Nothing Special   »   [go: up one dir, main page]

JPH02204963A - Manufacture of positive electrode of non-aqueous electrolyte battery - Google Patents

Manufacture of positive electrode of non-aqueous electrolyte battery

Info

Publication number
JPH02204963A
JPH02204963A JP1022677A JP2267789A JPH02204963A JP H02204963 A JPH02204963 A JP H02204963A JP 1022677 A JP1022677 A JP 1022677A JP 2267789 A JP2267789 A JP 2267789A JP H02204963 A JPH02204963 A JP H02204963A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
polymeric substance
aqueous electrolyte
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1022677A
Other languages
Japanese (ja)
Other versions
JP2927440B2 (en
Inventor
Kohei Yamamoto
浩平 山本
Yoshiro Harada
吉郎 原田
Yuzo Tanaka
田中 雄三
Yasutoshi Sasaki
佐々木 泰俊
Yuji Abe
裕治 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP1022677A priority Critical patent/JP2927440B2/en
Publication of JPH02204963A publication Critical patent/JPH02204963A/en
Application granted granted Critical
Publication of JP2927440B2 publication Critical patent/JP2927440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent penetration of a separator by immersing a positive electrode plate made in the form of a sheet in a solution of a synthetic polymeric substance or in a dispersive liquid, performing heat treatment at a temp. over the melting point of this polymeric substance, and thereby fixing particles and/or particulates to the surface of positive electrode plate. CONSTITUTION:A positive electrode plate made in the form of a sheet is immersed in an aqueous solution of a synthetic polymeric substance, in aqueous dispersion liquid, or in a solvent dispersed liquid, and a heat treatment is performed at temps. over the melting point of this polymeric substance and below its carbonizing temp. Examples of this polymeric substance are polyethylene, polybinyl alcohol, carboxyl methylcellulose, polybinyl buthylale, and their salts. The heat treatment melts the polymeric substance once to form a thin film on the surface, which is thus smoothened. At this time of applying the coating, particles and/or particulates liberated from the surface of positive electrode plate are solidified so as to prevent them from stripping off.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、非水電解?&電池における正極の製造方法
に関し、特に正極板表面に遊離状態で存在する正極粉末
を原因とする電圧異状を予め防止するための製造方法に
関する。
[Detailed Description of the Invention] (Field of Industrial Application) Is this invention applicable to non-aqueous electrolysis? The present invention relates to a method for manufacturing a positive electrode in a battery, and particularly to a method for preventing voltage abnormalities caused by positive electrode powder that exists in a free state on the surface of a positive electrode plate.

(従来の技術) スパイラル形非水電解液電池に用いられる正極は、二酸
化マンガンを主剤としてこれにグラファイト、アセチレ
ンブラックおよびポリテトラフルオルエチレンなどのバ
インダを加えて混練し、シート状に成形した後、これを
180〜210℃で数時間加熱乾燥したものであって、
この正極板と金属リチウムなどの負極板をセパレータを
介して桔層し、渦巻状に形成することによって電池を構
成するようにしている。
(Prior art) The positive electrode used in spiral non-aqueous electrolyte batteries is made by kneading manganese dioxide as a main ingredient with binders such as graphite, acetylene black, and polytetrafluoroethylene, and then forming the mixture into a sheet. , which was heated and dried at 180 to 210°C for several hours,
This positive electrode plate and a negative electrode plate made of metal lithium or the like are layered with a separator interposed therebetween, and are formed into a spiral shape to form a battery.

(発明が解決しようとする課題) 以上のようにして形成された前記シート状正極板の表面
には合剤組成物の粒子や微粉末が表面がら離脱した形で
存在し、表面の平滑化を損なっていた。またこれら遊離
した粒子や微粉末はセパレータの一部を突き破り、正負
極間の短絡現象を引き起こす原因となっていた。
(Problems to be Solved by the Invention) On the surface of the sheet-like positive electrode plate formed as described above, particles and fine powder of the mixture composition exist in the form of detachment from the surface, and the surface is not smoothed. It was a loss. Furthermore, these loose particles and fine powders break through a portion of the separator, causing a short circuit phenomenon between the positive and negative electrodes.

例えば、厚み25μm程度のポリプロピレンフィルムを
セパレータとして用いた場合には、従来の不織布からな
るセパレータに比べて厚みが薄くなり、その分だけ極間
距離が短くなり、電池性能を向上するために有利となる
が、このような薄いフィルムをセパレータに用いた場合
には特に前記粒子や微粉末がセパレータを貫通し易く、
正負極間の短絡現象の確率が高かった。
For example, when a polypropylene film with a thickness of about 25 μm is used as a separator, it is thinner than a conventional separator made of nonwoven fabric, and the distance between the electrodes is correspondingly shortened, which is advantageous for improving battery performance. However, when such a thin film is used as a separator, the particles and fine powder are particularly likely to penetrate through the separator.
The probability of short circuit phenomenon between positive and negative electrodes was high.

この短絡現象によって電池の製造工程中の歩留まりが低
下することは勿論であるとともに、貯蔵中に電圧異状を
起こすことがあるなど電池の安全性にも問題を生じてい
た。
This short-circuit phenomenon not only lowers the yield during the battery manufacturing process, but also poses problems with the safety of the battery, such as voltage abnormalities that may occur during storage.

この発明は以上の問題点を解決するものであって、前記
正極板の表面を平滑化し、粒子や微粉末を表面に固定し
てしまうことにより、セパレータ貫通を極力防止し、こ
れによる種々の不具合を防止するようにした非水電解液
電池における正極の製造方法を提供することを目的とす
るものである。
This invention solves the above problems, and by smoothing the surface of the positive electrode plate and fixing particles and fine powder to the surface, penetration of the separator is prevented as much as possible, and various problems caused by this are prevented. It is an object of the present invention to provide a method for manufacturing a positive electrode in a non-aqueous electrolyte battery that prevents this.

(課題を解決するための手段) 前記目的を達成するため、この発明の製造方法は、シー
ト状に形成された正極板を合成高分子物質の水溶液、ま
たは水性分散液または溶剤分散液に浸漬し、その後前記
合成高分子物質の融点以上、炭化温度以下の温度範囲で
熱処理をすることを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the manufacturing method of the present invention includes immersing a positive electrode plate formed in a sheet shape in an aqueous solution, an aqueous dispersion, or a solvent dispersion of a synthetic polymer substance. , and then heat-treated in a temperature range above the melting point and below the carbonization temperature of the synthetic polymer material.

前記合成高分子物質は、ポリエチレン(P E。The synthetic polymer material is polyethylene (PE).

以下略号を使用する)、ポリビニールアルコール(PV
A)、カルボキシルメチルセルロース(CMC) 、ポ
リビニールブチラール(PVB)およびその塩のうちか
ら選ばれた一種ないしは二種以上を組合せたものを用い
ることができる。
(abbreviations are used below), polyvinyl alcohol (PV
A), carboxymethylcellulose (CMC), polyvinyl butyral (PVB), and salts thereof, or a combination of two or more thereof can be used.

前記正極板のより詳しい製造手順は以下の通りである。A more detailed manufacturing procedure of the positive electrode plate is as follows.

まず、定法によりシート状正極板を製造する。First, a sheet-like positive electrode plate is manufactured by a conventional method.

すなわち、二酸化マンガンを主剤とし、これに導電材と
してグラファイト、アセチレンブラックおよびポリテト
ラフルオルエチレンなどのバインダ、水を加えて混練し
、これをシート状に成形する。
That is, manganese dioxide is used as the main ingredient, and a conductive material such as graphite, a binder such as acetylene black and polytetrafluoroethylene, and water are added and kneaded, and this is formed into a sheet.

次いでこのシート状正極板を浸漬処理および加熱処理を
行う。
Next, this sheet-like positive electrode plate is subjected to immersion treatment and heat treatment.

浸漬処理は、前述の合成高分子物質の水溶液、水性分散
液、または溶媒分散液の貯蔵槽中にシート状正極板を極
短時間の間浸漬し、表面に合成高分子物質の被膜を付着
させる。
The immersion process involves immersing the sheet positive electrode plate in a storage tank containing an aqueous solution, aqueous dispersion, or solvent dispersion of the synthetic polymer substance for a very short period of time, thereby depositing a film of the synthetic polymer substance on the surface. .

この場合、付着樹脂分が多すぎると表面全体を厚く覆っ
てしまい、電池の内部抵抗が大となるので好ましくなく
、また付着樹脂分が少なすぎると上述した効果が得られ
ないので、以下のごとく樹脂の種類に応じた濃度および
浸漬時間を設定する必要がある。
In this case, if the amount of adhered resin is too large, the entire surface will be thickly covered, which increases the internal resistance of the battery, which is undesirable.If the amount of adhered resin is too small, the above-mentioned effect cannot be obtained, so It is necessary to set the concentration and immersion time according to the type of resin.

(樹脂の種類と溶媒種類、濃度および浸漬時間)■PE 水分散液、樹脂金f130%、 浸漬時間は10〜15sec程度。(Resin type, solvent type, concentration and immersion time) ■PE Aqueous dispersion, resin gold f130%, The immersion time is about 10 to 15 seconds.

■PVA 水溶液、樹脂金ff120%、 浸漬時間は5〜10sec程度。■PVA Aqueous solution, resin gold ff120%, The immersion time is about 5 to 10 seconds.

■CMC 水溶液、樹脂含量20% 浸漬時間は5〜10sec程度。■CMC Aqueous solution, resin content 20% The immersion time is about 5 to 10 seconds.

■PVB アルコール溶液、樹脂金jiL15% 浸漬時間は3〜7sec程度。■PVB Alcohol solution, resin gold jiL 15% The immersion time is about 3 to 7 seconds.

その後真空乾燥炉中で数時間低温加熱(5〜6時間、5
0℃〜110℃)して水分または溶剤針を完全に除去し
た後、前記合成高分子物質の励点以上、炭化温度以下の
範囲でさらに数時間加熱する。
Afterwards, it is heated at low temperature for several hours in a vacuum drying oven (5 to 6 hours, 5
After completely removing moisture or solvent particles (0° C. to 110° C.), the mixture is further heated for several hours at a temperature above the excitation point of the synthetic polymer material and below the carbonization temperature.

この加熱温度範囲は、前述のごとく掲げた各高分子物質
によって異なり、次に示すように、各高分子物質の融点
および炭化温度から定められる。
This heating temperature range differs depending on each of the polymer substances mentioned above, and is determined from the melting point and carbonization temperature of each polymer substance, as shown below.

(各樹脂の融点および炭化温度) ■PE 融点   =110〜120℃ 炭化温度 二350〜470℃ ■PVA 融点   2130〜135℃ 炭化温度 7290〜390℃ ■CMC 融点   =165〜175℃ 炭化温度 :250〜290℃ ■PVB 融点   :190〜210℃ 炭化温度 二350〜400℃ 以上の各樹脂の特性に応じて、各樹脂の処理温度範囲が
定められるが、この場合、融点、炭化温度ともに必ずし
も臨界的に温度が定まるとは限らず、同一物質と言えど
も分子量の差異、含有水分の差異などにより、微視的に
みれば、上述した温度範囲により若干ずれることも考え
なくてはならない。以上のことを鑑みて熱処理温度は次
の通り決められる。
(Melting point and carbonization temperature of each resin) ■PE Melting point = 110~120℃ Carbonization temperature 2350~470℃ ■PVA Melting point 2130~135℃ Carbonization temperature 7290~390℃ ■CMC Melting point = 165~175℃ Carbonization temperature: 250~ 290℃ ■PVB Melting point: 190-210℃ Carbonization temperature 2350-400℃ The treatment temperature range for each resin is determined depending on the characteristics of each resin, but in this case, both the melting point and carbonization temperature are not necessarily critical. It must be considered that the temperature is not always fixed, and even if the material is the same, there may be slight deviations within the above-mentioned temperature range from a microscopic perspective due to differences in molecular weight, differences in water content, etc. In view of the above, the heat treatment temperature is determined as follows.

PE      130℃〜300℃ PVA     150℃〜260℃ CMC190℃〜240℃ PVB     230℃〜300℃ 以上の各樹脂に応じた温度範囲での加熱によって前記合
成高分子物質は一旦溶融し、表面に薄い被膜を形成し、
表面を平滑化する。この被膜形成時において正極板の表
面から遊離した粒子および微粉末を固めてしまい、これ
らの剥落を未然に防止することになる。
PE 130°C to 300°C PVA 150°C to 260°C CMC 190°C to 240°C PVB 230°C to 300°C The synthetic polymer substance is once melted by heating in the temperature range depending on each resin, and a thin film is formed on the surface. form,
Smooth the surface. During the formation of this film, the particles and fine powder released from the surface of the positive electrode plate are solidified, thereby preventing their peeling off.

処理終了後この正極板を所定寸法に切断し、これを金属
リチュウムなどの負極板とセパレータを介して積層して
渦巻状に形成し、非水電解液とともに電池ケース内に収
容し、正負極リード板をそれぞれの端子板に接続し、密
封することによってスパイラル形非水電解液電池を完成
する。
After the treatment is completed, this positive electrode plate is cut to a predetermined size, and this is laminated with a negative electrode plate made of metal lithium or the like via a separator to form a spiral shape.The positive electrode plate is placed in a battery case together with a non-aqueous electrolyte, and the positive and negative electrode leads are The spiral non-aqueous electrolyte battery is completed by connecting the plates to their respective terminal plates and sealing them.

(作 用) 以上の製造方法によって形成された正極板の表面には合
成高分子の層が付着し、この層が加熱により一基溶融し
、冷却によって固化する。固化状態で合成高分子の層は
正極の荒い層の表面を平坦化させ、同時に正極板表面に
存在する遊離した粒子、微粉末を固めてしまう。
(Function) A synthetic polymer layer adheres to the surface of the positive electrode plate formed by the above manufacturing method, and this layer is melted by heating and solidified by cooling. In the solidified state, the synthetic polymer layer flattens the surface of the rough layer of the positive electrode, and at the same time solidifies loose particles and fine powder present on the surface of the positive electrode plate.

したがってこれをセパレータに圧召した状態では、前記
粒子、微粉末のセパレータ貫通がなく、セパレータ貫通
を原因とする正負極間の短絡現象を未然に防止する。
Therefore, when this is pressed into the separator, the particles and fine powder do not penetrate the separator, thereby preventing a short circuit phenomenon between the positive and negative electrodes caused by the penetration of the separator.

(発明の効果) 以上説明したように、この発明の製造方法にあっては、
以下の効果がある。
(Effects of the invention) As explained above, in the manufacturing method of this invention,
It has the following effects.

正極板表面に遊離した合剤粒子、微粉末によるセパレー
タ貫通がなく、これによる正負極間の短絡現象を減少さ
せることができる。
There is no penetration of the separator by mixture particles or fine powder released on the surface of the positive electrode plate, and short-circuit phenomena between the positive and negative electrodes due to this can be reduced.

短絡現象による電池製造工程中の歩留まり低下、貯蔵中
の電圧異状を防止でき、貯蔵中における安全性を向上で
きる。
It is possible to prevent yield reduction during the battery manufacturing process and voltage abnormalities during storage due to short-circuit phenomena, and improve safety during storage.

(実 施 例) 以下、この発明の実施例を図面を用いて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail using the drawings.

但し、この発明方法は以下の実施例にのみ限定されるも
のではない。
However, the method of this invention is not limited to the following examples.

実施例1゜ CR2/3 8・Hの電池用の正極板として、二酸化マ
ンガンとグラファイトおよびポリテトラフルオルエチレ
ンをバインダとしてこれらの混合物に水を加えて混練し
、幅30.長さ240.厚み0.45mmのシート状に
成形した。
Example 1 A positive electrode plate for a CR2/3 8.H battery was prepared by kneading a mixture of manganese dioxide, graphite, and polytetrafluoroethylene as a binder with the addition of water. Length 240. It was molded into a sheet with a thickness of 0.45 mm.

このシートを樹脂分30%のPE水分散液中に10〜1
5sec浸漬し、その後60℃で5時間乾燥した後さら
に真空乾燥炉中で130〜400℃の各温度で5時間加
熱し、その後取り出してこれを正極板とした。
This sheet was placed in a PE aqueous dispersion with a resin content of 30%.
The sample was immersed for 5 seconds, then dried at 60°C for 5 hours, heated in a vacuum drying oven at temperatures ranging from 130 to 400°C for 5 hours, and then taken out and used as a positive electrode plate.

そして、この正極板を用いてスパイラル形の非水電解液
電池を形成し、電池100個当たりの電圧不良発生数を
同一の加熱温度での未処理のものと比較したところ、以
下の表1に示す結果を得られた。なお、用いたセパレー
タは、いずれも厚さ25μのポリプロピレンマイクロポ
ーラスフィルムであり、処理した場合と未処理の場合で
異なるのみであって、その他のファクターは一定である
Using this positive electrode plate, a spiral type non-aqueous electrolyte battery was formed, and the number of voltage failures per 100 batteries was compared with untreated batteries at the same heating temperature, as shown in Table 1 below. The following results were obtained. The separators used were all polypropylene microporous films with a thickness of 25 μm, and the only difference was between the treated and untreated cases, and other factors were constant.

表1 以上の表から明らかなように、PE処理した正極板を用
いた非水電解液電池は未処理のものに比べて電圧不良個
数が極端に少ない。
Table 1 As is clear from the above table, the number of voltage failures in non-aqueous electrolyte batteries using PE-treated positive electrode plates is extremely small compared to untreated batteries.

また、350℃以上ではPE処理したものであっても電
圧不良があるが、これは加熱温度が炭化温度以上となり
、表面の平滑化を保てなくなったものと考えられる。
Further, at temperatures above 350° C., even those subjected to PE treatment have voltage defects, but this is thought to be due to the fact that the heating temperature exceeds the carbonization temperature and the surface cannot be kept smooth.

さらに、表1には現れていないが150℃を下回った温
度ではPE処理したものの電池の内部抵抗は増加する傾
向にある。
Furthermore, although it does not appear in Table 1, at temperatures below 150° C., the internal resistance of the battery tends to increase even though it has been subjected to PE treatment.

これは、150℃以下では表面の樹脂層が密になったま
まの状態が保たれ、これによって内部抵抗の増加を招来
すると考えられる。
This is thought to be because the resin layer on the surface remains dense at temperatures below 150° C., leading to an increase in internal resistance.

したがって、好ましくは、PE処理の場合には加熱温度
は150〜240℃程度である。
Therefore, preferably, in the case of PE treatment, the heating temperature is about 150 to 240°C.

実施例2゜ 次にその他の合成高分子に浸漬処理した正極と未処理の
ものの電圧不良数を表2に示す。これらの例では前記と
同様の作業手順にしたがって処理が行われた。
Example 2 Next, Table 2 shows the number of voltage failures for positive electrodes immersed in other synthetic polymers and untreated positive electrodes. In these examples, processing was performed according to the same working procedure as described above.

但し、熱処理条件は各合成高分子によって以下のように
行った。
However, the heat treatment conditions were as follows depending on each synthetic polymer.

表2 表3 この表3からも明らかなように各合成高分子の融点、炭
化温度に応じて最も良い条件下では電圧不良は大きく減
少する。なお、これら各実施例の場合においても、処理
温度p(各樹脂の融点より若干高い程度(具体的には融
点より20〜30℃高い温度)では、前述のPEの場合
と同様内部抵抗が増加するので、少なくとも融点より更
に50℃以上高い温度で加熱処理することが望ましい。
Table 2 Table 3 As is clear from Table 3, voltage defects are greatly reduced under the best conditions depending on the melting point and carbonization temperature of each synthetic polymer. In addition, in the case of each of these examples, the internal resistance increases at the processing temperature p (slightly higher than the melting point of each resin (specifically, a temperature 20 to 30°C higher than the melting point), as in the case of PE described above. Therefore, it is desirable to perform the heat treatment at a temperature that is at least 50°C higher than the melting point.

特許出願人     富士電気化学株式会社代  理 
 人         弁理士  −色  健  軸間
             弁理士  松  本  雅
  利手続補正書(自発) 平成元年3月28日 殿  ・ )j
Patent applicant Fuji Electrochemical Co., Ltd. Representative
Person Patent Attorney - Ken Iro Chikuma Patent Attorney Masatoshi Matsumoto Procedural Amendment (Voluntary) March 28, 1989 ・ )j

Claims (3)

【特許請求の範囲】[Claims] (1)内部に多孔性フィルムからなるセパレータを挟ん
で正極板と負極板とを対向して積層した非水電解液電池
において、シート状に形成された正極板を合成高分子物
質の水溶液、または水性分散液または溶剤分散液に浸漬
し、その後前記合成高分子物質の融点以上、炭化温度以
下の温度範囲で熱処理をすることを特徴とする非水電解
液電池における正極の製造方法。
(1) In a non-aqueous electrolyte battery in which a positive electrode plate and a negative electrode plate are stacked facing each other with a separator made of a porous film sandwiched therein, a positive electrode plate formed in a sheet shape is coated with an aqueous solution of a synthetic polymer substance, or 1. A method for producing a positive electrode for a non-aqueous electrolyte battery, comprising immersing it in an aqueous dispersion or a solvent dispersion, and then heat-treating it in a temperature range above the melting point of the synthetic polymer material and below the carbonization temperature.
(2)前記合成高分子物質は、ポリエチレン、ポリビニ
ールアルコール、カルボキシルメチルセルロース、ポリ
ビニールブチラールおよびその塩のうちから選ばれた一
種ないしは二種以上の組合せであることを特徴とする請
求項1記載の非水電解液電池における正極の製造方法。
(2) The synthetic polymeric substance is one or a combination of two or more selected from polyethylene, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl butyral, and salts thereof. A method for manufacturing a positive electrode in a non-aqueous electrolyte battery.
(3)前記熱処理の温度範囲が、ポリエチレンについて
は、130℃〜300℃、ポリビニールアルコールにつ
いては150℃〜260℃、カルボキシメチルセルロー
スについては190℃〜240℃、ポリビニールブチラ
ールについては230℃〜300℃であることを特徴と
する請求項2記載の非水電解液電池における正極の製造
方法。
(3) The temperature range of the heat treatment is 130°C to 300°C for polyethylene, 150°C to 260°C for polyvinyl alcohol, 190°C to 240°C for carboxymethylcellulose, and 230°C to 300°C for polyvinyl butyral. 3. The method for manufacturing a positive electrode for a non-aqueous electrolyte battery according to claim 2, wherein the temperature is .degree.
JP1022677A 1989-02-02 1989-02-02 Method for producing positive electrode in non-aqueous electrolyte battery Expired - Lifetime JP2927440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1022677A JP2927440B2 (en) 1989-02-02 1989-02-02 Method for producing positive electrode in non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1022677A JP2927440B2 (en) 1989-02-02 1989-02-02 Method for producing positive electrode in non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH02204963A true JPH02204963A (en) 1990-08-14
JP2927440B2 JP2927440B2 (en) 1999-07-28

Family

ID=12089493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1022677A Expired - Lifetime JP2927440B2 (en) 1989-02-02 1989-02-02 Method for producing positive electrode in non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2927440B2 (en)

Also Published As

Publication number Publication date
JP2927440B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
KR101110264B1 (en) Composite microporous film, and production method and use thereof
CN105378978B (en) Electrode, electrochemical cell and the method for forming electrode and electrochemical cell
JP5964951B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
EP0699348A1 (en) Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
US6299653B1 (en) Hybrid electrolyte, method for manufacturing the same, and method for manufacturing electrochemical element using the same
EP2696393A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2006123811A1 (en) Separator for lithium ion secondary battery and lithium ion secondary battery
EP2696394A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
KR20100098498A (en) Batteries having inorganic/organic porous films
JP2001520443A (en) Battery with porous components
WO2000060684A1 (en) Microporous electrode or separator for use in a non-aqueous battery, and method of manufacturing
JPH11144700A (en) Porous membrane, battery separator comprising porous membrane, and manufacture thereof
JPH0676808A (en) Battery diaphragm and battery
CN108878947B (en) Method for reducing occurrence of short circuit and/or lithium precipitation in battery pack
US6087045A (en) Primer with electrochemically inert particulate and process for fabricating same
JP4230584B2 (en) Polyethylene microporous membrane
JPH02204963A (en) Manufacture of positive electrode of non-aqueous electrolyte battery
KR102379142B1 (en) Manufacturing methode for self-standing solid electrolyte composite sheet and all-solid-state secondary battery provided with the same
EP1261046B1 (en) Method of manufacturing an electrode/separator assembly for galvanic elements
JP2004022295A (en) Separator, manufacturing method of the same, and storage element
JP2000133271A (en) Binder for binding electrode active material
JP2004204119A (en) Porous film and electrochemical element using the same
EP0053162A1 (en) Integrated carbon/insulator structure and method for fabricating same.
JPH07220722A (en) Manufacture of electrode for lithium secondary battery
KR20220093356A (en) Method for producing porous film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10