JPH0416067Y2 - - Google Patents
Info
- Publication number
- JPH0416067Y2 JPH0416067Y2 JP8498985U JP8498985U JPH0416067Y2 JP H0416067 Y2 JPH0416067 Y2 JP H0416067Y2 JP 8498985 U JP8498985 U JP 8498985U JP 8498985 U JP8498985 U JP 8498985U JP H0416067 Y2 JPH0416067 Y2 JP H0416067Y2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- fins
- casing
- liquefied gas
- heat pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000008016 vaporization Effects 0.000 claims description 17
- 238000009834 vaporization Methods 0.000 claims description 16
- 239000006200 vaporizer Substances 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 19
- 239000003949 liquefied natural gas Substances 0.000 description 12
- 230000017525 heat dissipation Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 241000287227 Fringillidae Species 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
【考案の詳細な説明】
(産業上の利用分野)
本考案は液化天然ガス(以下LNGと称する)、
液化石油ガス、液体窒素、液体酸素等の液化ガス
を大気によつて気化する装置に関するものであ
る。[Detailed description of the invention] (Industrial application field) This invention is based on liquefied natural gas (hereinafter referred to as LNG),
The present invention relates to an apparatus for vaporizing liquefied gases such as liquefied petroleum gas, liquid nitrogen, and liquid oxygen using the atmosphere.
(従来の技術)
LNG気化基地における気化装置にはアルミ製
フインチユーブを垂直に設けて海水と接触する方
式、水中燃焼で加熱された温水中にコイルによつ
てLNGを流す方式、あるいはプロパン等の中間
媒体を用いて間接的に気化させる方式などがある
が、氷結や燃焼装置、更には中間媒体の使用に伴
い装置は複雑となつている。(Prior technology) The vaporization equipment at LNG vaporization terminals includes a method in which an aluminum finch tube is installed vertically and contacts seawater, a method in which LNG is passed through a coil through hot water heated by underwater combustion, or an intermediate method such as propane. There are methods that indirectly vaporize using a medium, but these devices are becoming more complex due to the use of icing, combustion equipment, and intermediate media.
また海岸から離れた都市のLNG気化基地用と
して縦フインチユーブを使用して大気と熱交換す
る空温気化装置もあるが、伝熱面積を或る程度の
広さに抑えた経済的規模の装置において、通常の
気化運転の際は、大気による加熱量が不足してフ
インチユーブに大気中の水分が氷結し、同装置で
は約4時間程度で運転を止め、散水によつて解氷
しなければならず作業能率に影響を与えている。 There are also air-temperature vaporizers that use vertical finch tubes to exchange heat with the atmosphere for LNG vaporization terminals in cities far from the coast, but these are economically-scale devices that keep the heat transfer area to a certain level. During normal vaporization operation, moisture in the atmosphere freezes on the finch tube due to insufficient heating by the atmosphere, and the device has to stop operating after about 4 hours and thaw the ice by sprinkling water. It is affecting work efficiency.
他の先行技術としては実開昭59−175798号公報
に、ヒートパイプを用い、空気流によつて加熱す
る液化ガスの蒸発兼用熱回収装置が記載されてい
る。即ち液化ガスを導入する気化用タンク内に周
壁を貫通してヒートパイプ凝縮部を挿入し、蒸発
部に向けて空気を流通させ液化ガスの気化を行つ
ている。 As another prior art, Japanese Utility Model Application Publication No. 59-175798 describes a heat recovery device for evaporation of liquefied gas which uses a heat pipe and is heated by an air flow. That is, a heat pipe condensing section is inserted through the peripheral wall into a vaporization tank into which liquefied gas is introduced, and air is circulated toward an evaporation section to vaporize the liquefied gas.
(考案が解決しようとする問題点)
しかし前記実開昭9−175798号公報記載の装置
は、大気温と蒸発部の温度差のみが気化用タンク
に内蔵されているヒートパイプ凝縮部を介して液
化ガスの蒸発に利用されているだけで、該気化用
タンクの内部の低温と温度の高い外気との温度差
には全く考慮が払われず、この温度差も液化ガス
の蒸発に利用すれば熱効率は一層増加でき、この
ように従来装置は熱効率の点で問題があり、また
気化用タンクの直径方向にヒートパイプ凝縮部が
挿入されているため、該タンク内はデツドスペー
スが多くなるなどの欠点があり、更に大気中の水
分の氷結による伝熱量の低下が原因となつて運転
を停止し、散水による融氷作業を余儀なくされ、
ガス化運転時間の短縮及びこれに伴う作業能率の
低下など多くの問題がある。(Problem to be solved by the invention) However, in the device described in the above-mentioned Japanese Utility Model Application No. 9-175798, only the temperature difference between the atmospheric temperature and the evaporation section is transmitted through the heat pipe condensing section built in the vaporization tank. It is only used for evaporation of liquefied gas, and no consideration is given to the temperature difference between the low temperature inside the vaporization tank and the high temperature outside air.If this temperature difference is also used for evaporation of liquefied gas, thermal efficiency will be improved. As described above, conventional devices have problems in terms of thermal efficiency, and because the heat pipe condensing part is inserted in the diametrical direction of the vaporization tank, there are disadvantages such as a large amount of dead space inside the tank. Furthermore, due to the reduction in heat transfer due to the freezing of moisture in the atmosphere, operations were halted and ice melting operations were forced by water spraying.
There are many problems such as a shortened gasification operation time and a corresponding decrease in work efficiency.
(問題を解決するための手段)
上記に鑑み本考案は、先行技術における気化用
タンクの外部の温度の高い大気を、該タンク内の
低温に保たれている液化ガスの蒸発に利用するた
め、該タンクの表面積をフインを用いて拡大し
て、大気温の液化ガスへの伝熱を積極的に増大
し、かつデツドスペースを無くするためケーシン
グとヒートパイプを二重管構造とし、伝熱量の増
加に伴い氷結量を減少して運転時間の延長を計
り、作業能率の向上を企図したものである。(Means for solving the problem) In view of the above, the present invention utilizes the high temperature atmosphere outside the vaporization tank in the prior art to evaporate the liquefied gas kept at a low temperature inside the tank. The surface area of the tank is expanded using fins to actively increase heat transfer to the liquefied gas at ambient temperature, and the casing and heat pipe are made into a double tube structure to eliminate dead space, increasing the amount of heat transfer. The aim is to reduce the amount of ice formed, extend operating time, and improve work efficiency.
(実施例)
第1、第2、第3図は本考案の一実施例であつ
て、ヒートパイプ1は例えば竪形に配置され、通
常のように上下両端2,2′が封止されて内部に
フロンR−22のような作動液が封入されてお
り、作動液を凝縮させる放熱部3は裸管状で、ケ
ーシング4の底板5を貫通してケーシング内に空
隙6を隔てて収容されていて、該ケーシング4は
液化ガス入口7と出口8を備え、さらに外方に縦
フイン9が植設されて大気へ露出配置された構成
となつている。このケーシング4はヒートパイプ
1とはデツドスペースを無くする目的で二重管構
造となるよう円筒形が好ましく、またヒートパイ
プ放熱部3の外面に多数の溝を設ければ伝熱効果
は増大する。(Embodiment) Figures 1, 2, and 3 show an embodiment of the present invention, in which a heat pipe 1 is arranged, for example, in a vertical shape, and both upper and lower ends 2, 2' are sealed as usual. A working fluid such as Freon R-22 is sealed inside, and a heat dissipating section 3 for condensing the working fluid is in the shape of a bare tube and is housed in the casing through a bottom plate 5 of the casing 4 with a gap 6 in between. The casing 4 is provided with a liquefied gas inlet 7 and an outlet 8, and further has vertical fins 9 installed on the outside and exposed to the atmosphere. The casing 4 is preferably cylindrical so as to form a double pipe structure with the heat pipe 1 in order to eliminate dead space, and if a large number of grooves are provided on the outer surface of the heat pipe heat dissipation section 3, the heat transfer effect will be increased.
ヒートパイプ1の他端の受熱部10は縦フイン9
が植設されていて、大気中に露出され、下端2′
が据付台11の孔12に嵌入支承されており、上
方のケーシング4はスペーサー13に係止されて
いてその位置を保つている。The heat receiving part 10 at the other end of the heat pipe 1 has vertical fins 9
is planted, exposed to the atmosphere, and the lower end 2'
is fitted and supported in a hole 12 of a mounting base 11, and the upper casing 4 is retained by a spacer 13 to maintain its position.
上記のヒートパイプ式液化ガス空温装置は気化
容量に応じて適宜複数本直列に連結するが、この
場合、湾曲管14を用いて2本一対として、連絡
管15によつて下流側のケーシングと連結すれば
配管は簡単となり、しかもこの湾曲管14が液化
ガスの気化に関与できる。 A plurality of the heat pipe type liquefied gas air heating devices described above are connected in series as appropriate depending on the vaporization capacity, but in this case, they are connected as a pair using the curved pipe 14 and connected to the downstream casing via the connecting pipe 15. If they are connected, the piping becomes simple, and moreover, this curved pipe 14 can participate in the vaporization of the liquefied gas.
第4図は他の実施例であつて、ヒートパイプ式
液化ガス空温気化装置は水平方向に、しかも管内
作動液が流れやすいようやや傾斜して設け、複数
本上方に積重ねた構成であり、環状フイン16が
設けられている。 FIG. 4 shows another embodiment, in which the heat pipe type liquefied gas air temperature vaporization device is installed horizontally and slightly inclined to facilitate the flow of the working fluid in the pipes, and has a configuration in which a plurality of heat pipes are stacked upward. An annular fin 16 is provided.
(作用)
上記の構成を有するヒートパイプ式液化ガス空
温気化装置において、入口7から導入された低温
のLNGは、大気に露出しているケーシング4の
縦フイン9により大気温との温度差によつて
LNGは外側より加熱され、一方、ヒートパイプ
放熱部3は管外面に接触するLNGとの熱交換に
よる作動液の凝縮潜熱を放出してLNGを内側か
ら加熱し、結局ケーシング内のLNGは内外両側
より加熱される。(Function) In the heat pipe type liquefied gas air temperature vaporizer having the above configuration, the low-temperature LNG introduced from the inlet 7 is heated to a temperature difference from the atmospheric temperature by the vertical fins 9 of the casing 4 exposed to the atmosphere. Sideways
The LNG is heated from the outside, while the heat pipe heat dissipation section 3 releases the latent heat of condensation of the working fluid through heat exchange with the LNG in contact with the outer surface of the tube, heating the LNG from the inside. more heated.
ヒートパイプのフイン付受熱部10で自然通風
により縦フイン9を介して加熱された作動液はパ
イプ内で蒸発し、発生蒸気は放熱部3へ搬送さ
れ、前述のとおり放熱部で凝縮したのち再び受熱
部10へ還流される。 The working fluid heated through the vertical fins 9 by natural ventilation in the finned heat receiving section 10 of the heat pipe is evaporated in the pipe, and the generated steam is conveyed to the heat radiating section 3, where it is condensed as described above and then evaporated again. It is returned to the heat receiving section 10.
このようにして内外両側からの伝熱によつて加
熱されたLNGは、湾曲管14を経て対をなす隣
接する空温気化装置に入つて加熱されたのち連絡
管15を通つて順次流下するが、導入するLNG
の容量によつて異なるが、管群の作動は、導入側
では専らLNGの加熱、中間管群では主に気化、
後段では気化ガスの加熱となり、最終出口17よ
りは通常の使用温度、例えば約20°C程度となつて
需要先へ供給される。ヒートパイプ式液化ガス空
温気化装置は気化容量に応じてケーシングのフイ
ンの大きさ、数量あるいはヒートパイプ受熱部の
長さ、フインの数等任意に選定できることは勿論
であり、空気流の抵抗を考慮してヒートパイプを
堅形に配置するときはフインは縦形とし、水平配
置の場合はフインは環状のものが好ましい。また
液化ガスはLNGに限らず、液体窒素、液体酸素、
液化プロパン、液化ブタン等に広く利用できる。 The LNG heated by heat transfer from both the inside and outside passes through the curved pipe 14 and enters a pair of adjacent air temperature vaporizers, where it is heated and then sequentially flows down through the connecting pipe 15. , LNG to be introduced
Although the operation of the tube group depends on the capacity of
In the latter stage, the vaporized gas is heated, and from the final outlet 17 it is supplied to the consumer at the normal operating temperature, for example, about 20°C. Of course, the heat pipe type liquefied gas air temperature vaporizer can be arbitrarily selected according to the vaporization capacity, such as the size and number of fins of the casing, the length of the heat pipe heat receiving part, and the number of fins. For this reason, when the heat pipe is arranged in a rigid manner, the fins are preferably vertical, and when the heat pipe is arranged horizontally, the fins are preferably annular. In addition, liquefied gas is not limited to LNG, but also liquid nitrogen, liquid oxygen,
Can be widely used for liquefied propane, liquefied butane, etc.
(効果)
本考案においてはヒートパイプは、その放熱部
を隙間を隔ててフイン付ケーシングで覆うととも
に受熱部にはフインを植設し、該フイン付ケーシ
ング及び該フイン付受熱部を大気へ露出配置した
から、ケーシング内に導入される液化ガスは、外
側からはケーシング壁面を介し、内側からはヒー
トパイプ放熱部の管壁を介して、内外両側より加
熱されることとなり、従来の単なる内側よりの加
熱に比べてコンパクトな装置にかかわらず約2倍
の伝熱面積となり、熱伝達係数は約3.75倍にな
り、またヒートパイプ放熱部の外面に多数の溝を
設ければ熱伝達係数はさらに約1.5〜2.0倍増加で
きる。(Effect) In the present invention, the heat pipe has its heat dissipation part covered with a casing with fins with a gap in between, and fins are planted in the heat receiving part, and the casing with fins and the heat receiving part with fins are exposed to the atmosphere. Therefore, the liquefied gas introduced into the casing is heated from the outside through the casing wall surface and from the inside through the tube wall of the heat pipe heat dissipation section, and is heated from both the inside and outside sides. Compared to heating, although the device is more compact, the heat transfer area is approximately twice as large, and the heat transfer coefficient is approximately 3.75 times higher.If many grooves are provided on the outer surface of the heat pipe heat dissipation section, the heat transfer coefficient is further increased by approximately 3.75 times. It can be increased by 1.5-2.0 times.
従つて従来内側よりのみ加熱した場合、加熱熱
量が不足してヒートパイプ放熱部を収容している
気化用タンクばかりでなく受熱部のフインに大気
中の水分が氷結し、伝熱を著しく阻害し、運転中
止、散水による融氷作業等の煩雑な作業をしばし
ば要求されたが、その作業回数は減少でき、気化
運転時間を倍増でき能率は向上する。 Therefore, conventionally, when heating only from the inside, the amount of heating heat is insufficient, and moisture in the atmosphere freezes not only in the vaporization tank that houses the heat pipe heat dissipation section but also on the fins of the heat receiving section, significantly inhibiting heat transfer. Although complicated operations such as stopping operations and melting ice by sprinkling water are often required, the number of operations can be reduced, the vaporization operation time can be doubled, and efficiency is improved.
また前記隙間は、狭小ほど液化ガスの流速は大
となつて熱伝達は良好となるから、図示のような
ケーシングとヒートパイプ放熱部を二重管構造と
すれば狭小な隙間を形成し易く、しかも先行技術
に見られるようなデツドスペースが無くなつて、
液化ガスの滞留によるフイン外側への水分の氷結
は緩和されるなどその効果は多大である。 In addition, the narrower the gap, the higher the flow rate of the liquefied gas and the better the heat transfer, so if the casing and heat pipe heat dissipation part have a double pipe structure as shown in the figure, it is easier to form a narrow gap. Moreover, there is no dead space as seen in the prior art,
The effects are significant, such as alleviating the freezing of moisture on the outside of the fins due to the accumulation of liquefied gas.
図は本考案の実施例を示し、第1図は部分的切
欠き側面図、第2図、第3図はそれぞれ第1図の
−線及び−線拡大断面図、第4図は他の
実施例における側面図である。
1……ヒートパイプ、2,2′……両端、3…
…放熱部、4……ケーシング、5……底板、6…
…空隙、7……入口、8……出口、9……縦フイ
ン、10……受熱部、11……据着台、12……
孔、13……スペーサー、14……湾曲管、15
……連絡管、16……環状フイン、17……最終
出口。
The figures show an embodiment of the present invention, in which Fig. 1 is a partially cutaway side view, Figs. 2 and 3 are enlarged cross-sectional views taken along lines - and -, respectively, of Fig. 1, and Fig. 4 shows another embodiment. FIG. 3 is a side view in an example. 1... Heat pipe, 2, 2'... Both ends, 3...
...Heat radiation part, 4...Casing, 5...Bottom plate, 6...
...Gap, 7...Inlet, 8...Outlet, 9...Vertical fin, 10...Heat receiving part, 11...Mounting stand, 12...
Hole, 13... Spacer, 14... Curved pipe, 15
...Communication pipe, 16...Annular fin, 17...Final exit.
Claims (1)
イン付ケーシングで覆うとともに受熱部にはフ
インを植設し、該フイン付ケーシング及び該フ
イン付受熱部を大気に露出配置して、ケーシン
グ隙間に導入した液化ガスをフイン付ケーシン
グ及び放熱部によつて内外両側から加温気化さ
せてなるヒートパイプ式液化ガス空温気化装
置。 (2) 複数のヒートパイプに各々取り付けたケーシ
ングを一本の流路を形成するように先端と根元
で順次連通してなる実用新案登録請求の範囲第
1項記載のヒートパイプ式液化ガス空温気化装
置。[Scope of Claim for Utility Model Registration] (1) A heat pipe has a heat dissipating part covered with a casing with fins with a gap in between, and fins are planted in the heat receiving part, and the casing with fins and the heat receiving part with fins are exposed to the atmosphere. A heat pipe type liquefied gas air temperature vaporization device which heats and vaporizes the liquefied gas introduced into the casing gap from both the inside and outside by the casing with fins and the heat radiation part. (2) The heat pipe type liquefied gas air temperature according to claim 1, which is a utility model registered claim, in which casings each attached to a plurality of heat pipes are successively communicated at the tips and bases so as to form one flow path. vaporizer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8498985U JPH0416067Y2 (en) | 1985-06-05 | 1985-06-05 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8498985U JPH0416067Y2 (en) | 1985-06-05 | 1985-06-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61201000U JPS61201000U (en) | 1986-12-16 |
JPH0416067Y2 true JPH0416067Y2 (en) | 1992-04-10 |
Family
ID=30634973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8498985U Expired JPH0416067Y2 (en) | 1985-06-05 | 1985-06-05 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0416067Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0616231Y2 (en) * | 1988-09-30 | 1994-04-27 | 昭和アルミニウム株式会社 | Multi-tube evaporator |
-
1985
- 1985-06-05 JP JP8498985U patent/JPH0416067Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS61201000U (en) | 1986-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6644041B1 (en) | System in process for the vaporization of liquefied natural gas | |
CA2481477C (en) | Loop-type thermosiphon and stirling refrigerator | |
JP2001200995A (en) | Intermediate medium type carburetor and natural gas supply method using this carburetor | |
JP3037073B2 (en) | Cryogenic liquid vaporizer | |
ES2663084T5 (en) | Cryogenic air separation | |
JPH0416067Y2 (en) | ||
JP2001182894A (en) | Forced circulation type air-temperature liquefied gas vaporizer and method of vaporazing liquefied gas | |
US11067226B2 (en) | Vaporization systems and methods of using the same | |
JP4035566B2 (en) | Forced circulation air temperature type liquefied gas vaporizer | |
JPH0232959Y2 (en) | ||
KR100751974B1 (en) | Intermediate Fluid type Vaporizer | |
JP2003086418A (en) | Cryogenic device | |
JPH0232958Y2 (en) | ||
JPS6124634B2 (en) | ||
JPH0741268U (en) | Open rack type liquefied low temperature gas vaporizer heat transfer tube | |
JP2001304494A (en) | Low-temperature liquefied gas carburettor and heat exchanger | |
JPH102616A (en) | Evaporation block for heat storage heat pipe-type hot water supply device | |
CN106017169A (en) | LNG vaporizer adopting self-circulation intermediate and implementation method | |
JPH0451740B2 (en) | ||
JPS5818571Y2 (en) | Closed heating device | |
RU2166354C2 (en) | Device for production of primary krypton-xenon concentrate | |
JPS625576Y2 (en) | ||
JP2023540623A (en) | Equipment for LNG regasification and simultaneous generation of low temperature fresh water and low temperature dry air | |
JPS6164301A (en) | Method and apparatus for gasifying fluid | |
JPS589096Y2 (en) | Air temperature evaporator for low temperature liquefied gas |