Nothing Special   »   [go: up one dir, main page]

JPH0232958Y2 - - Google Patents

Info

Publication number
JPH0232958Y2
JPH0232958Y2 JP11831285U JP11831285U JPH0232958Y2 JP H0232958 Y2 JPH0232958 Y2 JP H0232958Y2 JP 11831285 U JP11831285 U JP 11831285U JP 11831285 U JP11831285 U JP 11831285U JP H0232958 Y2 JPH0232958 Y2 JP H0232958Y2
Authority
JP
Japan
Prior art keywords
heat
heat pipe
liquefied gas
pipe type
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11831285U
Other languages
Japanese (ja)
Other versions
JPS6227297U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11831285U priority Critical patent/JPH0232958Y2/ja
Publication of JPS6227297U publication Critical patent/JPS6227297U/ja
Application granted granted Critical
Publication of JPH0232958Y2 publication Critical patent/JPH0232958Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は液化天然ガス(以下LNGと称する)
液化石油ガス、液体窒素、液体酸素等の液化ガス
を大気によつて加温し気化する装置に関するもの
である。
[Detailed explanation of the invention] (Industrial application field) This invention uses liquefied natural gas (hereinafter referred to as LNG)
The present invention relates to a device that heats and vaporizes liquefied gases such as liquefied petroleum gas, liquid nitrogen, and liquid oxygen using the atmosphere.

(従来の技術) LNG気化基地における気化装置には、アルミ
製フインチユーブを垂直に設けて海水と接触する
方式、水中燃焼によつて加熱された温水中にコイ
ルによつてLNGを流す方式、あるいはプロパン
等の中間媒体を用いて間接的に気化させる方式な
どがあるが、これらは氷結の融解や燃焼装置、更
には中間媒体の使用などに伴い装置が複雑となつ
ている。
(Prior technology) The vaporizers at LNG vaporization terminals include a method in which an aluminum finch tube is installed vertically and makes contact with seawater, a method in which LNG is passed through a coil through hot water heated by underwater combustion, or a method in which LNG is passed through a coil through hot water heated by underwater combustion. There are methods for indirect vaporization using an intermediate medium such as, but these systems require complicated equipment such as melting of ice, combustion equipment, and the use of intermediate media.

他の先行技術としては実開昭59−175798公報
に、ヒートパイプを用い空気流によつて加熱する
液化ガスの蒸発兼用熱回収装置が記載されてい
る。即ち、液化ガスを導入する気化タンク内に周
壁を貫通してヒートパイプ凝縮部を挿入し、蒸発
部に向けて空気を流通させ液化ガスの気化を行つ
ている。
As another prior art, Japanese Utility Model Application Publication No. 59-175798 describes a heat recovery device for evaporation of liquefied gas which uses a heat pipe and is heated by an air flow. That is, a heat pipe condensing section is inserted through the peripheral wall into a vaporization tank into which liquefied gas is introduced, and air is circulated toward an evaporation section to vaporize the liquefied gas.

また海岸から離れた都市のLNG気化基地用と
して縦フインチユーブを使用して大気と熱交換す
る空温気化装置があり、伝熱面積を或る程度の広
さに抑えた経済的規模の装置が実用に供されてい
る。
In addition, there is an air temperature vaporization device that exchanges heat with the atmosphere using a vertical finch tube for LNG vaporization terminals in cities far from the coast, and an economical-scale device that suppresses the heat transfer area to a certain extent has been put into practical use. It is served to.

(考案が解決しようとする問題点) しかし前記のような先行技術の装置は、大気中
の水分の氷結による伝熱量の低下が原因となつ
て、気化運転を中断し、散水による融氷作業を余
儀なくされ、ガス化運転時間の短縮及びこれに伴
う作業能率の低下など問題が多かつた。
(Problem to be solved by the invention) However, with the prior art device as described above, the reduction in heat transfer due to freezing of water in the atmosphere causes the vaporization operation to be interrupted and ice melting operations to be performed by water sprinkling. This resulted in many problems, such as a shortened gasification operation time and a corresponding decline in work efficiency.

ヒートパイプの原理において、加熱流体側の伝
熱面積が被加熱流体側の伝熱面積より大きい場合
は、内部にに封入されている作動液の温度はこの
平均温度より高く加熱流体側の温度に、より近く
なる。例えば液化ガスを気化させる場合、熱源と
しては通常水または空気が用いられるが、ヒート
パイプ受熱部の長さが放熱部の長さより大きい
と、作動液の温度は、水または空気の温度に、よ
り近くなるので凍結がし難くなる。
In the principle of a heat pipe, if the heat transfer area on the heating fluid side is larger than the heat transfer area on the heated fluid side, the temperature of the working fluid sealed inside will be higher than this average temperature and the temperature on the heating fluid side will be higher than the average temperature. , become closer. For example, when vaporizing liquefied gas, water or air is usually used as the heat source, but if the length of the heat receiving part of the heat pipe is longer than the length of the heat radiating part, the temperature of the working fluid will be closer to that of water or air. The closer it gets, the harder it will be to freeze.

(問題点を解決するための手段) 上記の原理を踏まえて本考案は、ヒートパイプ
放熱部を隙間を融てて液化ガス出入口のある外管
で覆い、該外管を複数本直列に連絡してヒートパ
イプ式熱交換器を形成し、受熱部とともに大気中
に露出設置し、外管内には液化ガスを流して気化
させる際に、上流側から下流側にかけて各ヒート
パイプの受熱面積の放熱面積に対する比率が次第
に減少するように構成されているヒートパイプ式
液化ガス空温気化装置としたので、この構成によ
り液化ガスの温度がより低い温度域を受け持つ上
流側のヒートパイプ式熱交換器ほど受熱側の面積
の割合が大きくなつているので、上流側のヒート
パイプ作動液の温度は、より加熱流体温度に近づ
くのでヒートパイプ受熱側に大気中の水分が凍結
する時間を遅らせ、ひいては気化作業時間を延長
できる。
(Means for solving the problem) Based on the above principle, the present invention covers the heat dissipation part of the heat pipe with an outer tube with a liquefied gas inlet and outlet by melting the gap, and connects multiple outer tubes in series. A heat pipe type heat exchanger is formed, and the heat receiving part is exposed to the atmosphere, and when liquefied gas is passed through the outer tube and vaporized, the heat radiation area of the heat receiving area of each heat pipe is increased from the upstream side to the downstream side. Since the heat pipe type liquefied gas air temperature vaporization device is configured so that the ratio of the liquefied gas temperature to As the ratio of the area on the side increases, the temperature of the heat pipe working fluid on the upstream side approaches the heating fluid temperature, which delays the time for atmospheric moisture to freeze on the heat pipe heat receiving side, which in turn shortens the vaporization work time. can be extended.

(実施例) ヒートパイプ1は通常のように受熱部2と放熱
部3を有し、両端は封止されていて内部に例えば
フロンR−22のような作動液が封入されており、
放熱部3は外管4で被覆され、同一直径のヒート
パイプを例えば2本1組で形成したヒートパイプ
式熱交換器5を3組直列に連絡して大気に露出設
置し、入口6よりLNGを流して気化させ、気化
ガスは出口7より取出す。
(Example) The heat pipe 1 has a heat receiving part 2 and a heat radiating part 3 as usual, both ends are sealed, and a working fluid such as Freon R-22 is sealed inside.
The heat dissipation section 3 is covered with an outer tube 4, and three sets of heat pipe type heat exchangers 5 each formed of, for example, two heat pipes of the same diameter are connected in series and exposed to the atmosphere, and LNG is supplied from the inlet 6. The vaporized gas is taken out from the outlet 7.

このヒートパイプ式熱交換器5において、
LNGを導入した上流側の2組が例えば−165℃の
LNGを専ら蒸発させ、下流側の残りの1組は未
だ低温の気化ガスを過熱し、出口7から約20℃の
気化ガスが取出される。ヒートパイプ式熱交換器
5の数は気化容量によつて適宜の数とすることは
勿論である。
In this heat pipe type heat exchanger 5,
For example, the two groups on the upstream side where LNG has been introduced are at -165℃.
The LNG is exclusively evaporated, and the remaining set on the downstream side superheats the vaporized gas, which is still at a low temperature, and the vaporized gas at about 20° C. is taken out from the outlet 7. Of course, the number of heat pipe type heat exchangers 5 is determined as appropriate depending on the vaporization capacity.

ここで、直径が同一の各ヒートパイプは第1図
のように受熱部2の長さL1,L2,L3は同一であ
り、放熱部3の長さl1,l2,l3はLNGの上流側ほ
ど短く形成している。即ちLNGの蒸発側から気
化ガスの過熱側に至るに従つて、ヒートパイプご
との受熱部2の放熱部3に対する伝熱面積の割合
は小さく形成されている。
Here, each heat pipe with the same diameter has the same length L 1 , L 2 , L 3 of the heat receiving part 2 and the length L 1 , l 2 , l 3 of the heat radiating part 3 as shown in FIG. is formed shorter toward the upstream side of the LNG. That is, the ratio of the heat transfer area of the heat receiving section 2 to the heat dissipating section 3 of each heat pipe is formed to become smaller from the LNG evaporation side to the vaporized gas superheating side.

従つてヒートパイプの原理からみて、LNGの
蒸発側ほどヒートパイプ作動液の温度はLNGと
空気の平均温度より更に空気温度に近くなるので
凍結し難くなる。
Therefore, from the perspective of the heat pipe principle, the closer the LNG is to the evaporation side, the closer the temperature of the heat pipe working fluid is to the air temperature than the average temperature of the LNG and air, making it more difficult to freeze.

第2図に示す他の実施例は、同一直径の各ヒー
トパイプは同一長さの場合であつて、受熱部2の
長さは外管4を流れるLNGの上流側ほど長く、
また放熱部3の長さは外管4を流れるLNGの下
流側ほど長く形成されており、ここでも各ヒート
パイプごとの受熱部2の放熱部3に対する伝熱面
積の割合は、外管に導入するLNGの上流側ほど
大きく形成されている。
In another embodiment shown in FIG. 2, each heat pipe having the same diameter has the same length, and the length of the heat receiving part 2 is longer as the LNG flows through the outer tube 4 upstream.
Furthermore, the length of the heat dissipation section 3 is formed to be longer toward the downstream side of the LNG flowing through the outer tube 4, and here, too, the ratio of the heat transfer area of the heat receiving section 2 of each heat pipe to the heat dissipation section 3 is determined by the length of the heat transfer section 3 introduced into the outer tube. The more upstream the LNG is, the larger it is formed.

このような受熱部2と放熱部3の伝熱面積の関
係はヒートパイプの太さ、植設するフインの寸
法、間隔等を調節することによつても達成できる
ことは勿論である。また液化ガスはLNGに限ら
ず、液体窒素、液体酸素、液化プロパン、液化ブ
タン等でもよい。
Of course, such a relationship between the heat transfer areas of the heat receiving part 2 and the heat radiating part 3 can be achieved by adjusting the thickness of the heat pipe, the dimensions of the installed fins, the spacing, etc. Furthermore, the liquefied gas is not limited to LNG, but may also be liquid nitrogen, liquid oxygen, liquefied propane, liquefied butane, or the like.

(効果) 本考案のヒートパイプ式液化ガス空温気化装置
は、ヒートパイプの放熱部を隙間を隔てて外管で
覆い、この外管を順次連絡して液化ガスを導入
し、上流側で蒸発させ、下流側で気化ガスを過熱
するヒートパイプ式熱交換器であつて、外管に導
入される液化ガスの上流から下流にかけて、各ヒ
ートパイプの受熱部面積の放熱部面積に対する比
率が次第に減少するように構成したから、ヒート
パイプ内の作動液の温度は大気温度に近くなるの
で凍結し難くなり、従来経済的規模の液化ガス気
化装置における氷着を散水によつて融氷すると云
つた作業は、その実施時期の間隔が長くなり、気
化作業の能率向上に効果がある。
(Effects) The heat pipe type liquefied gas air temperature vaporization device of the present invention covers the heat dissipation part of the heat pipe with an outer tube with a gap in between, and connects the outer tubes in sequence to introduce liquefied gas and evaporate it on the upstream side. This is a heat pipe type heat exchanger that superheats vaporized gas on the downstream side, and the ratio of the heat receiving area to the heat radiating area of each heat pipe gradually decreases from upstream to downstream of the liquefied gas introduced into the outer tube. Because the temperature of the working fluid in the heat pipe is close to the atmospheric temperature, it is less likely to freeze, and the work of melting ice with water sprinkling in conventional economic scale liquefied gas vaporizers is now possible. is effective in improving the efficiency of vaporization work by increasing the interval between implementation times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれ本考案の異なる実施
例における断面説明図である。 1……ヒートパイプ、2……受熱部、3……放
熱部、4……外管、5……ヒートパイプ式熱交換
器、6……入口、7……出口、L1,L2,L3……
受熱部の長さ、l1,l2,l3……放熱部の長さ。
1 and 2 are cross-sectional explanatory views of different embodiments of the present invention, respectively. 1... heat pipe, 2... heat receiving part, 3... heat radiating part, 4... outer tube, 5... heat pipe type heat exchanger, 6... inlet, 7... outlet, L 1 , L 2 , L3 ...
Length of heat receiving part, l 1 , l 2 , l 3 ... Length of heat radiating part.

Claims (1)

【実用新案登録請求の範囲】 (1) 放熱部を覆い隙間を隔てて設けられた外管を
順次連結した複数のヒートパイプからなるヒー
トパイプ式熱交換器であつて、前記外管に導入
される液化ガスの上流から下流にかけて各ヒー
トパイプの受熱部面積の放熱部面積に対する比
率が次第に減少するように構成されているヒー
トパイプ式液化ガス空温気化装置。 (2) 各ヒートパイプは直径が等しくかつ受熱部の
長が等しい実用新案登録請求の範囲第1項記載
のヒートパイプ式液化ガス空温気化装置。 (3) 各ヒートパイプは直径が等しくかつ全長が同
一である実用新案登録請求の範囲第1項記載の
ヒートパイプ式液化ガス空温気化装置。 (4) 各ヒートパイプは直径が等しくかつフインを
有し、フインの高さ、間隔が異なる実用新案登
録請求の範囲第1項記載のヒートパイプ式液化
ガス空温気化装置。
[Claims for Utility Model Registration] (1) A heat pipe type heat exchanger consisting of a plurality of heat pipes sequentially connecting outer pipes that cover a heat radiating part and are provided with a gap between them, the heat pipes being introduced into the outer pipes. A heat pipe type liquefied gas air temperature vaporization device configured such that the ratio of the heat receiving part area to the heat radiating part area of each heat pipe gradually decreases from upstream to downstream of the liquefied gas. (2) The heat pipe type liquefied gas air temperature vaporization device according to claim 1, wherein each heat pipe has the same diameter and the same length of the heat receiving part. (3) The heat pipe type liquefied gas air temperature vaporization device according to claim 1, wherein each heat pipe has the same diameter and the same overall length. (4) The heat pipe type liquefied gas air temperature vaporization device according to claim 1, wherein each heat pipe has the same diameter and has fins, and the fins have different heights and intervals.
JP11831285U 1985-07-31 1985-07-31 Expired JPH0232958Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11831285U JPH0232958Y2 (en) 1985-07-31 1985-07-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11831285U JPH0232958Y2 (en) 1985-07-31 1985-07-31

Publications (2)

Publication Number Publication Date
JPS6227297U JPS6227297U (en) 1987-02-19
JPH0232958Y2 true JPH0232958Y2 (en) 1990-09-05

Family

ID=31004648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11831285U Expired JPH0232958Y2 (en) 1985-07-31 1985-07-31

Country Status (1)

Country Link
JP (1) JPH0232958Y2 (en)

Also Published As

Publication number Publication date
JPS6227297U (en) 1987-02-19

Similar Documents

Publication Publication Date Title
JP3946398B2 (en) Intermediate medium type vaporizer and method of supplying natural gas using the vaporizer
JP4474283B2 (en) System and method for vaporizing liquefied natural gas
KR940009500A (en) Ignition method and mechanism of gas turbine for liquefied natural gas
JP2001182895A (en) Air-temperature and hot-water combination vaporizer and air-temperature and hot-water combination gas manufacturing plant
JP3037073B2 (en) Cryogenic liquid vaporizer
JPH0232958Y2 (en)
US6006998A (en) Apparatus for heating a building using a heat pipe
JP2668484B2 (en) Liquefied natural gas vaporizer
US20040261395A1 (en) Reliable LNG vaporizer
JPH0232959Y2 (en)
JPS59166799A (en) Evaporator for liquefied natural gas
JPH0416067Y2 (en)
JPH0741268U (en) Open rack type liquefied low temperature gas vaporizer heat transfer tube
JPS6124634B2 (en)
JP3358845B2 (en) Liquefied natural gas vaporizer using cold storage heat
JP2001304494A (en) Low-temperature liquefied gas carburettor and heat exchanger
JPS5824077Y2 (en) liquefied natural gas evaporation equipment
JPH102616A (en) Evaporation block for heat storage heat pipe-type hot water supply device
JP2684309B2 (en) Liquefied natural gas vaporizer
JPS5821195B2 (en) Open type sprinkler type evaporator
JPS5818571Y2 (en) Closed heating device
JPS5924317B2 (en) liquefied natural gas vaporizer
JPH04131597A (en) Hot air-hot water combined carburetor device
JPS62171596A (en) Vaporizing method for liquefied gas
JP2005003194A (en) Air temperature type liquefied gas vaporizer