JPH02285065A - Production of grain-oriented silicon steel sheet with superlow iron loss - Google Patents
Production of grain-oriented silicon steel sheet with superlow iron lossInfo
- Publication number
- JPH02285065A JPH02285065A JP1105813A JP10581389A JPH02285065A JP H02285065 A JPH02285065 A JP H02285065A JP 1105813 A JP1105813 A JP 1105813A JP 10581389 A JP10581389 A JP 10581389A JP H02285065 A JPH02285065 A JP H02285065A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- silicon steel
- annealing
- grain
- iron loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title abstract description 30
- 229910052742 iron Inorganic materials 0.000 title abstract description 15
- 238000000137 annealing Methods 0.000 claims abstract description 23
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000007733 ion plating Methods 0.000 claims abstract description 12
- 229910010037 TiAlN Inorganic materials 0.000 claims abstract 3
- 238000000034 method Methods 0.000 abstract description 22
- 229910000831 Steel Inorganic materials 0.000 abstract description 9
- 239000010959 steel Substances 0.000 abstract description 9
- 238000001953 recrystallisation Methods 0.000 abstract description 5
- 238000005498 polishing Methods 0.000 abstract description 3
- 238000000746 purification Methods 0.000 abstract description 3
- 230000004907 flux Effects 0.000 abstract description 2
- 238000005097 cold rolling Methods 0.000 abstract 2
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 239000010960 cold rolled steel Substances 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- 230000008569 process Effects 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- 229910052718 tin Inorganic materials 0.000 description 11
- 239000010408 film Substances 0.000 description 7
- 238000011282 treatment Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は一方向性珪素鋼の電気・磁気的特性の改善、な
かでも鉄損の低減に関し、特にひずみ取り焼鈍のような
高温の熱履歴を経ると否とに拘わらす、超低鉄損特性を
有利に充し得る新たな方策に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to improving the electrical and magnetic properties of unidirectional silicon steel, particularly to reducing iron loss, and in particular to improving the electrical and magnetic properties of unidirectional silicon steel. The present invention relates to a new method that can advantageously achieve ultra-low iron loss characteristics, regardless of whether or not the process is completed.
(従来の技術)
一方向性珪素鋼板は、よく知られているとおり製品の2
次再結晶粒をゴス方位(110) [:OO1]に、高
度に集積させたもので主として変圧器その他の電気機器
の鉄心として使用され電気・磁気的特性として製品の磁
束密度(B+。で代表される)が高く、鉄損(W17/
S。値)の低いことが要求される。(Prior art) As is well known, unidirectional silicon steel sheets are
It is a product in which secondary recrystallized grains are highly integrated in the Goss orientation (110) [:OO1], and is mainly used as the iron core of transformers and other electrical equipment, and its electrical and magnetic properties are represented by the magnetic flux density (B+) of the product. ) is high, and iron loss (W17/
S. low value) is required.
この一方向性珪素鋼は複雑多岐にわたる工程を経て製造
されるが、近ごろに至って一方向性珪素鋼板の仕上焼鈍
後の鋼板表面に圧延方向にほぼ直角方向でのレーザ照射
により局部微小ひずみを導入して磁区を細分化し、もっ
て鉄損を低下させることが提案された(特公昭57−2
252号、特公昭57−53419号、特公昭58−2
6405号及び特公昭58−26406号各公報参照)
。This unidirectional silicon steel is manufactured through a wide variety of complicated processes, but recently, micro-strains have been introduced into the surface of the unidirectional silicon steel plate after final annealing by laser irradiation in a direction approximately perpendicular to the rolling direction. It was proposed to subdivide the magnetic domain by using
No. 252, Special Publication No. 57-53419, Special Publication No. 58-2
6405 and Special Publication No. 58-26406)
.
この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料として効果的であるが、ひずみ取り
焼鈍を施す主として巻心トランス材料にあっては、レー
ザー照射によって折角に導入された局部微小ひずみが焼
鈍処理により解放されて磁区幅が広くなるため、レーザ
ー照射効果がなくなるという欠点がある。This magnetic domain refining technology is effective for transformer materials that do not undergo strain relief annealing, but it is effective for core transformer materials that undergo strain relief annealing. There is a drawback that the laser irradiation effect disappears because microstrains are released by annealing and the magnetic domain width becomes wider.
一方これより先に特公昭52−24499号公報におい
ては、一方向性珪素鋼板の仕上げ焼鈍後の鋼板表面を鏡
面仕上げするか又はその鏡面仕上げ面上に金属めっきや
さらにその上に絶縁被膜を塗布焼付けすることによる、
超低鉄損一方向性珪素鋼板の製造方法が提案されている
。On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of a unidirectional silicon steel plate after finish annealing was mirror-finished, or the mirror-finished surface was coated with metal plating or an insulating film was applied thereon. By baking,
A method for manufacturing ultra-low iron loss unidirectional silicon steel sheets has been proposed.
しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアップになる割りに
鉄損低減への寄与が充分でない上、とくに鏡面仕上後に
不可欠な絶縁被膜を塗布焼付し、さらに600℃以上の
高温で長時間の歪み取り焼鈍を施した後に鋼板との密着
性に問題があるため、現在の製造工程において採用され
るに至ってはいない。また特公昭56−4150号公報
においても鋼板表面を鏡面仕上げした後、酸化物系セラ
ミックス薄膜を蒸着する方法が提案されている。しかし
ながらこの方法も600℃以上の高温焼鈍を施す鋼板と
セラミック層とが剥離するため、実際の製造工程では採
用できない。However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective because it does not contribute enough to reducing iron loss despite the significant increase in cost. Furthermore, it has not been adopted in current manufacturing processes because it has problems with adhesion to steel plates after being subjected to strain relief annealing at a high temperature of 600° C. or higher for a long time. Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method cannot be used in actual manufacturing processes because the ceramic layer peels off from the steel sheet annealed at a high temperature of 600° C. or higher.
そこで発明者らは、特公昭63−54767号、特公昭
63−32850及び特公昭63−32849号各公報
等において開示したように、一方向性珪素鋼板の仕上焼
鈍板表面上のフォルステライト被膜を除去した後、研磨
処理を施した上に、イオンプレーティング、CV D
(Chemical Vapor Depositio
n)又はイオンインプランテーションによって、Ti、
Zr、 Hf。Therefore, as disclosed in Japanese Patent Publication No. 63-54767, Japanese Patent Publication No. 63-32850, and Japanese Patent Publication No. 63-32849, the inventors developed a forsterite coating on the surface of a finish annealed unidirectional silicon steel sheet. After removal, polishing treatment, ion plating, CVD
(Chemical Vapor Depositio
n) or by ion implantation, Ti,
Zr, Hf.
V、 Nb、 Ta、 Mn、 Cr、 Mo、%1.
Co、 Ni、 Aj!、 B及びSiの窒化物及び
/又は炭化物のうちから選んだ1種以上4種以下から成
る張力被膜を形成させるか又はさらに、この張力被膜上
に絶縁性塗布焼付層を重ねて被着することにより磁気特
性の熱安定性に優れる超低鉄損一方向性珪素鋼板を得る
方法をさきに発明した。しかしながらこれらの発明は超
低鉄損特性は得られるにしてもたとえばTiN被成に重
ねて絶縁性塗布焼付層を形成させようとするときには別
々の工程で行なわねばならないのでその分コストアップ
になる点が問題である。V, Nb, Ta, Mn, Cr, Mo, %1.
Co, Ni, Aj! , Forming a tension coating consisting of one or more and four or less selected from B and Si nitrides and/or carbides, or further depositing an insulating coated and baked layer on this tension coating. We have previously invented a method for obtaining ultra-low iron loss unidirectional silicon steel sheets with excellent thermal stability in magnetic properties. However, although these inventions can provide ultra-low iron loss characteristics, for example, when forming an insulating coated and baked layer over a TiN coating, it must be performed in a separate process, which increases costs accordingly. is the problem.
(発明が解決しようとする課題)
発明者らは上記した鏡面仕上げも含むような研磨処理に
よる鉄損向上の実効をより有利に引き出すことにより、
該処理に必要なコスト増の不利を凌駕する特性、とくに
高温処理でも特性劣化を伴うことのない張力被膜層上へ
の、絶縁性塗布焼付層形成のための別工程を要すること
なしに、−層有利な超低鉄損化を達成することが、この
発明の目的である。(Problems to be Solved by the Invention) The inventors have achieved the following by taking advantage of the effectiveness of improving iron loss through polishing treatment, including the above-mentioned mirror finishing.
Characteristics that outweigh the disadvantage of increased cost required for this treatment, in particular, do not require a separate process for forming an insulating coated and baked layer on the tension coating layer, which does not cause characteristic deterioration even during high-temperature treatment, - It is an object of the present invention to achieve ultra-low iron loss that is advantageous for layers.
(課題を解決するための手段)
本発明は仕上焼鈍ずみの一方向性珪素鋼表面上の酸化物
を除去したのちに、研磨処理を施した表面上にイオンプ
レーティングによりTiNの張力被膜を形成し、さらに
その上にTiAl1Nの被膜を被成させることを特徴と
する特許
優れる超低鉄損一方向性珪素鋼板の製造方法である。(Means for Solving the Problems) The present invention removes oxides on the surface of finish annealed unidirectional silicon steel, and then forms a tension film of TiN on the polished surface by ion plating. This is a patented and excellent method for manufacturing a unidirectional silicon steel sheet with ultra-low core loss, which is characterized by further forming a TiAl1N coating thereon.
この発明の成功が導かれた具体的実験例に従って説明を
進めると次のとおりである。The explanation will be as follows according to a specific experimental example that led to the success of this invention.
C:0.043重量%(以下単に%で示す。) Si
:3、33%, Mn : 0. 072 %. Se
: 0.021%. Sb :0.026%. M
O : 0. 013%を含有し、残部実貿的にFeか
らなる珪素鋼スラブを、1350℃で4時間加熱後熱間
圧延を施して20 mm厚の熱延板とした。C: 0.043% by weight (hereinafter simply expressed as %) Si
: 3, 33%, Mn: 0. 072%. Se
: 0.021%. Sb: 0.026%. M
O: 0. A silicon steel slab containing 0.13% and the balance consisting of Fe was heated at 1350° C. for 4 hours and hot rolled to obtain a 20 mm thick hot rolled plate.
その後950℃で3分間の均一化焼鈍後、950℃で3
分間の中間焼鈍をはさむ2回の冷間圧延を施して0.2
3mm厚の最終冷延板とした。After that, after homogenization annealing at 950℃ for 3 minutes,
Cold rolled twice with intermediate annealing for 0.2 min.
A final cold-rolled sheet with a thickness of 3 mm was obtained.
その後800℃の湿水素中で脱炭・1次再結晶焼鈍を施
した後、鋼板表面上にMgO (3%)、^l203(
6%) 、 T102(2%)、 ZrO,(3%
)を主成分トスル焼鈍分離剤を塗布し、850℃で50
時間の2次再結晶焼鈍と1200℃の乾H2中で5時間
の純化焼鈍を施した。After that, after decarburization and primary recrystallization annealing in wet hydrogen at 800°C, MgO (3%) and ^l203 (
6%), T102 (2%), ZrO, (3%
) was coated with the main component Tosul annealing separator and heated at 850°C for 50°C.
Secondary recrystallization annealing for 1 hour and purification annealing for 5 hours in dry H2 at 1200°C were performed.
その後は鋼板表面上の酸化物を除去後、研磨により鋼板
表面を中心線平均粗さ0.1μmの鏡面状態に仕上げた
。Thereafter, oxides on the surface of the steel plate were removed, and the surface of the steel plate was polished to a mirror-like finish with a center line average roughness of 0.1 μm.
その後HCIl法によるイオンプレーティング(IOO
OA. 55V )によりTiNを0.7μm被成後、
ひきつづきTilNを1.07−4m被成した(表1の
(A)参照)。After that, ion plating (IOO
O.A. After depositing 0.7 μm of TiN with 55 V),
Subsequently, 1.07-4 m of TilN was deposited (see (A) in Table 1).
また比較のため現行工程どおり、上記のようにTiNを
0.7μm被成後、りん酸塩とコロイダルシリカを主成
分とする絶縁性塗布焼付層を1.5〜2.0μmの厚さ
で被成した。(表1の(B)参照)。For comparison, as in the current process, after depositing TiN to a thickness of 0.7 μm as described above, an insulating coated and baked layer containing phosphate and colloidal silica as main components is applied to a thickness of 1.5 to 2.0 μm. accomplished. (See (B) in Table 1).
これらの処理を行なった後800℃で2時間の歪取り焼
鈍を施した後の磁気特性、層間抵抗、占積率を表1にま
とめて示す。After performing these treatments, strain relief annealing was performed at 800° C. for 2 hours, and the magnetic properties, interlayer resistance, and space factor are summarized in Table 1.
表1から明らかなように製品の磁気特性、占積率は本発
明の方がはるかに優れており、層間抵抗も現行製品と同
等であることが注目される。As is clear from Table 1, it is noteworthy that the magnetic properties and space factor of the product of the present invention are far superior, and the interlayer resistance is also equivalent to that of the current product.
(作 用)
第1図の(^)、 (B)に本発明の工程と従来の工程
の比較を示す。(Function) Figure 1 (^) and (B) show a comparison between the process of the present invention and the conventional process.
すなわち、本発明では第1図(A)のようにイオンプレ
ーティングによるTiN 1の被成のあと、ひきつづき
TiN 1よりも熱膨張が小さく、而も絶縁性を有する
Ti1N2をイオンプレーティングにより被成させるこ
とによらて超低鉄損化を達成することを発見したもので
あって、第1図(B)の従来工程でのイオンプレーティ
ングによるTiN 1の被成後、別工程によるりん酸塩
とコロイダルシリカを主成分とする絶縁性塗布焼付層3
を形成させる場合とは上記のように大幅に異なる。That is, in the present invention, after forming TiN1 by ion plating as shown in FIG. It was discovered that ultra-low iron loss can be achieved by depositing TiN 1 by ion plating in the conventional process shown in Figure 1 (B), and then by applying phosphate in a separate process. Insulating coating and baking layer 3 whose main components are colloidal silica and colloidal silica.
As mentioned above, this is significantly different from the case where .
本発明による特性向上の理由は第1図の(a)で示すよ
うにイオンプレーティングによりTiN 1の張力被膜
(熱膨張係数α: 7 Xl0−’/l)の上に、さら
に熱膨張係数の小さい(α: 3 Xl0−’/l’)
TiAiN被膜で、而も絶縁性を同時に有する薄被膜を
形成させることによって、磁気特性と占積率とを向上さ
せることを発見したものであって、従来にない優れた一
方向性珪素鋼板の製造が安定して行なえる。またこの2
層の被膜はイオンプレーティングのみによって成膜でき
るため一つのラインでTiN、 さらにその上にTi
1Nを成膜すれば良く、大幅なコストダウンを達成する
ことができる。なおこのときのTiNの被膜は0.1〜
5μm1TiAiNOJ〜lOμm程度が適当である。The reason for the improvement in properties according to the present invention is that, as shown in FIG. Small (α: 3 Xl0-'/l')
It was discovered that magnetic properties and space factor can be improved by forming a thin TiAiN film that also has insulating properties, and this enables the production of unprecedentedly superior unidirectional silicon steel sheets. can be performed stably. Also this 2
The layer coating can be formed only by ion plating, so TiN is deposited in one line and then Ti is deposited on top of it.
It is sufficient to form a film of 1N, and a significant cost reduction can be achieved. Note that the TiN film at this time is 0.1~
Approximately 5 μm 1 TiAiNOJ to 10 μm is appropriate.
(実施例)
(^) C:0.063%、 Si:3.46%、
A10.026%、 N :0.0085%、 Se
:0.025%、 Mo : 0.013%及びSn
: 0.15%、
(B) C:Q、042%、 Si :i、33%
、 Se : 0.019%。(Example) (^) C: 0.063%, Si: 3.46%,
A10.026%, N: 0.0085%, Se
: 0.025%, Mo: 0.013% and Sn
: 0.15%, (B) C: Q, 042%, Si: i, 33%
, Se: 0.019%.
Sb:0.026%及びMo : 0.013%で何
れも残部実質的にFeを含有する熱延板(2,Qrnm
)を970℃の中間焼鈍をはさんで2回の冷間圧延を施
して0.20mm厚の最終冷延板とした。その後840
℃の湿水素中で脱炭・1次再結晶焼鈍を行なった後85
0℃から3℃/hrで1050℃まで昇温してGoss
方位2次再結晶粒を発達させた後、1200℃で8時間
乾H2中で純化焼鈍を施した。A hot-rolled sheet (2,Qrnm
) was cold-rolled twice with intermediate annealing at 970° C. to obtain a final cold-rolled sheet with a thickness of 0.20 mm. Then 840
After decarburization and primary recrystallization annealing in wet hydrogen at 85°C
Goss by increasing the temperature from 0℃ to 1050℃ at 3℃/hr.
After developing oriented secondary recrystallized grains, purification annealing was performed in dry H2 at 1200° C. for 8 hours.
その後鋼板表面上の酸化被膜を除去し、研磨により中心
線平均粗さで0.15μmの鏡面状態に仕上げた後、H
CD法(100OA、 65V )l:J、すTiN
(0,7μm)、さらにその上にTiAj!N (1,
3μm )をイオンプレーティング処理した。その後8
00℃で2時間の歪取焼鈍を行なった。After that, the oxide film on the surface of the steel plate was removed and polished to a mirror surface with a center line average roughness of 0.15 μm.
CD method (100OA, 65V) l:J, TiN
(0.7 μm), and on top of that TiAj! N (1,
3 μm) was subjected to ion plating treatment. then 8
Strain relief annealing was performed at 00°C for 2 hours.
そのときの製品の磁気特性を表2に示す。Table 2 shows the magnetic properties of the product at that time.
表2
(発明の効果)
この発明によると、イオンプレーテングによるTiNの
張力被膜上に絶縁性塗布焼付層を被成する別工程を要せ
ずしてやはりイオンプレーティングによるTiAji!
N被膜をとくに同一ラインで被成させるので、塗布焼付
層の形成のための別工程で必要なコスト増を伴うことな
く、より優れた電磁特性をとくに有利に得ることができ
る。Table 2 (Effects of the Invention) According to the present invention, TiAji! can be formed by ion plating without requiring a separate step of forming an insulating coating and baking layer on the TiN tension film by ion plating!
Since the N coating is particularly formed in the same line, better electromagnetic properties can be particularly advantageously obtained without the increase in cost required by a separate process for forming the coated and baked layer.
第1図は、本発明の工程と従来の工程の被膜構成を示す
比較図である。
1・・・TiN
2・・・ TiAj!N
3・・・絶縁性塗布焼付層FIG. 1 is a comparison diagram showing the coating structure of the process of the present invention and the conventional process. 1...TiN 2...TiAj! N 3...Insulating coating baking layer
Claims (1)
除去したのちに、研磨処理を施した表面上に、 イオンプレーティングによりTiNの張力被膜を形成し
、 さらにその上にTiAlNの被膜を被成させる ことを特徴とする、熱安定性に優れる超低鉄損一方向性
珪素鋼板の製造方法。[Claims] 1. After removing the oxides on the surface of the unidirectional silicon steel plate after finish annealing, a TiN tension film is formed on the polished surface by ion plating, and A method for producing an ultra-low core loss unidirectional silicon steel sheet with excellent thermal stability, which comprises forming a TiAlN film thereon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1105813A JPH02285065A (en) | 1989-04-27 | 1989-04-27 | Production of grain-oriented silicon steel sheet with superlow iron loss |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1105813A JPH02285065A (en) | 1989-04-27 | 1989-04-27 | Production of grain-oriented silicon steel sheet with superlow iron loss |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02285065A true JPH02285065A (en) | 1990-11-22 |
Family
ID=14417533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1105813A Pending JPH02285065A (en) | 1989-04-27 | 1989-04-27 | Production of grain-oriented silicon steel sheet with superlow iron loss |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02285065A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4408250A1 (en) * | 1993-07-12 | 1995-01-19 | Oriental Engineering Co | Process for coating the surface of a substrate and coating material |
WO1998017838A1 (en) * | 1996-10-23 | 1998-04-30 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Coated material and method of manufacturing the same |
-
1989
- 1989-04-27 JP JP1105813A patent/JPH02285065A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4408250A1 (en) * | 1993-07-12 | 1995-01-19 | Oriental Engineering Co | Process for coating the surface of a substrate and coating material |
DE4408250C2 (en) * | 1993-07-12 | 2001-06-13 | Oriental Engineering Co | Surface layer system for substrates |
WO1998017838A1 (en) * | 1996-10-23 | 1998-04-30 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Coated material and method of manufacturing the same |
US6214479B1 (en) | 1996-10-23 | 2001-04-10 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Covered member and method of producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63186826A (en) | Production of grain-orientated silicon steel plate having super low iron loss | |
JPH0699824B2 (en) | Thermally stable ultra-low iron loss unidirectional silicon steel sheet and method for producing the same | |
JPS6332849B2 (en) | ||
JPH02285065A (en) | Production of grain-oriented silicon steel sheet with superlow iron loss | |
JPH04272166A (en) | Manufacture of ultralow core loss grain-oriented silicon steel sheet | |
JPS62103374A (en) | Grain-oriented silicon steel sheet having superior magnetic characteristic | |
JPS621820A (en) | Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss | |
JPS6269503A (en) | Very low iron loss grain oriented silicon steel plate and manufacture thereof | |
JPS6263408A (en) | Production of super low iron loss unidirectional silicon plate | |
JPH0375354A (en) | Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing | |
JPS62290844A (en) | Grain-oriented silicon steel sheet having very small iron loss | |
JPS6318605A (en) | Unidirectional silicon steel plate of extremely low iron loss | |
JPS6332850B2 (en) | ||
JPS6230302A (en) | Manufacture of super-low iron loss unidirectional silicon steel plate | |
JPH01159322A (en) | Production of ultra-low iron loss grain oriented silicon steel sheet | |
JPS63227719A (en) | Manufacture of grain-oriented magnetic steel sheet having very small iron loss | |
JPS6229107A (en) | Manufacture of ultralow iron loss unidirectional silicon steel plate | |
JPS63227720A (en) | Manufacture of grain-oriented magnetic steel sheet having very small iron loss | |
JPS6223984A (en) | Very thin tensile film for improving compressive stress characteristic of magnetostriction of grain-oriented silicon steel sheet | |
JPS63293112A (en) | Manufacture of grain-oriented silicon steel sheet with superlow iron loss | |
JPS62192581A (en) | Production of extra-low iron loss grain oriented silicon steel sheet | |
JPS6396218A (en) | Production of extremely low iron loss grain oriented silicon steel sheet | |
JPS63303009A (en) | Manufacture of grain-oriented silicon steel sheet with superlow iron loss | |
JPS63278209A (en) | Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties | |
JPS61246321A (en) | Manufacture of grain-oriented silicon steel sheet with extremely small iron loss |