JPH04272166A - Manufacture of ultralow core loss grain-oriented silicon steel sheet - Google Patents
Manufacture of ultralow core loss grain-oriented silicon steel sheetInfo
- Publication number
- JPH04272166A JPH04272166A JP5364991A JP5364991A JPH04272166A JP H04272166 A JPH04272166 A JP H04272166A JP 5364991 A JP5364991 A JP 5364991A JP 5364991 A JP5364991 A JP 5364991A JP H04272166 A JPH04272166 A JP H04272166A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- steel sheet
- silicon steel
- oriented silicon
- core loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 37
- 239000000956 alloy Substances 0.000 claims abstract description 37
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 14
- 239000010959 steel Substances 0.000 claims abstract description 14
- 229910002796 Si–Al Inorganic materials 0.000 claims abstract description 13
- 229910017082 Fe-Si Inorganic materials 0.000 claims abstract description 10
- 229910017133 Fe—Si Inorganic materials 0.000 claims abstract description 10
- 230000035699 permeability Effects 0.000 claims abstract description 10
- 239000010409 thin film Substances 0.000 claims abstract description 10
- 238000000576 coating method Methods 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 16
- 238000007733 ion plating Methods 0.000 claims description 9
- 238000005468 ion implantation Methods 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 19
- 238000000137 annealing Methods 0.000 abstract description 18
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 39
- 229910052742 iron Inorganic materials 0.000 description 20
- 238000000034 method Methods 0.000 description 12
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005524 ceramic coating Methods 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、一方向性けい素鋼板
の製造方法に関し、磁気特性、なかでも鉄損特性を有利
に向上させ得る方法について提案しようとするものであ
る。FIELD OF INDUSTRIAL APPLICATION This invention relates to a method for producing grain-oriented silicon steel sheets, and the object thereof is to propose a method for advantageously improving magnetic properties, particularly iron loss properties.
【0002】0002
【従来の技術】一方向性けい素鋼板は、よく知られてい
るとおり製品の2次再結晶粒をゴス方位(110)(0
01 〕に、高度に集積させたもので主として変圧器そ
の他の電気機器の鉄心として使用され電気・磁気的特性
として製品の磁束密度(B8 で代表される)が高く、
鉄損(W17/50値)の低いことが要求される。この
一方向性けい素鋼は複雑多岐にわたる工程を経て製造さ
れるが、近ごろに至って一方向性けい素鋼板の仕上げ焼
鈍後の鋼板表面に圧延方向にほぼ直角方向でのレーザ照
射により局部微小ひずみを導入して磁区を細分化し、も
って鉄損を低下させることが提案された。(特公昭57
−2252 号、特公昭57−53419号及び特公昭
58−26406号各公報参照)。この磁区細分化技術
はひずみ取り焼鈍を施さない、積鉄心向けトランス材料
として効果的であるが、ひずみ取り焼鈍を施す主として
巻心トランス材料にあっては、レーザ照射によって折角
に導入された局部微小ひずみが焼鈍処理により解放され
て磁区幅が広くなるため、レーザ照射効果がなくなると
いう欠点がある。[Prior Art] As is well known, unidirectional silicon steel sheets have secondary recrystallized grains in Goss orientation (110) (0
01], it is highly integrated and is mainly used as the iron core of transformers and other electrical equipment, and the product has high magnetic flux density (represented by B8) as an electric and magnetic property.
Low iron loss (W17/50 value) is required. This unidirectional silicon steel is manufactured through a wide variety of complicated processes, but recently, the surface of the unidirectional silicon steel plate after final annealing is irradiated with a laser in a direction almost perpendicular to the rolling direction to create local micro-strains. It was proposed that the magnetic domain be subdivided by introducing a method to reduce iron loss. (Tokuko Showa 57
-2252, Japanese Patent Publication No. 57-53419, and Japanese Patent Publication No. 58-26406). This magnetic domain refining technology is effective for transformer materials for laminated cores that are not subjected to strain relief annealing. However, for core transformer materials that are subjected to strain relief annealing, local microscopic Since the strain is released by the annealing treatment and the magnetic domain width becomes wider, there is a drawback that the laser irradiation effect is lost.
【0003】一方これより先に特公昭52−24499
号公報においては、一方向性けい素鋼板の仕上げ焼鈍後
の鋼板表面を鏡面仕上げするか又はその鏡面仕上げ面上
に金属めっきやさらにその上に絶縁被膜を塗布焼付けす
ることによる、超低鉄損一方向性けい素鋼板の製造方法
が提案されている。しかしながらこの鏡面仕上げによる
鉄損向上手法は、工程的に採用するには、著しいコスト
アップになる割りに鉄損低減への寄与が十分でない上、
特に鏡面仕上げ後に不可欠な絶縁被膜を塗布焼付けし、
さらに600 ℃以上での高温で長時間のひずみ取り焼
鈍を施した後に鋼板との密着性に問題があるため、現在
の製造工程において採用されるに至ってはいない。また
特公昭56−4150 号公報においても鋼板表面を鏡
面仕上げした後、酸化物系セラミックス薄膜を蒸着する
方法も提案されている。しかしながらこの方法も600
℃以上の高温焼鈍を施すと鋼板とセラミックス層とが
はく離するため、実際の製造工程では採用できない。[0003] On the other hand, earlier than this, Special Publication No. 52-24499
In the publication, ultra-low iron loss is achieved by mirror-finishing the surface of a unidirectional silicon steel sheet after finish annealing, or by coating and baking metal plating or an insulating film on the mirror-finished surface. A method for manufacturing unidirectional silicon steel sheets has been proposed. However, this method of improving iron loss through mirror finishing does not make a sufficient contribution to reducing iron loss in spite of the significant increase in cost and is not suitable for use in the process.
In particular, after finishing the mirror finish, we apply and bake the indispensable insulation coating.
Furthermore, it has not been adopted in current manufacturing processes because it has problems with adhesion to steel plates after being subjected to strain relief annealing at a high temperature of 600° C. or higher for a long time. Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method also has 600
If high-temperature annealing is applied above ℃, the steel sheet and the ceramic layer will separate, so it cannot be used in the actual manufacturing process.
【0004】そこで発明者らは、特公昭63−5476
7号、特公昭63−32850号及び特公昭63−32
849号各公報等において開示したように、一方向性け
い素鋼板の仕上げ焼鈍板表面上のフォルステライト被膜
を除去した後、研磨処理を施した上に、イオンプレーテ
ィング、CVD(Chemical Vapor De
position) 又はイオンインプランテーション
によって、Ti,Zr,Hf,V,Nb,Ta,Mn,
Cr,Mo,W,Co,Ni,Al,B及びSiの窒化
物及び/又は炭化物のうちから選んだ1種以上4種以下
からなる張力被膜を形成させるか又はさらに、この張力
被膜上に絶縁性塗布焼付層を重ねて被着することにより
磁気特性の熱安定性に優れる超低鉄損一方向性けい素鋼
板を得る方法を先に提案した。これらの方法は超低鉄損
特性が得られるわけであるが、省エネの見地から電力損
失の低減を至上とする要請が著しく強まっている現況を
鑑みるに、鉄損をより低減することが今なお強く望まれ
ているのである。[0004] Therefore, the inventors proposed the
7, Special Publication No. 63-32850 and Special Publication No. 63-32
As disclosed in various publications such as No. 849, after removing the forsterite coating on the surface of the finish annealed unidirectional silicon steel sheet, polishing treatment was performed, and then ion plating, CVD (Chemical Vapor Deposition)
position) or by ion implantation, Ti, Zr, Hf, V, Nb, Ta, Mn,
A tensile coating consisting of one or more and four or less selected from nitrides and/or carbides of Cr, Mo, W, Co, Ni, Al, B, and Si is formed, or an insulating coating is further formed on this tensile coating. We have previously proposed a method for obtaining ultra-low iron loss unidirectional silicon steel sheets with excellent thermal stability of magnetic properties by applying layers of adhesive coatings and baking layers. These methods can provide ultra-low iron loss characteristics, but in view of the current situation where the demand for reducing power loss as the highest priority from the standpoint of energy conservation is increasing, it is still necessary to further reduce iron loss. It is strongly desired.
【0005】[0005]
【発明が解決しようとする課題】上記した鏡面仕上げも
含むような研磨処理による鉄損特性向上の実効をより有
利に引き出すことにより、該処理に必要なコスト増の不
利を凌駕する特性、特に従来の張力被膜形成材を上回る
超低鉄損化を、被膜の抜本的改善により有利に達成する
ことが、この発明の目的である。[Problem to be Solved by the Invention] It is an object of the present invention to obtain characteristics that outweigh the disadvantage of the increased cost required for the polishing process by more advantageously bringing out the effect of improving iron loss characteristics through the polishing process, including the above-mentioned mirror finishing. It is an object of the present invention to advantageously achieve an ultra-low core loss that exceeds that of the tensile film forming material of the present invention by fundamentally improving the film.
【0006】[0006]
【課題を解決するための手段】発明者らは、種々の実験
、検討を重ねた結果、被膜として、特にFe−Si合金
、Fe−Al合金及びFe−Si−Al合金が有利であ
ることを見出した。かかる合金は「センダスト合金」と
知られるFe−Si−Al合金をはじめ、いずれも高透
磁率、高磁束密度の合金であり、ヒステリシス損が減少
する等、良好な磁気特性を得ることが可能である。そこ
でかかる合金の薄膜を、鋼板表面上の酸化物を除去し、
研磨を施した一方向性けい素鋼板表面上に被成すること
により、さらなる磁束密度の向上と、超低鉄損化が達成
できることを見出した。[Means for Solving the Problems] As a result of various experiments and studies, the inventors have found that Fe-Si alloys, Fe-Al alloys, and Fe-Si-Al alloys are particularly advantageous as coatings. I found it. Such alloys, including the Fe-Si-Al alloy known as "Sendust alloy", are alloys with high magnetic permeability and high magnetic flux density, and are capable of obtaining good magnetic properties such as reduced hysteresis loss. be. Therefore, a thin film of such an alloy is removed by removing oxides on the surface of the steel plate.
It has been found that by coating the surface of a polished unidirectional silicon steel sheet, it is possible to further improve magnetic flux density and achieve ultra-low iron loss.
【0007】この発明は、上記の知見に立脚するもので
ある。すなわちこの発明は、仕上げ焼鈍済みの一方向性
けい素鋼板表面上の酸化物を除去した後、研磨を施した
該鋼板表面上に、イオンプレーティング、CVD又はイ
オンインプランテーションによって、Fe−Si合金、
Fe−Al合金及びFe−Si−Al合金のうちから選
んだ1種の高透磁率合金薄膜を被成させ、その後絶縁被
膜を施すことを特徴とする超低鉄損一方向性けい素鋼板
の製造方法である。The present invention is based on the above knowledge. That is, this invention removes oxides on the surface of a finish-annealed unidirectional silicon steel sheet, and then applies an Fe-Si alloy onto the polished surface of the steel sheet by ion plating, CVD, or ion implantation. ,
An ultra-low iron loss unidirectional silicon steel sheet characterized by being coated with a thin film of one kind of high magnetic permeability alloy selected from Fe-Al alloy and Fe-Si-Al alloy, and then applying an insulating coating. This is the manufacturing method.
【0008】[0008]
【作用】この発明が導かれた具体的実験例に従って説明
を進めると次のとおりである。C:0.044 wt%
(以下単に%で示す)、Si:3.38%、Mn:0.
070 %、Se:0.020 %、Sb:0.023
%及びMo:0.012 %を含有し、残部は実質的
にFeの組成になるけい素鋼スラブを、1340℃で3
時間加熱後、熱間圧延を施して厚さ2.4 mmの熱延
板とした。その後960 ℃で1分間の均一化焼鈍後、
950 ℃で1.5 分間の中間焼鈍を挟む2回の冷間
圧延を施して厚さ0.23mmの最終冷延板とした。そ
の後、820 ℃の湿水素中で脱炭・1次再結晶焼鈍を
施した後、鋼板表面上にMnO を主体とする焼鈍分離
剤を塗布し、850 ℃で50時間の2次再結晶焼鈍と
1230℃の乾水素中で8時間の純化焼鈍を施した。そ
の後は鋼板表面上の酸化物を除去後、研磨により鋼板表
面を中心線平均粗さ:0.2 μm の鏡面状態に仕上
げた。その後、HCD法によるイオンプレーティング(
加速電圧:50V、電流500 A)により4種の被膜
、すなわち
■TiN (厚み:1.5 μm )
■Fe−Si合金(厚み:1.5 μm )■Fe−A
l合金(厚み:1.5 μm )■Fe−Si−Al合
金(厚み:1.5 μm )の被膜をおのおの被成した
後、表面上にりん酸塩とコロイダルシリカを主成分とす
る絶縁被膜を被成した。その後ひずみ取り焼鈍(800
℃、2時間)を施した。これらの鋼板について磁気特
性、占積率及び層間抵抗を測定した結果を表1にまとめ
て示す。[Operation] The explanation will be as follows according to a specific experimental example from which the present invention was derived. C: 0.044 wt%
(hereinafter simply shown in %), Si: 3.38%, Mn: 0.
070%, Se: 0.020%, Sb: 0.023
% and Mo: 0.012%, with the remainder being substantially Fe, at 1340°C for 30 minutes.
After heating for a period of time, hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.4 mm. Then, after homogenization annealing at 960 °C for 1 minute,
Cold rolling was performed twice with intermediate annealing for 1.5 minutes at 950° C. to obtain a final cold rolled sheet having a thickness of 0.23 mm. Then, after decarburization and primary recrystallization annealing in wet hydrogen at 820°C, an annealing separator mainly composed of MnO was applied to the surface of the steel sheet, and secondary recrystallization annealing was performed at 850°C for 50 hours. Purification annealing was performed for 8 hours in dry hydrogen at 1230°C. Thereafter, oxides on the surface of the steel plate were removed, and the surface of the steel plate was polished to a mirror-like finish with a center line average roughness of 0.2 μm. After that, ion plating (
Accelerating voltage: 50 V, current 500 A), four types of coatings were formed: ■TiN (thickness: 1.5 μm) ■Fe-Si alloy (thickness: 1.5 μm) ■Fe-A
l alloy (thickness: 1.5 μm) ■After each film is coated with Fe-Si-Al alloy (thickness: 1.5 μm), an insulating film containing phosphate and colloidal silica as main components is applied to the surface. was created. After that, strain relief annealing (800
°C for 2 hours). Table 1 summarizes the results of measuring the magnetic properties, space factor, and interlayer resistance of these steel plates.
【0009】[0009]
【0010】同表から、従来同様TiN 膜を被成した
場合は、B8 が1.91T、W17/50が0.70
W/kg であったのに対し、この発明に従いFe−
Si合金、Fe−Al合金及びFe−Si−Al合金膜
をそれぞれ被成した場合は、B8 が1.92〜1.9
3Tという高磁束密度を維持したままで、W17/50
が0.65〜0.62 W/kg という超低鉄損を示
しているのが注目され、またTiN を被成した場合の
占積率が97%であったのに対し、この発明に従いFe
−Si合金、Fe−Al合金及びFe−Si−Al合金
膜をそれぞれ被成した場合は、98.3〜98.5%と
1.3 〜1.5 %良好な結果を得たことが注目され
る。From the same table, when a TiN film is formed as in the conventional case, B8 is 1.91T and W17/50 is 0.70.
W/kg, whereas according to this invention Fe-
When Si alloy, Fe-Al alloy, and Fe-Si-Al alloy films are respectively formed, B8 is 1.92 to 1.9.
While maintaining the high magnetic flux density of 3T, W17/50
It is noteworthy that the core loss of 0.65 to 0.62 W/kg has been shown to be extremely low, and the space factor of TiN is 97%, whereas that of Fe
It is noteworthy that good results of 98.3 to 98.5% and 1.3 to 1.5% were obtained when Si alloy, Fe-Al alloy, and Fe-Si-Al alloy films were respectively formed. be done.
【0011】このようにFe−Si合金、Fe−Al合
金及びFe−Si−Al合金という高透磁率合金の薄膜
を被成することにより磁気特性、特に鉄損特性の向上す
る理由についてはさだかでないが、次のとおりと考えら
れる。すなわち上掲特公昭63−54767号、特公昭
63−32850号及び特公昭63−32849号各公
報に開示されたように、けい素鋼板上にセラミックス被
膜を被成させた場合には、かかるセラミックス被膜が磁
性膜として作用することは全く不可能であるのに対し、
この発明に従うFe−Si合金、Fe−Al合金及びF
e−Si−Al合金という高透磁率合金薄膜では、かか
る薄膜そのものが磁性膜として作用することができ、磁
性膜の特性をけい素鋼板の特性に効果的に加算させるこ
とが可能であるため、磁気特性がさらに良好になり、ま
た占積率の向上も図ることが可能となるものと考えられ
る。[0011] As described above, the reason why magnetic properties, especially iron loss properties, are improved by forming a thin film of high magnetic permeability alloys such as Fe-Si alloy, Fe-Al alloy, and Fe-Si-Al alloy is not clear. However, it is thought that the following is true. That is, as disclosed in the above-mentioned Japanese Patent Publication No. 63-54767, Japanese Patent Publication No. 63-32850, and Japanese Patent Publication No. 63-32849, when a ceramic coating is formed on a silicon steel plate, such ceramic coating Whereas it is completely impossible for the film to act as a magnetic film,
Fe-Si alloy, Fe-Al alloy and F according to the present invention
In the case of a high magnetic permeability alloy thin film called e-Si-Al alloy, the thin film itself can act as a magnetic film, and the characteristics of the magnetic film can be effectively added to the characteristics of the silicon steel sheet. It is considered that the magnetic properties become even better and it becomes possible to improve the space factor.
【0012】このような鉄基高透磁率合金被膜の被成は
、仕上げ焼鈍を施した一方向性けい素鋼板(板厚0.0
5〜0.35mm)を通常公知の方法で酸化物を除去し
、次いで研磨を施した後に、イオンプレーティング、C
VD又はイオンインプランテーションによって被成させ
る。その後絶縁被膜、例えばりん酸塩とコロイダルシリ
カを主成分とする絶縁被膜を被成させる。[0012] Such an iron-based high permeability alloy coating is applied to a unidirectional silicon steel plate (thickness 0.0
5 to 0.35 mm) by a commonly known method, and then polished, followed by ion plating, C
Deposited by VD or ion implantation. Thereafter, an insulating coating, for example, an insulating coating mainly composed of phosphate and colloidal silica, is formed.
【0013】高透磁率合金被膜の組成は、次の組成が好
ましい。Fe−Si合金では、Si含有量が3〜13%
、より好ましくは4〜10%で残部Feの組成、Fe−
Al合金ではAl含有量が1〜17%、より好ましくは
2〜16%で残部Feの組成、Fe−Si−Al合金で
は、Si含有量が3〜13%、より好ましくは4〜10
%、Al含有量が1〜17%、より好ましくは2〜16
%で残部Feの組成が好ましい。The composition of the high magnetic permeability alloy film is preferably as follows. In Fe-Si alloys, the Si content is 3-13%
, more preferably 4 to 10%, with the balance being Fe, Fe-
In an Al alloy, the Al content is 1 to 17%, more preferably 2 to 16%, with the balance being Fe, and in the Fe-Si-Al alloy, the Si content is 3 to 13%, more preferably 4 to 10%.
%, Al content is 1 to 17%, more preferably 2 to 16%
% with the remainder being Fe.
【0014】かかる高透磁率合金被膜の膜厚は0.05
μm に満たないと工業的に安定に製造することの不利
があり、一方20μm を超えると被膜のコーティング
によるコストアップという不都合を生じるので、0.0
5〜20μm 程度が好ましい。The film thickness of this high magnetic permeability alloy film is 0.05
If it is less than 20 μm, it will be difficult to manufacture it industrially stably, while if it exceeds 20 μm, there will be an inconvenience of increased costs due to coating.
Approximately 5 to 20 μm is preferable.
【0015】薄膜の被成手段としては、イオンプレーテ
ィング、CVD又はイオンインプランテーションを用い
、けい素鋼板表面上で上記組成となるように被成すれば
よい。The thin film may be formed by ion plating, CVD or ion implantation on the surface of the silicon steel plate so as to have the above composition.
【0016】[0016]
【実施例】成分組成が異なる2種
A)C:0.013 %、Si:3.41%、Al:0
.023 %、N:0.0082%、Se:0.021
%、Mo:0.012 %、Sb:0.019 %及
びSn:0.08%を含有し、残部は実質的にFeの組
成及びB)C:0.044 %、Si:3.36%、S
e:0.024 %、Sb:0.023 %及びMo:
0.015 %を含有し、残部は実質的にFeの組成に
なるけい素鋼熱延板(厚さ2.4mm)を、いずれも9
80 ℃で3分間の中間焼鈍を挟む2回の冷間圧延を施
して厚さ0.23mmの最終冷延板とした。その後、8
30 ℃の湿水素中で脱炭・1次再結晶焼鈍を施した後
、850 ℃から昇温速度4℃/hで1050℃まで昇
温してゴス方位2次再結晶粒を発達させた後、1230
℃で10時間乾水素中で純化焼鈍を施した。その後鋼板
表面上の酸化物被膜を除去し、研磨により表面を中心線
平均粗さ:0.1 μm の鏡面状態に仕上げた。その
後、イオンプレーティング、CVD又はイオンインプラ
ンテーションによって、Fe−Si合金、Fe−Al合
金又はFe−Si−Al合金被膜を被成させた。その後
りん酸塩とコロイダルシリカを主成分とする絶縁被膜を
被成した。かくして得られた種々の鋼板について磁気特
性、占積率及び層間抵抗を測定した結果を表2にまとめ
て示す。なお表中、被成法の*印はCVD、**印はイ
オンプレーティング、***印はイオンインプランテー
ションを示す。[Example] Two types with different component compositions A) C: 0.013%, Si: 3.41%, Al: 0
.. 023%, N: 0.0082%, Se: 0.021
%, Mo: 0.012%, Sb: 0.019% and Sn: 0.08%, the remainder being substantially Fe and B) C: 0.044%, Si: 3.36%. , S
e: 0.024%, Sb: 0.023% and Mo:
A silicon steel hot-rolled plate (thickness 2.4 mm) containing 0.015% Fe and the remainder being substantially Fe was heated to 9.
Cold rolling was performed twice with intermediate annealing for 3 minutes at 80° C. to obtain a final cold rolled sheet having a thickness of 0.23 mm. After that, 8
After decarburization and primary recrystallization annealing in wet hydrogen at 30°C, the temperature was raised from 850°C to 1050°C at a heating rate of 4°C/h to develop Goss-oriented secondary recrystallized grains. , 1230
Purification annealing was performed in dry hydrogen for 10 hours at °C. Thereafter, the oxide film on the surface of the steel plate was removed, and the surface was polished to a mirror-like finish with a center line average roughness of 0.1 μm. Thereafter, a Fe-Si alloy, Fe-Al alloy, or Fe-Si-Al alloy film was formed by ion plating, CVD, or ion implantation. After that, an insulating coating mainly composed of phosphate and colloidal silica was applied. Table 2 summarizes the results of measuring the magnetic properties, space factors, and interlayer resistance of the various steel plates thus obtained. In the table, the method of formation is marked *, CVD, **, ion plating, and ***, ion implantation.
【0017】[0017]
【0018】[0018]
【発明の効果】この発明の超低鉄損一方向性けい素鋼板
の製造方法は、仕上げ焼鈍済みの一方向性けい素鋼板表
面上の酸化物を除去した後、研磨を施した該鋼板表面上
に、イオンプレーティング、CVD又はイオンインプラ
ンテーションによって、Fe−Si合金、Fe−Al合
金及びFe−Si−Al合金のうちから選んだ1種の高
透磁率合金薄膜を被成させ、その後絶縁被膜を施すこと
により、従来の張力被膜形成材を上回る超低鉄損化を達
成することができる。[Effect of the invention] The method for producing an ultra-low core loss unidirectional silicon steel sheet of the present invention involves removing oxides on the surface of a finish annealed unidirectional silicon steel sheet, and then polishing the surface of the steel sheet. A thin film of a high magnetic permeability alloy selected from Fe-Si alloy, Fe-Al alloy, and Fe-Si-Al alloy is formed on the top by ion plating, CVD, or ion implantation, and then insulation is applied. By applying a coating, it is possible to achieve ultra-low iron loss that exceeds that of conventional tension coating forming materials.
Claims (1)
表面上の酸化物を除去した後、研磨を施した該鋼板表面
上に、イオンプレーティング、CVD又はイオンインプ
ランテーションによって、Fe−Si合金、Fe−Al
合金及びFe−Si−Al合金のうちから選んだ1種の
高透磁率合金薄膜を被成させ、その後絶縁被膜を施すこ
とを特徴とする超低鉄損一方向性けい素鋼板の製造方法
。1. After removing oxides on the surface of a finish-annealed unidirectional silicon steel sheet, a Fe-Si alloy is formed on the polished surface of the steel sheet by ion plating, CVD, or ion implantation. , Fe-Al
A method for producing an ultra-low core loss unidirectional silicon steel sheet, which comprises depositing a thin film of one type of high magnetic permeability alloy selected from alloys and Fe-Si-Al alloys, and then applying an insulating coating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5364991A JPH04272166A (en) | 1991-02-27 | 1991-02-27 | Manufacture of ultralow core loss grain-oriented silicon steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5364991A JPH04272166A (en) | 1991-02-27 | 1991-02-27 | Manufacture of ultralow core loss grain-oriented silicon steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04272166A true JPH04272166A (en) | 1992-09-28 |
Family
ID=12948735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5364991A Pending JPH04272166A (en) | 1991-02-27 | 1991-02-27 | Manufacture of ultralow core loss grain-oriented silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04272166A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7498216B2 (en) | 2004-03-12 | 2009-03-03 | International Business Machines Corporation | Method of forming high-performance CMOS SOI devices on hybrid crystal-oriented substrates |
CN103996479A (en) * | 2014-05-22 | 2014-08-20 | 吴娟 | Manufacturing method of sendust core with magnetic permeability mue 200 |
JPWO2022210504A1 (en) * | 2021-03-31 | 2022-10-06 |
-
1991
- 1991-02-27 JP JP5364991A patent/JPH04272166A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7498216B2 (en) | 2004-03-12 | 2009-03-03 | International Business Machines Corporation | Method of forming high-performance CMOS SOI devices on hybrid crystal-oriented substrates |
CN103996479A (en) * | 2014-05-22 | 2014-08-20 | 吴娟 | Manufacturing method of sendust core with magnetic permeability mue 200 |
CN103996479B (en) * | 2014-05-22 | 2017-01-18 | 吴娟 | Manufacturing method of sendust core with magnetic permeability mue 200 |
JPWO2022210504A1 (en) * | 2021-03-31 | 2022-10-06 | ||
WO2022210504A1 (en) * | 2021-03-31 | 2022-10-06 | Jfeスチール株式会社 | Method for manufacturing grain-oriented electromagnetic steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63186826A (en) | Production of grain-orientated silicon steel plate having super low iron loss | |
JPS6335684B2 (en) | ||
JPS6332849B2 (en) | ||
JPH04272166A (en) | Manufacture of ultralow core loss grain-oriented silicon steel sheet | |
JPH10245667A (en) | Production of grain oriented extremely thin silicon steel sheet having ultralow core loss | |
JPH0619113B2 (en) | Method for producing grain-oriented electrical steel sheet with extremely low iron loss | |
JPS62103374A (en) | Grain-oriented silicon steel sheet having superior magnetic characteristic | |
JPH02285065A (en) | Production of grain-oriented silicon steel sheet with superlow iron loss | |
JPS6332850B2 (en) | ||
JPH0375354A (en) | Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing | |
JPS6269503A (en) | Very low iron loss grain oriented silicon steel plate and manufacture thereof | |
JPS62290844A (en) | Grain-oriented silicon steel sheet having very small iron loss | |
JPS621820A (en) | Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss | |
JPS6229107A (en) | Manufacture of ultralow iron loss unidirectional silicon steel plate | |
JPH0453084B2 (en) | ||
JPS6230302A (en) | Manufacture of super-low iron loss unidirectional silicon steel plate | |
JPS6270520A (en) | Manufacture of ultralow iron loss grain oriented silicon steel sheet | |
WO2020149333A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JPS6396218A (en) | Production of extremely low iron loss grain oriented silicon steel sheet | |
JPH0222421A (en) | Production of unidirectional type silicon steel sheet having superlow iron loss | |
JPS6263408A (en) | Production of super low iron loss unidirectional silicon plate | |
JPS63303009A (en) | Manufacture of grain-oriented silicon steel sheet with superlow iron loss | |
JPH0374488B2 (en) | ||
JPH01159322A (en) | Production of ultra-low iron loss grain oriented silicon steel sheet | |
JPS63278209A (en) | Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties |