Nothing Special   »   [go: up one dir, main page]

JPH02227122A - Treatment by membrane - Google Patents

Treatment by membrane

Info

Publication number
JPH02227122A
JPH02227122A JP4614689A JP4614689A JPH02227122A JP H02227122 A JPH02227122 A JP H02227122A JP 4614689 A JP4614689 A JP 4614689A JP 4614689 A JP4614689 A JP 4614689A JP H02227122 A JPH02227122 A JP H02227122A
Authority
JP
Japan
Prior art keywords
gas
liquid
raw liquid
phase flow
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4614689A
Other languages
Japanese (ja)
Other versions
JPH0751216B2 (en
Inventor
Takao Imasaka
今坂 卓男
Nobuhiko Kanekuni
伸彦 兼国
Hiroyuki So
浩之 宗
Shigeru Yoshino
成 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Original Assignee
AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKUA RUNESANSU GIJUTSU KENKYU KUMIAI filed Critical AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Priority to JP1046146A priority Critical patent/JPH0751216B2/en
Publication of JPH02227122A publication Critical patent/JPH02227122A/en
Publication of JPH0751216B2 publication Critical patent/JPH0751216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To drastically lower consumption of electric power by regulating both the feed rate of gas and the addition rate of small particles to the prescribed range in the case of sending raw liquid as the gas-liquid-solid three-phase flow into a membrane module and treating the raw liquid. CONSTITUTION:Raw liquid 1 is supplied to a separator 7 from a raw liquid tank 2 by a pump 5 and small particle solid material 9 is added. Then this raw liquid 1 is allowed to descend through a descending pipe 12 and introduced into an ascending pipe 14. Gas is blown into this raw liquid from a blower 16 in the part of a gas-liquid mixer 15. The raw liquid is introduced into the tubular permeation membranes of the respective membrane modules 19 as the gas-liquid-solid three-phase flow. The gel layer stuck to the inside surface is scraped down by the small particle solid material 9 in the permeation membranes. On the other hand, the raw liquid 1 is separated into permeated water and concentrate. The permeated water is taken out through a takeout pipe 21 and concentrate is returned to the raw liquid tank 2 via the separator 7 through a return pipe 20. Therein when the amount of gas supplied to perform natural circulation is Qg[Nm<3>], the amount of gas for imparting the maximum circulation flow rate is Q'g[Nm<3>] and the addition rate of the small particle is X [vo.l%], the relation of Qg, Q'g and X is shown as the following formula, Q'g<=Qg(1+X)<=7Q'g.

Description

【発明の詳細な説明】 (a業上の利用分野) 本発明は原液を液体、気体及び固体を混合した三相流と
して膜処理する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for membrane processing a stock solution as a three-phase flow containing a mixture of liquid, gas, and solid.

(従来の技術) 排水や下水を処理する嫌気性菌体をリアクタ内に高濃度
に保持するためや、食品工業における溶液の分離、濃縮
等を行う膜処理方法として本出願人は先に特開昭63−
104610号として、原液を気・液・固混合の三相流
として膜モジユール内に供給し、クロスフロー濾過方式
によって処理する方法を提案している。
(Prior art) The present applicant previously published a patent application as a membrane treatment method for maintaining high concentration of anaerobic bacteria in a reactor for treating wastewater and sewage, and for separating and concentrating solutions in the food industry. 1986-
No. 104610 proposes a method in which a stock solution is supplied into a membrane module as a three-phase flow of a mixture of gas, liquid, and solid, and processed by a cross-flow filtration method.

(発明が解決しようとする課題) 上述した気・液・固混合の三相流とすれば、°気液二相
流に比べ乱流促進効果は更に高くなり、膜表面に付着し
た微粒子や溶質成分からなるゲル層は二相流の場合より
も有効に掻き落され、透過流束が大きくなることが期待
される。しかしながら、膜表面のゲル層を完全に除去し
てしまうと、却って膜内に微粒子が侵入して目詰まりを
起し、透過流束が低下する結果となる。したがって固体
としての微粒子の添加割合に関しては一定の範囲とすべ
きである。
(Problem to be solved by the invention) If the three-phase flow of gas, liquid, and solid mixture is used as described above, the effect of promoting turbulence will be even higher than that of gas-liquid two-phase flow, and the fine particles and solutes attached to the membrane surface will be more effective. It is expected that the gel layer consisting of the components will be scraped off more effectively than in the case of two-phase flow, and that the permeation flux will be larger. However, if the gel layer on the membrane surface is completely removed, fine particles will instead enter the membrane and cause clogging, resulting in a decrease in permeation flux. Therefore, the proportion of solid particles to be added should be within a certain range.

一方、気・液・固三相流では気・液二相流と同様に、各
相の分布が不均一となった複雑な流れを呈するため、液
単相流に比べて常に透過流束が大きいとは限らないこと
が実験の結果判明し、特に膜モジュールを多数本の細管
状膜にて構成した場合には上記の傾向が強くなった。
On the other hand, gas-liquid-solid three-phase flow presents a complex flow with uneven distribution of each phase, similar to gas-liquid two-phase flow, so the permeation flux is always lower than liquid single-phase flow. As a result of experiments, it has been found that the size is not necessarily large, and the above tendency becomes particularly strong when the membrane module is composed of a large number of tubular membranes.

(課題を解決するための手段) 上記課題を解決すべく本発明は、原液を三相流として自
然循環させるために供給するガス量をQ g [Nm’
・■In−’] 、最大循環液流量を与えるガス量をQ
’ g [Nm31in−’] %小粒子の添加割合を
x [vol駒とした場合、これらがQ’ g≦Qg(
1+x)≦フQ’ gとなるようにした。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides that the amount of gas to be supplied in order to naturally circulate the stock solution as a three-phase flow is Q g [Nm'
・■In-'], Q is the gas amount that gives the maximum circulating fluid flow rate.
'g[Nm31in-']%If the addition ratio of small particles is x [vol piece, then these are Q'g≦Qg(
1+x)≦FQ'g.

(作用) 上記の条件を満たすように原液を三相流として膜モジュ
ールに供給すれば、二相流よりも透過流束を大きく、ま
た消費動力も低く抑えることができる。
(Function) If the stock solution is supplied to the membrane module as a three-phase flow so as to satisfy the above conditions, the permeation flux can be made larger than in the case of a two-phase flow, and the power consumption can also be kept low.

(実施例) 以下に本発明の実施例を添付図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the accompanying drawings.

第1図は本発明方法を実施する膜処理装置の全体図であ
り、原液1を満たした原液タンク2は攪拌装置3及び温
度調節装置4を備え、原液タンク2内の原液1をポンプ
5によって供給管6を介してセパレータフに供給するよ
うにしている。
FIG. 1 is an overall view of a membrane treatment apparatus for carrying out the method of the present invention. A stock solution tank 2 filled with stock solution 1 is equipped with a stirring device 3 and a temperature control device 4, and the stock solution 1 in the stock solution tank 2 is pumped by a pump 5. It is supplied to the separator trough via a supply pipe 6.

セパレータ7は隔壁8によって2つの室に区画され、一
方の室には供給管6が臨み、他方の室にはイオン交換樹
脂粒、砂等の小粒子固形物9が貯溜され、更にセパレー
タ7の他方の室には小粒子固形物9の通過を阻止するス
クリーン10を設け、他方の室と原液タンク2とを戻り
管11にてつないでいる。
The separator 7 is divided into two chambers by a partition wall 8, one chamber faces the supply pipe 6, and the other chamber stores small particle solids 9 such as ion exchange resin particles and sand. The other chamber is provided with a screen 10 for preventing the passage of small solid particles 9, and the other chamber and the stock solution tank 2 are connected by a return pipe 11.

また、セパレータからは下方に降下管12を導出し、降
下管12の途中には電磁流量計13を設けるとともに、
降下管12の下端をU字状に湾曲して上昇管14に接続
し、この上昇管14の途中に全網製の散気筒を備えた気
液混合器15を設け、この気液混合器15にブロワ16
からガス(空気)を供給し、供給ガス量は配管の途中に
設けたガス流量計17で測定するようにしている。
In addition, a downcomer pipe 12 is guided downward from the separator, and an electromagnetic flowmeter 13 is provided in the middle of the downcomer pipe 12.
The lower end of the downcomer pipe 12 is curved into a U-shape and connected to the riser pipe 14, and a gas-liquid mixer 15 equipped with a full-mesh aeration tube is provided in the middle of the riser pipe 14. blower 16
Gas (air) is supplied from the piping, and the amount of supplied gas is measured by a gas flow meter 17 installed in the middle of the piping.

また気液混合器15の上部にはスタティックミキサー1
8を設け、このスタティックミキサー18の上方に5連
の膜モジュール19・・・を垂直方向に接続している。
Additionally, a static mixer 1 is placed above the gas-liquid mixer 15.
8 is provided, and five membrane modules 19 are vertically connected above the static mixer 18.

各膜モジユール19内には管状透過膜を配置し、管状透
過膜の内側通路と前記上昇管14及びセパレータ7への
戻し管20とをつなぎ、管状透過膜の外側流路と透過水
の取出し管21とをつなぎ、取出し管21の先端は逆洗
バッファ22内に臨み、この逆洗バッファ22内にはコ
ンプレッサ23によって加圧空気を供給し、空気圧によ
ってバッファ22内の透過水を電子天秤24上に載置し
た集水タンク25又は切換用減圧タンク26に送り込む
ようにしている。
A tubular permeable membrane is arranged in each membrane module 19, and the inner passage of the tubular permeable membrane is connected to the riser pipe 14 and the return pipe 20 to the separator 7, and the outer passage of the tubular permeable membrane and the permeated water take-out pipe are connected. 21, and the tip of the extraction pipe 21 faces into the backwash buffer 22. Pressurized air is supplied into the backwash buffer 22 by a compressor 23, and the permeated water in the buffer 22 is transferred onto the electronic balance 24 by the air pressure. The water is sent to a water collection tank 25 or a switching decompression tank 26 mounted on the water tank 25 or the decompression tank 26 for switching.

集水タンク25及び切替用減圧タンク26には膜間差圧
を与える排気ポンプ27が接続され、集水タンク25に
は液面計28を付設している。而して、集水タンク25
の重量増加速度を電子天秤24にて計測することで透過
流束を求めることができ、また集水タンク25内に所定
量の透過水が溜ったことを液面計28によって感知した
ならば、自動的に切替用減圧タンク26への捕集に切替
わり、この間に集水タンク25内の減圧状態は解除され
て大気圧となり、集水タンク25内の透過水は原液タン
ク2へ戻される。同様にして切替用減圧タンク26内の
透過水も原液タンク2に戻され、装置全体としては前循
環濾過方式を採用している。
An exhaust pump 27 that provides a transmembrane pressure difference is connected to the water collection tank 25 and the switching reduced pressure tank 26, and a liquid level gauge 28 is attached to the water collection tank 25. Therefore, water collection tank 25
The permeation flux can be determined by measuring the weight increase rate of the water with the electronic balance 24, and if the liquid level gauge 28 detects that a predetermined amount of permeated water has accumulated in the water collection tank 25, The collection is automatically switched to the switching reduced pressure tank 26, and during this time, the reduced pressure state in the water collection tank 25 is released and becomes atmospheric pressure, and the permeated water in the water collection tank 25 is returned to the stock solution tank 2. Similarly, the permeated water in the switching reduced pressure tank 26 is also returned to the stock solution tank 2, and the entire device employs a pre-circulation filtration system.

更に、降下管12と上昇管14とをつなぐU字状部につ
いては着脱可能とし、液単相流として膜モジユール19
内へ原液を供給する場合にはこの部分に循環ポンプ29
を接続するようにしている。
Furthermore, the U-shaped part connecting the downcomer pipe 12 and the riser pipe 14 is made removable, so that the membrane module 19 can be used as a liquid single-phase flow.
When supplying the stock solution to the inside, a circulation pump 29 is installed in this part.
I am trying to connect.

以上において、原液タンク2からポンプ5の駆動によつ
てセパレータ7内に供給された原液1は、セパレータ7
内において小粒子固形物9が添加され、この小粒子固形
物9が混入した原液1は降下管12内を通って下降し、
上昇管14に入り、気液混合器15の部分でガスが吹込
まれる。
In the above, the stock solution 1 supplied from the stock solution tank 2 into the separator 7 by driving the pump 5 is
Small particle solids 9 are added therein, and the stock solution 1 mixed with the small particle solids 9 descends through the downcomer pipe 12.
The gas enters the riser pipe 14 and is blown into the gas-liquid mixer 15.

そして、原液1内に吹込まれたガスは流路の中央部を上
昇し、原液1は流路の外周部つまり管状透過膜の内側面
に沿って上昇し、更に原液1中に添加されている小粒子
固形物9は原液1とともに流動する。その結果、管状透
過膜の内側面に付着しているスケール(ゲル層)に小粒
子固形物9が接触し、スケールが掻き落とされる。
Then, the gas blown into the stock solution 1 rises in the center of the channel, and the stock solution 1 rises along the outer periphery of the channel, that is, the inner surface of the tubular permeable membrane, and is further added to the stock solution 1. The small particle solids 9 flow together with the stock solution 1. As a result, the small solid particles 9 come into contact with the scale (gel layer) adhering to the inner surface of the tubular permeable membrane, and the scale is scraped off.

一方、透通膜内に流入した原液1は透過水と濃縮液に分
離され、透過水は取り出し管21によて取り出され、濃
縮液は戻し管20を介してセパレータ7を介して原液タ
ンク2に戻される。
On the other hand, the stock solution 1 that has flowed into the permeable membrane is separated into permeate water and concentrated solution. will be returned to.

ここで気液混合器15からは連続的にガスが原液1中に
吹き込まれるため、序章管14及び膜モジユール19内
の流路にはガスが存在し、みかけの比重が低下し、降下
管12内の原液との水頭差によって自然に循環流が生じ
ることとなる。
Here, since gas is continuously blown into the raw liquid 1 from the gas-liquid mixer 15, gas exists in the flow paths in the introductory pipe 14 and the membrane module 19, and the apparent specific gravity decreases, causing the downcomer pipe 12 Circulating flow will naturally occur due to the difference in water head with the undiluted solution inside.

第2図は上述した構成の膜処理装置を用いて減車相流と
した場合と気・液・固混合三相流とした場合の透過流束
とブロワの消費動力との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the permeation flux and the power consumption of the blower when the membrane treatment device having the above-mentioned configuration is used to generate a reduced phase flow and when a gas/liquid/solid mixed three-phase flow is generated. .

尚、第2図の結果を得るにあたっての具体的な条件は以
下の通りである。
The specific conditions for obtaining the results shown in FIG. 2 are as follows.

原 液: 0.9%生理食塩水に乾燥パン酵母を分散さ
せた懸濁液 パン酵母濃度:10Kg・■−3 温 度=25℃ 透過膜の寸法:外径5.2mm s内径3.8mm 、
長さ500m■のセラミック膜を200本/そジュール 透過膜の構造:孔径0.5μ履の均質膜又は0.2μ諺
の非対称膜 小粒子:平均粒径Q、8amのイオン交換樹脂小粒子の
添加割合: 5.0vol零以下膜間圧差:60kl)
a 第2図からは透過流束Jが0.7[n+3・「2・d−
11未満であると、減車相流とした方が消費動力が小さ
くなり、透過流束が2.0[■3・11−2・4−1]
を超えると単相流・三相流にかかわらず、消費動力が大
幅に増加することが分かる。
Stock solution: Suspension of dried baker's yeast dispersed in 0.9% physiological saline Baker's yeast concentration: 10Kg・■-3 Temperature = 25℃ Dimensions of permeable membrane: Outer diameter 5.2mm s Inner diameter 3.8mm ,
200 ceramic membranes with a length of 500 m / 2 joules Structure of permeable membrane: Homogeneous membrane with pore size of 0.5 μm or asymmetric membrane with pore size of 0.2 μm Small particles: Small particles of ion exchange resin with average particle size Q, 8 am Addition ratio: 5.0vol (below zero transmembrane pressure difference: 60kl)
a From Figure 2, the permeation flux J is 0.7[n+3・``2・d−
If it is less than 11, the power consumption will be smaller if the vehicle phase flow is reduced, and the permeation flux will be 2.0 [■3・11-2・4-1]
It can be seen that when the value exceeds , the power consumption increases significantly regardless of single-phase flow or three-phase flow.

したがって、透過流束は気・液・固三相流とする場合は
0.7〜2.0[m’・■−2・d−1]の範囲とすべ
きである。
Therefore, the permeation flux should be in the range of 0.7 to 2.0 [m'·■-2·d-1] in the case of a gas-liquid-solid three-phase flow.

ところで、本発明にあっては前記したように気・液・固
三相流として自然循環させるのは、専ら気液混合器15
から供給されるガスに依存している。そこで、供給ガス
量Qgと透過流束Jとの関係を示したのが第3図(A)
である。
By the way, in the present invention, as described above, the natural circulation as a three-phase flow of gas, liquid, and solid is exclusively carried out in the gas-liquid mixer 15.
depend on gas supplied by Therefore, Figure 3 (A) shows the relationship between the supply gas amount Qg and the permeation flux J.
It is.

小粒子を殆ど添加しない二相流に近い状態において透過
流束Jが0.7〜2.0〔■3・「2・d−11となる
のは、供給ガス量Qgが0.06〜0.35[Nm’・
5in−’]の範囲であることが分る。しかしながら供
給ガス量Qgと透過流束Jとの関係は膜モジュール19
・・・の配列や膜の孔径によって一義的に定まるもので
はない。
In a state close to a two-phase flow with almost no addition of small particles, the permeation flux J becomes 0.7 to 2.0 [■3. .35[Nm'・
5in-']. However, the relationship between the supply gas amount Qg and the permeation flux J is
It is not uniquely determined by the arrangement of ... or the pore size of the membrane.

そこで供給ガス量Qgと循環流量QJ2とが一定の関係
があることに看目し、これを第3図(B)で示した。即
ち、第3図(B)に示すように供給ガス量Qgを最大循
環流量Qgを与える供給ガス量Q’ gの1〜7倍の範
囲とすることで減車相流よりも消費動力の面で有利な気
・液・固混合の三相流とすることができる。
Therefore, it was noted that there is a certain relationship between the supply gas amount Qg and the circulating flow rate QJ2, and this is shown in FIG. 3(B). That is, as shown in Fig. 3 (B), by setting the supply gas amount Qg to a range of 1 to 7 times the supply gas amount Q'g that provides the maximum circulation flow rate Qg, it is possible to improve the power consumption compared to the reduced vehicle phase flow. An advantageous three-phase flow of gas/liquid/solid mixture can be achieved.

一方、第3図(A)からも明らかなように、小粒子の添
加割合X (voll)によって気・液・固三相流が気
・液二相流よりも有利になる場合とならない場合がある
ことが分る。即ち、添加割合を5.0[mol$1]と
した場合には供給ガス量Qgは0.07 [Nm”・l
l1n−′1以下とし、添加割合を2.5 [volk
l とした場合には供給ガス量Qgは0.1[N+s3
・m1n−’]以下としないと有利にならない。つまり
小粒子の添加割合が多くなる程、供給ガス量Qgを少な
くしなければならない。
On the other hand, as is clear from Figure 3 (A), depending on the addition ratio of small particles I understand something. That is, when the addition ratio is 5.0 [mol$1], the supplied gas amount Qg is 0.07 [Nm"・l
l1n-'1 or less, and the addition ratio is 2.5 [volk
l, the supplied gas amount Qg is 0.1[N+s3
・m1n-'] or less, it will not be advantageous. In other words, the larger the proportion of small particles added, the smaller the supplied gas amount Qg must be.

以上をまとめると、気・液・固混合の三相流として膜モ
ジエール19内に原液を供給する場合は、Q’  g≦
Q(1+X)≦フQ゛の条件を満たすように運転すべき
である。
To summarize the above, when supplying the stock solution into the membrane module 19 as a three-phase flow of gas, liquid, and solid mixture, Q' g≦
It should be operated so that the condition Q(1+X)≦FQ' is satisfied.

(発明の効果) 以上に説明した如く本発明によれば、原液を気・液・固
三相流として膜モジュールに送り込んで処理する際に、
供給ガス量及び小粒子の添加割合を所定範囲にすること
で、膜モジュールのランニングコストの約半分を占める
と言われる消費動力を減車相流及び気液二相流に比べて
大幅に低減することができる。
(Effects of the Invention) As explained above, according to the present invention, when the stock solution is sent to the membrane module as a gas-liquid-solid three-phase flow for treatment,
By adjusting the amount of gas supplied and the addition ratio of small particles within a specified range, the power consumption, which is said to account for about half of the running cost of a membrane module, can be significantly reduced compared to reduced-vehicle phase flow and gas-liquid two-phase flow. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する膜処理装置の全体図、第
2図は透過流束と消費電力との関係を示すグラフ、第3
図(A)及び(B)はそれぞれ供給ガス量と透過流束及
び循環液流量との関係を示すグラフである。 尚、図面中、1は原液、2は原液タンク2.7はセパレ
ータ、9は小粒子、12は降下管、14は上昇管、15
は気液混合器、19は膜モジュールである。
Fig. 1 is an overall view of a membrane treatment apparatus for carrying out the method of the present invention, Fig. 2 is a graph showing the relationship between permeation flux and power consumption, and Fig. 3 is a graph showing the relationship between permeation flux and power consumption.
Figures (A) and (B) are graphs showing the relationship between the supply gas amount, permeation flux, and circulating fluid flow rate, respectively. In addition, in the drawing, 1 is the stock solution, 2 is the stock solution tank 2. 7 is the separator, 9 is the small particle, 12 is the downcomer pipe, 14 is the riser pipe, 15
1 is a gas-liquid mixer, and 19 is a membrane module.

Claims (1)

【特許請求の範囲】 透過膜を備えた膜モジュールに原液を液体、気体及び固
体を混合した三相流として供給し、クロスフロー濾過方
式によって精製、濃縮或は分離を行うようにした膜処理
方法において、前記原液を三相流として自然循環させる
ために供給するガス量をQg[Nm^3・min^−^
1]、最大循環液流量を与えるガス量をQ’g[Nm^
3・min^−^1]、固体としての小粒子の添加割合
をx[vol%]とした場合、これらは以下の関係を満
たすようにしたことを特徴とする膜処理方法。 Q’g≦Qg(1+x)≦7Q’g
[Claims] A membrane treatment method in which a stock solution is supplied as a three-phase flow containing a mixture of liquid, gas, and solid to a membrane module equipped with a permeable membrane, and purification, concentration, or separation is performed by a cross-flow filtration method. In order to naturally circulate the stock solution as a three-phase flow, the amount of gas supplied is Qg[Nm^3・min^-^
1], the gas amount that gives the maximum circulating fluid flow rate is Q'g[Nm^
3.min^-^1], and the addition ratio of small particles as a solid is x [vol%], the membrane processing method is characterized in that these satisfy the following relationship. Q'g≦Qg(1+x)≦7Q'g
JP1046146A 1989-02-27 1989-02-27 Membrane treatment method Expired - Fee Related JPH0751216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1046146A JPH0751216B2 (en) 1989-02-27 1989-02-27 Membrane treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1046146A JPH0751216B2 (en) 1989-02-27 1989-02-27 Membrane treatment method

Publications (2)

Publication Number Publication Date
JPH02227122A true JPH02227122A (en) 1990-09-10
JPH0751216B2 JPH0751216B2 (en) 1995-06-05

Family

ID=12738830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1046146A Expired - Fee Related JPH0751216B2 (en) 1989-02-27 1989-02-27 Membrane treatment method

Country Status (1)

Country Link
JP (1) JPH0751216B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251043A (en) * 1994-01-28 1995-10-03 Toto Ltd Filtering method and filter device
JPH0824594A (en) * 1994-07-22 1996-01-30 Toto Ltd Operation of filter
NL1018870C2 (en) * 2001-09-03 2003-03-05 Waterleiding Mij Overijssel N Effluent purification process, comprises recirculating mixture of additive and pre treated effluent along tubular nanofiltration or reverse osmosis membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104610A (en) * 1986-10-20 1988-05-10 Akua Runesansu Gijutsu Kenkyu Kumiai Method and device for treating membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104610A (en) * 1986-10-20 1988-05-10 Akua Runesansu Gijutsu Kenkyu Kumiai Method and device for treating membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251043A (en) * 1994-01-28 1995-10-03 Toto Ltd Filtering method and filter device
JPH0824594A (en) * 1994-07-22 1996-01-30 Toto Ltd Operation of filter
NL1018870C2 (en) * 2001-09-03 2003-03-05 Waterleiding Mij Overijssel N Effluent purification process, comprises recirculating mixture of additive and pre treated effluent along tubular nanofiltration or reverse osmosis membrane

Also Published As

Publication number Publication date
JPH0751216B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
US4992216A (en) Method for producing ozone-containing water
US3711072A (en) Apparatus for oxygenation of liquids
WO2008053700A1 (en) Method of desalting, apparatus for desalting, and bubble generator
JP2007000699A (en) Production method of nitrogen gas-dissolved water
US20220234930A1 (en) Method for Purifying Contaminated Water
US3855124A (en) Process and apparatus for the purification of an aqueous waste stream from a silicone-polymer producing plant
CN207877300U (en) A kind of ultra-pure water decarburization/device for deoxidizing system based on membrane contactor
Lazaridis et al. A hybrid MF process based on flotation
JPH05317605A (en) Membrane vacuum deaerating method and device therefor
JPS5819325B2 (en) Biseibutsu koubunshi mataha bisainakotai o ganyuusuru ekitai o lokasurutameno hohou oyobi souchi
JPH02227122A (en) Treatment by membrane
JPS63104610A (en) Method and device for treating membrane
US20020038782A1 (en) Plate-and -frame type membrane module system with inserted durable balls using vortex flow
WO2020080953A1 (en) A simultaneous, quadruple, low energy, high flow, gravity fed bio-filtration device with self-balancing aeration
JPH02227121A (en) Treatment by membrane
US1907691A (en) Process for purifying liquids
CN211813542U (en) Deionized water degasser
JP2012166142A (en) System for membrane separation activated sludge and method for membrane separation activated sludge
Ripperger Engineering aspects and applications of crossflow microfiltration
JP3111463B2 (en) Organic wastewater treatment equipment
JPH0580247B2 (en)
JP2006255505A (en) Biological treatment apparatus and biological treatment method
JPS63221805A (en) Filter
JPH0445895A (en) Waste water treating equipment
SE518105C2 (en) Methods and apparatus for aerating liquids

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees