 1973-09-13 | ||
JPS55105188A (en) * | 1979-02-06 | 1980-08-12 | Mitsubishi Electric Corp | Microwave heating furnace |
JPS5672400A (en) * | 1979-11-16 | 1981-06-16 | Toyo Engineering Corp | Method and device for heating radioactive organic waste |
JPS61153308A (en) * | 1984-12-25 | 1986-07-12 | Ebara Corp | Incineration of waste ion exchange resin or the like effected by microwave |
Also Published As
Publication number | Publication date |
---|---|
JPS62169913A (en) | 1987-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4479443A (en) | Method and apparatus for thermal decomposition of stable compounds | |
US4582004A (en) | Electric arc heater process and apparatus for the decomposition of hazardous materials | |
JP2007529711A (en) | Method and apparatus for treating waste | |
US6234092B1 (en) | Thermal treatment of incombustible liquids | |
JPS61101232A (en) | Method and plant for cleaning waste gas | |
WO1982000509A1 (en) | A method and an apparatus for thermal decomposition of stable compounds | |
JPH0250365B2 (en) | ||
CN108006666B (en) | Organic waste gas treatment method | |
CN219976435U (en) | Medical waste treatment system of plasma fusion coupling incinerator | |
KR100210225B1 (en) | Trash burner | |
JP2005180881A (en) | Waste treatment device | |
JPH0532646B2 (en) | ||
CN211232880U (en) | High, low calorific value hazardous waste burns melting innocent treatment system in coordination | |
JP2948345B2 (en) | Thermal decomposition method of organic matter | |
CN217604123U (en) | Thermal oxidation furnace | |
CN105864776B (en) | Urgent temperature control method and device during animal pyrolysis charring | |
JP2948344B2 (en) | Thermal decomposition method of organic matter | |
KR100489224B1 (en) | A thermal treatment apparatus and its methods for medical waste and hazardous waste included heavy metal by plasma | |
CN115307157A (en) | Thermal oxidation furnace and thermal oxidation process | |
JPS63172815A (en) | Method and apparatus for processing flame retarding substances or wastes including the same | |
JP2005030608A (en) | Heating treatment installation with gas combustor | |
JPH0759970B2 (en) | CFC decomposition method | |
JP4017117B2 (en) | Depolluter | |
JPH04122419A (en) | Organic halide compound decomposing method and decomposing catalyst | |
KR980003174A (en) | Heat treatment method of liquid waste and its apparatus |