JP4230584B2 - Polyethylene microporous membrane - Google Patents
Polyethylene microporous membrane Download PDFInfo
- Publication number
- JP4230584B2 JP4230584B2 JP00455199A JP455199A JP4230584B2 JP 4230584 B2 JP4230584 B2 JP 4230584B2 JP 00455199 A JP00455199 A JP 00455199A JP 455199 A JP455199 A JP 455199A JP 4230584 B2 JP4230584 B2 JP 4230584B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- polyethylene
- microporous membrane
- polyethylene microporous
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はポリエチレン微多孔膜、およびその電池セパレーターへの応用に関する。
【0002】
【従来の技術】
ポリエチレン微多孔膜は精密濾過膜、電池用セパレーター、コンデンサー用セパレーター等に使用されている。このうち電池用セパレーター、特にリチウムイオン二次電池用セパレーターには、過充電状態などで電池内部の温度が上昇したときに、ポリエチレン微多孔膜の孔が閉塞し電流を遮断する「ヒューズ効果」が要求されている。
【0003】
ところが従来の低容量電池用ポリエチレン微多孔膜セパレータをそのまま高容量電池セパレータに応用した場合、その高い充電容量のため、セパレータがヒューズ効果を示す前に電極部における金属リチウム析出による破膜や短絡などが生じやすいという欠点があった。特に最近は、電池の高容量化が指向されており、従来のセパレータ膜よりも一層、低温で速やかにヒューズ効果を示すセパレータ膜が望まれている。
【0004】
【発明が解決しようとする課題】
本発明は、電池用、特に高充電容量電池用セパレータとして電池の過充電時の短絡を防止するポリエチレン微多孔膜を提供するものである。
【0005】
【課題を解決するための手段】
本発明者は前記課題に対して鋭意研究を重ねた結果、特定の熱特性を有するポリエチレン微多孔膜が、上記課題を克服する上で、著しく寄与することを見出し、本発明をなすに至った。
すなわち本発明は、
(1)孔閉塞温度Tfが134℃以下で、かつ融解温度TmとTfが次のような関係式で表せるポリエチレン微多孔膜、
Tm−Tf>0
(2)孔閉塞温度Tfが電解液を含浸した寸法固定状態の昇温過程で電気抵抗が1000Ωとなる温度であり、かつ、融解温度TmがDSCによる融解ピーク温度である(1)に記載のポリエチレン微多孔膜、
(3)上記(1)ないし(2)のポリエチレン微多孔膜からなる電池用セパレーター、
(4)上記(3)の電池用セパレーターを用いた電池に関する。
【0006】
以下、本発明を詳細に説明する。
本発明のポリエチレン微多孔膜は厚み1〜200μm、空孔率20〜90%、平均孔径0.001〜2μmであることが好ましく、孔閉塞温度Tfとは、電解液を含浸した微多孔膜の電気透過性が実質的に失われる温度、あるいはセパレータとしての膜にヒューズ効果が認められる温度であって、134℃以下である。134℃を越えると、ヒューズ効果が遅れるため電池の短絡を十分に防止できない場合があるので好ましくない。
【0007】
また、Tfと融解温度Tmの関係は、Tm−Tf>0であることが必要である。Tm−Tfが0より小さいと、孔閉塞の前に膜が融解し、膜がヒューズ効果を発揮しない内に溶融ポリエチレンが電極活物質内にしみ込む等して、電極間の短絡が起こりやすくなりる。融解温度Tmは、実質的にポリエチレン微多孔膜中の高分子結晶が完全に融解する温度である。
【0008】
膜閉塞温度Tfは好ましくは、膜に電解液を含浸し、寸法固定状態の昇温過程で測定した膜の電気抵抗が1000Ωとなる温度(詳しくは発明の実施の形態に記載)であり、また、融解温度Tmは好ましくは、DSCによる膜の融解ピーク温度である。
次に本発明のポリエチレン微多孔膜の製造法について説明する。
【0009】
この発明のポリエチレン微多孔膜は、例えば特定のポリエチレンと孔形成剤を融点以上で混練し、形状付与後、これをポリエチレンの結晶化温度以下まで冷却して高分子ゲルを生成し、次いで該高分子ゲルを延伸したあと孔形成剤を抽出除去し、その後再度延伸し、さらに好ましくは熱固定あるいは熱緩和等の熱処理を行うことによって製造される。
【0010】
ポリエチレンとしては、分子量1万未満のものを20%以上含み、かつ重量平均分子量が10万〜400万、より好ましくは20万〜70万、さらに好ましくは25万〜50万である高密度ポリエチレンが用いられる。重量平均分子量が10万より小さいと高分子ゲルが脆くなり延伸などの加工が困難になり、400万より大きいと混練が困難になるため好ましくない。また、分子量1万未満のものの割合が、20%より少ない場合、所望の熱特性を有する微多孔膜が得られず、このポリエチレンから成型した微多孔膜のTf温度が高くなりすぎてしまう。
【0011】
さらに、このポリエチレンは、エチレン単位に対してプロピレン、ブテン、ペンテン、ヘキセン、オクテン等のα−オレフィンの単位を4モル%以下の割合で含む共重合体(線状共重合ポリエチレン)であってもよい。また、ブレンドや多段重合などの手段によって重量平均分子量を好ましい範囲に調節しても良い。さらに、これらに中密度ポリエチレン、線状低密度ポリエチレン、低密度ポリエチレン、EPR等のポリオレフィンを30%以下の割合でブレンドしてもかまわない。
【0012】
本発明において、微多孔膜の熱特性を特定の範囲にコントロールするための方法としては、上記のような特定のポリエチレンを用いる方法が最も優れている。
孔形成剤としては、ポリエチレンの融点以上で均一に相溶することのできる有機化合物で、好ましくは融点が130℃以下で、沸点が200℃以上のものが用いられる。例えば、ジオクチルフタレート、ジイソノニルフタレート、ジヘプチルフタレート、ジシクロヘキシルフタレート、グリセリントリオレート、プロピレングリコールジオレート、流動パラフィン等が挙げられる。
【0013】
次に、ポリエチレンと孔形成剤との重量比は10:90〜90:10の範囲が好ましい。特に好ましい範囲は20:80〜60:40である。
このような組成物の混練は140℃〜250℃の範囲で攪拌機や押出機を用いて行い、混練後ダイスからシート状に押し出してキャストロールなどでポリエチレンの結晶化温度以下まで冷却し、ゲルシートとする。
【0014】
得られたゲルシートの延伸は100℃〜140℃の範囲で、インフレーション法、圧延法、ロール法、テンター法等で行い、一軸延伸でも二軸延伸でも良いが少なくとも一軸方向に面積倍率で3倍以上延伸するのが好ましい。
次に延伸物から孔形成剤の抽出除去を残留孔形成剤が5%未満になるまで任意の溶媒を用いて行い、最後に抽出膜を再び少なくとも一軸方向に延伸する。延伸方法はテンター法、ロール法等が使用でき、80℃〜130℃の温度範囲で行うのが好ましい。
【0015】
さらに、抽出後の延伸に続いて、または後に、熱固定あるいは熱緩和等の熱処理を行ってもかまわない。
【0016】
【発明の実施の形態】
次に実施例によって本発明をさらに詳細に説明する。
実施例において示される試験方法は次の通りである。
(1)膜厚
ダイヤルゲージ(尾崎製作所:PEACOCK No.25)にて測定した。
(2)気孔率
20cm四方のサンプルをとり、その体積と重量から次式を用いて計算した。
気孔率(%)=(体積(cm3)−重量(g)/ポリエチレンの密度)/体積(cm3)×100
(3)突き刺し強度
カトーテック製KES−G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突き刺し速度2mm/secの条件で突き刺し試験を行い、最大突き刺し荷重を突き刺し強度(g)とした。
(4)透気度
JIS P−8117準拠のガーレー式透気度計にて測定した。測定値に25(μm)/膜厚(μm)を乗じる事によって25μm換算透気度とした。
(5)孔閉塞温度
図1に孔閉塞温度の測定装置の概略図を示す。1は微多孔膜であり、2A及び2Bは厚さ10μmのニッケル箔、3A及び3Bはガラス板である。4は電気抵抗測定装置(安藤電気製LCRメーターAG−4311)でありニッケル箔2A、2Bと接続されている。5は熱電対であり温度計6と接続されている。7はデーターコレクターであり、電気抵抗装置4及び温度計6と接続されている。8はオーブンであり、微多孔膜を加熱する。
【0017】
さらに詳細に説明すると、図2に示すようにニッケル箔2A上に微多孔膜1を重ねて、縦方向にテフロンテープでニッケル箔2Aに固定されている。微多孔膜1には電解液として1mol/リットルのホウフッ化リチウム溶液(溶媒:プロピレンカーボネート/エチレンカーボネート/γ−ブチルラクトン=1/1/2)が含浸されている。ニッケル箔2B上には図3に示すようにテフロンテープを貼り合わせ、箔2Bの中央部分に15mmX10mmの窓の部分を残してマスキングしてある。
【0018】
ニッケル箔2Aとニッケル箔2Bを微多孔膜1をはさむような形で重ね合わせ、さらにその両側からガラス板3A、3Bによって2枚のニッケル箔をはさみこむ。このとき、箔2Bの窓の部分と、多孔膜1が相対する位置に来るようになっている。
2枚のガラス板は市販のダブルクリップではさむことにより固定する。熱電対5はテフロンテープでガラス板に固定する。
【0019】
このような装置で連続的に温度と電気抵抗を測定する。なお、温度は25℃から200℃まで2℃/minの速度にて昇温させ、電気抵抗値は1kHzの交流にて測定する。孔閉塞温度とは微多孔膜の電気抵抗値が103Ωに達するときの温度と定義する。
(6)DSC融解ピーク温度
セイコー電子工業(株)製DSC−220Cを使用し測定した。サンプルは直径5mmの円形に打ち抜き、数枚重ね合わせて3mgとし、これを直径5mmのアルミ製オープンサンプルパンに敷き詰め、クリンピングカバーをのせサンプルシーラーでアルミパン内に固定した。昇温速度2℃/minで、30℃から180℃までを測定し、融解吸熱曲線の極大となる温度をDSC融解ピーク温度とした。
(7)過充電試験
LiCoO2を正極活物質とし、グラファイトおよびアセチレンブラックを導電剤とし、フッ素ゴムを結着剤とし各々LiCoO2:グラファイト:アセチレンブラック:フッ素ゴム=88:7.5:2.5:2の重量比で混合したものをジメチルホルムアミドペーストとしてAl箔に塗布乾燥したシートを正電極として用い、ニードルコークス:フッ素ゴム=95:5の重量比で混合したものをジメチルホルムアミドペーストとしてCu箔に塗布乾燥したシートを負電極として用い、電解液としてプロピレンカーボネートとブチロラクトンの混合溶媒(体積比=1:1)にホウフッ化リチウムを1.0Mの濃度で調整した液を用いてリチウムイオン電池を製造した。この電池を4.2Vで5時間充電したあと、さらに定電流で過充電を行った。過充電によって電池の内部温度は上昇し、孔閉塞温度に達した時の電流の遮断状態を観察した。なお、本試験は加速試験であるため実際の電池に装備されているPTC素子等の安全装置は取り外した状態で行った。
【0020】
【実施例1】
分子量1万未満を25%含む重量平均分子量35万、密度0.960の高密度ポリエチレン40部、孔形成剤として流動パラフィン60部および酸化防止剤として該ポリエチレンに対して0.3重量部のテトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンを2軸押出機を用いて250℃で混練し、Tダイから押し出して冷却ロールで引き取り厚さ2mmのシートを得た。得られたシートを二軸延伸機を用いて、延伸温度130℃で7×7倍に延伸し、続いて塩化メチレン中に浸漬して流動パラフィンを除去した後、乾燥して微多孔膜を得た。さらにこの微多孔膜をテンターを用いて、延伸温度125℃で幅方向に1.8倍延伸した後、幅方向の延伸を17%緩和させつつ熱処理した。
【0021】
得られた膜の物性、またこれをセパレーターとして用いた電池の特性を表1に記載した。
【0022】
【比較例1】
分子量1万未満が2%の重量平均分子量40万、密度0.950の高密度ポリエチレンを用いた以外は、実施例1と同様に微多孔膜を作成した。
得られた膜の物性、またこれをセパレーターとして用いた電池の特性を表1に記載した。
【0023】
【比較例2】
重量平均分子量20万、密度0.920の低密度ポリエチレン12部、分子量1万未満が1%の重量平均分子量35万、密度0.954の高密度ポリエチレン28部を用いた以外は実施例1と同様に微多孔膜を作成した。得られた膜の物性、またこれをセパレーターとして用いた電池の特性を表1に記載した。
【0024】
【表1】
【0025】
【発明の効果】
本発明のポリエチレン微多孔膜は、良好な熱特性を持ち、特にリチウムイオン二次電池用セパレーターに好適である。
【図面の簡単な説明】
【図1】本発明の孔閉塞温度の測定装置の概略図。
【図2】本発明の孔閉塞温度の測定装置の部分図。
【図3】本発明の孔閉塞温度の測定装置の部分図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyethylene microporous membrane and its application to a battery separator.
[0002]
[Prior art]
Polyethylene microporous membranes are used in microfiltration membranes, battery separators, condenser separators, and the like. Among them, battery separators, especially lithium ion secondary battery separators, have a “fuse effect” that blocks the pores of the polyethylene microporous membrane and cuts off the current when the temperature inside the battery rises due to overcharging. It is requested.
[0003]
However, when a conventional polyethylene microporous membrane separator for low-capacity batteries is applied to a high-capacity battery separator as it is, because of its high charging capacity, before the separator exhibits a fuse effect, film breakage or short-circuiting due to metal lithium deposition at the electrode part, etc. There was a fault that it was easy to occur. In particular, recently, the capacity of batteries has been increased, and a separator film that exhibits a fuse effect more quickly at a lower temperature than a conventional separator film is desired.
[0004]
[Problems to be solved by the invention]
The present invention provides a polyethylene microporous membrane that prevents a short circuit during battery overcharge as a battery separator, particularly as a high charge capacity battery separator.
[0005]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventor has found that a polyethylene microporous film having specific thermal characteristics contributes significantly in overcoming the above problems, and has led to the present invention. .
That is, the present invention
(1) A polyethylene microporous membrane having a pore closing temperature Tf of 134 ° C. or lower and a melting temperature Tm and Tf represented by the following relational expression:
Tm-Tf> 0
(2) The pore closing temperature Tf is a temperature at which the electrical resistance becomes 1000Ω during the temperature rising process in a fixed dimension state impregnated with the electrolyte, and the melting temperature Tm is a melting peak temperature by DSC. Polyethylene microporous membrane,
(3) A battery separator comprising the polyethylene microporous membrane of (1) or (2) above,
(4) The present invention relates to a battery using the battery separator (3).
[0006]
Hereinafter, the present invention will be described in detail.
The polyethylene microporous membrane of the present invention preferably has a thickness of 1 to 200 μm, a porosity of 20 to 90%, and an average pore diameter of 0.001 to 2 μm. The pore closing temperature Tf is a microporous membrane impregnated with an electrolytic solution. The temperature at which the electrical permeability is substantially lost, or the temperature at which the fuse effect is recognized in the film as the separator, is 134 ° C. or lower. If the temperature exceeds 134 ° C., the fuse effect is delayed, so that it may not be possible to sufficiently prevent a short circuit of the battery.
[0007]
Moreover, the relationship between Tf and melting temperature Tm needs to be Tm-Tf> 0. When Tm-Tf is smaller than 0, the film is melted before the hole is closed, and the polyethylene is soaked into the electrode active material while the film does not exhibit the fuse effect, so that the short circuit between the electrodes is likely to occur. . The melting temperature Tm is a temperature at which the polymer crystals in the polyethylene microporous membrane are completely melted.
[0008]
The membrane closing temperature Tf is preferably a temperature (specifically described in the embodiment of the invention) at which the electrical resistance of the membrane is 1000Ω measured in the temperature rising process in a fixed dimension state by impregnating the membrane with electrolyte. The melting temperature Tm is preferably the melting peak temperature of the film by DSC.
Next, the manufacturing method of the polyethylene microporous film of this invention is demonstrated.
[0009]
The polyethylene microporous membrane of the present invention is prepared by, for example, kneading a specific polyethylene and a pore-forming agent at a melting point or higher, giving a shape, and then cooling it to a temperature below the crystallization temperature of polyethylene to form a polymer gel, After the molecular gel is stretched, the pore-forming agent is extracted and removed, and then stretched again, and more preferably, heat treatment such as heat fixation or heat relaxation is performed.
[0010]
The polyethylene includes a high-density polyethylene containing 20% or more of those having a molecular weight of less than 10,000, and having a weight average molecular weight of 100,000 to 4,000,000, more preferably 200,000 to 700,000, and more preferably 250,000 to 500,000. Used. If the weight average molecular weight is less than 100,000, the polymer gel becomes brittle and processing such as stretching becomes difficult, and if it is more than 4 million, kneading becomes difficult. On the other hand, when the ratio of the molecular weight less than 10,000 is less than 20%, a microporous film having desired thermal characteristics cannot be obtained, and the Tf temperature of the microporous film molded from polyethylene becomes too high.
[0011]
Further, this polyethylene may be a copolymer (linear copolymer polyethylene) containing an α-olefin unit such as propylene, butene, pentene, hexene, octene at a ratio of 4 mol% or less with respect to the ethylene unit. Good. Further, the weight average molecular weight may be adjusted to a preferred range by means such as blending or multistage polymerization. Furthermore, polyolefins such as medium density polyethylene, linear low density polyethylene, low density polyethylene, and EPR may be blended at a ratio of 30% or less.
[0012]
In the present invention, as a method for controlling the thermal characteristics of the microporous membrane within a specific range, the method using the specific polyethylene as described above is most excellent.
As the pore-forming agent, an organic compound which can be uniformly compatible at a melting point of polyethylene or higher, preferably having a melting point of 130 ° C. or lower and a boiling point of 200 ° C. or higher. Examples include dioctyl phthalate, diisononyl phthalate, diheptyl phthalate, dicyclohexyl phthalate, glycerin trioleate, propylene glycol diolate, liquid paraffin, and the like.
[0013]
Next, the weight ratio of polyethylene to the pore forming agent is preferably in the range of 10:90 to 90:10. A particularly preferable range is 20:80 to 60:40.
Kneading of such a composition is carried out using a stirrer or an extruder in the range of 140 ° C. to 250 ° C., and after extruding into a sheet form from a die, cooled to below the crystallization temperature of polyethylene with a cast roll or the like, To do.
[0014]
The obtained gel sheet is stretched in the range of 100 ° C. to 140 ° C. by an inflation method, a rolling method, a roll method, a tenter method, or the like, and may be uniaxial stretching or biaxial stretching, but at least three times the area magnification in the uniaxial direction. It is preferable to stretch.
Next, the pore-forming agent is extracted and removed from the stretched product using an arbitrary solvent until the residual pore-forming agent is less than 5%, and finally the extracted film is stretched again at least in the uniaxial direction. As the stretching method, a tenter method, a roll method, or the like can be used, and it is preferable to perform the stretching in a temperature range of 80 to 130 ° C.
[0015]
Further, heat treatment such as heat fixation or heat relaxation may be performed following or after stretching after extraction.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to examples.
The test methods shown in the examples are as follows.
(1) Measured with a film thickness dial gauge (Ozaki Seisakusho: PEACOCK No. 25).
(2) A sample with a porosity of 20 cm square was taken and calculated from the volume and weight using the following equation.
Porosity (%) = (volume (cm 3) −weight (g) / density of polyethylene) / volume (cm 3) × 100
(3) Puncture strength Using a KES-G5 handy compression tester manufactured by Kato Tech, a puncture test was performed under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec. It was.
(4) Air permeability Measured with a Gurley air permeability meter in accordance with JIS P-8117. By multiplying the measured value by 25 (μm) / film thickness (μm), the air permeability was converted to 25 μm.
(5) Hole closing temperature FIG. 1 shows a schematic view of a hole closing temperature measuring apparatus. 1 is a microporous film, 2A and 2B are 10-micrometer-thick nickel foils, and 3A and 3B are glass plates. 4 is an electrical resistance measuring device (LCR meter AG-4411 manufactured by Ando Electric Co., Ltd.), which is connected to the nickel foils 2A and 2B. A thermocouple 5 is connected to the
[0017]
More specifically, as shown in FIG. 2, the microporous film 1 is overlaid on the
[0018]
The
Two glass plates are fixed by pinching with a commercially available double clip. The thermocouple 5 is fixed to the glass plate with Teflon tape.
[0019]
Temperature and electric resistance are continuously measured with such an apparatus. The temperature is raised from 25 ° C. to 200 ° C. at a rate of 2 ° C./min, and the electric resistance value is measured at an alternating current of 1 kHz. The pore closing temperature is defined as the temperature at which the electrical resistance value of the microporous membrane reaches 103Ω.
(6) DSC melting peak temperature Measured using DSC-220C manufactured by Seiko Denshi Kogyo Co., Ltd. The sample was punched into a circle with a diameter of 5 mm, and several sheets were piled up to 3 mg. This was spread on an aluminum open sample pan with a diameter of 5 mm, and a crimping cover was put on and fixed in the aluminum pan with a sample sealer. The temperature from 30 ° C. to 180 ° C. was measured at a rate of temperature increase of 2 ° C./min, and the temperature at which the melting endotherm curve was maximized was taken as the DSC melting peak temperature.
(7) Overcharge test LiCoO2 was used as the positive electrode active material, graphite and acetylene black were used as the conductive agent, and fluororubber was used as the binder, and LiCoO2: graphite: acetylene black: fluororubber = 88: 7.5: 2.5: A sheet mixed with a weight ratio of 2 as a dimethylformamide paste applied to an Al foil and dried was used as a positive electrode, and a mixture of needle coke: fluororubber = 95: 5 with a weight ratio of dimethylformamide paste as a dimethylformamide paste on a Cu foil. Using the coated and dried sheet as a negative electrode, a lithium ion battery is manufactured using a solution prepared by adjusting lithium borofluoride to a concentration of 1.0 M in a mixed solvent of propylene carbonate and butyrolactone (volume ratio = 1: 1) as an electrolytic solution. did. After this battery was charged at 4.2 V for 5 hours, it was further overcharged with a constant current. The internal temperature of the battery increased due to overcharging, and the state of current interruption when the hole closed temperature was reached was observed. Since this test is an accelerated test, safety devices such as PTC elements equipped in actual batteries were removed.
[0020]
[Example 1]
40 parts high-density polyethylene having a weight average molecular weight of 350,000 containing 25% of a molecular weight of less than 10,000 and a density of 0.960, 60 parts of liquid paraffin as a pore-forming agent and 0.3 parts by weight of tetrakis relative to the polyethylene as an antioxidant -[Methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane was kneaded at 250 ° C. using a twin screw extruder, extruded from a T die, and cooled with a cooling roll. A sheet having a take-up thickness of 2 mm was obtained. The obtained sheet was stretched 7 × 7 times at a stretching temperature of 130 ° C. using a biaxial stretching machine, and subsequently immersed in methylene chloride to remove liquid paraffin and then dried to obtain a microporous membrane. It was. Further, this microporous film was stretched 1.8 times in the width direction at a stretching temperature of 125 ° C. using a tenter, and then heat-treated while relaxing the stretching in the width direction by 17%.
[0021]
Table 1 shows the physical properties of the obtained film and the characteristics of the battery using this as a separator.
[0022]
[Comparative Example 1]
A microporous membrane was prepared in the same manner as in Example 1 except that high-density polyethylene having a weight-average molecular weight of 400,000 and a density of 0.950 was used.
Table 1 shows the physical properties of the obtained film and the characteristics of the battery using this as a separator.
[0023]
[Comparative Example 2]
Example 1 except that 12 parts of low density polyethylene having a weight average molecular weight of 200,000 and density of 0.920, and 28 parts of high density polyethylene having a weight average molecular weight of 350,000 having a molecular weight of less than 10,000 of 1% and a density of 0.954 were used. Similarly, a microporous membrane was prepared. Table 1 shows the physical properties of the obtained film and the characteristics of the battery using this as a separator.
[0024]
[Table 1]
[0025]
【The invention's effect】
The polyethylene microporous membrane of the present invention has good thermal characteristics and is particularly suitable for a separator for a lithium ion secondary battery.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus for measuring a hole closing temperature according to the present invention.
FIG. 2 is a partial view of an apparatus for measuring a hole closing temperature according to the present invention.
FIG. 3 is a partial view of an apparatus for measuring a hole closing temperature according to the present invention.
Claims (4)
孔閉塞温度Tfが134℃以下で、融解温度TmとTfが次のような関係式で表せるポリエチレン微多孔膜。
Tm−Tf>0 A polyethylene microporous membrane formed using high-density polyethylene containing 20% or more of a molecular weight less than 10,000 and having a weight average molecular weight of 100,000 to 4,000,000,
A polyethylene microporous membrane having a pore closing temperature Tf of 134 ° C. or lower and a melting temperature Tm and Tf represented by the following relational expression.
Tm-Tf> 0
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00455199A JP4230584B2 (en) | 1999-01-11 | 1999-01-11 | Polyethylene microporous membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00455199A JP4230584B2 (en) | 1999-01-11 | 1999-01-11 | Polyethylene microporous membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000204188A JP2000204188A (en) | 2000-07-25 |
JP4230584B2 true JP4230584B2 (en) | 2009-02-25 |
Family
ID=11587195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00455199A Expired - Fee Related JP4230584B2 (en) | 1999-01-11 | 1999-01-11 | Polyethylene microporous membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4230584B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5005140B2 (en) * | 2001-09-18 | 2012-08-22 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery |
US7332531B2 (en) | 2004-06-11 | 2008-02-19 | Sk Corporation | Microporous high density polyethylene film |
US7435761B2 (en) | 2004-07-06 | 2008-10-14 | Sk Energy Co., Ltd. | Microporous polyethylene film and method of producing the same |
KR100943697B1 (en) * | 2005-04-06 | 2010-02-23 | 에스케이에너지 주식회사 | Microporous polyethylene film having excellent physical properties, productivity and quality consistency, and method for preparing the same |
KR100943235B1 (en) * | 2005-05-16 | 2010-02-18 | 에스케이에너지 주식회사 | Microporous high density polyethylene film and preparing method thereof |
KR100961660B1 (en) * | 2005-12-21 | 2010-06-09 | 에스케이에너지 주식회사 | Microporous film of semicrystalline polymer and method for preparing the same |
KR100873851B1 (en) * | 2006-09-29 | 2008-12-15 | 도레이새한 주식회사 | Manufacturing method of polyolefin microporous membrane |
WO2020195380A1 (en) | 2019-03-28 | 2020-10-01 | 東レ株式会社 | Microporous polyolefin membrane, separator for secondary batteries, and secondary battery |
EP4001348A1 (en) | 2020-11-20 | 2022-05-25 | Toray Industries, Inc. | Polyolefin microporous membrane, battery separator, and secondary battery |
CN113451704B (en) * | 2021-06-03 | 2022-12-13 | 内蒙古中锂新材料有限公司 | Preparation method of ultrathin high-temperature-resistant safety lithium ion battery diaphragm |
JP7386209B2 (en) * | 2021-07-30 | 2023-11-24 | 旭化成株式会社 | Polyolefin microporous membrane |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997044839A1 (en) * | 1996-05-22 | 1997-11-27 | Kureha Chemical Industry Co., Ltd. | Porous film and separator for batteries comprising porous film |
-
1999
- 1999-01-11 JP JP00455199A patent/JP4230584B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000204188A (en) | 2000-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2213858C (en) | Polyethylene microporous film and process for producing the same | |
JP4753446B2 (en) | Polyolefin microporous membrane | |
JP5213443B2 (en) | Polyolefin microporous membrane | |
KR100977345B1 (en) | Polyolefin microporous membrane | |
JP5572334B2 (en) | Polyolefin microporous membrane | |
CN109390535B (en) | Laminated separator for nonaqueous electrolyte secondary battery | |
JP4986199B2 (en) | Polyethylene microporous membrane and battery using the same | |
WO2011118735A1 (en) | Polyolefin microporous membrane, method for producing same, separator for nonaqueous secondary battery and nonaqueous secondary battery | |
CA2630251A1 (en) | Microporous polyolefin membrane, its production method, battery separator and battery | |
CN110461925B (en) | Polyolefin microporous membrane and method for producing polyolefin microporous membrane | |
JPWO2018216819A1 (en) | Polyolefin microporous membrane, power storage device separator, and power storage device | |
JP4573284B2 (en) | Polyethylene microporous membrane | |
KR100643106B1 (en) | Microporous Polyethylene Film | |
JP4230584B2 (en) | Polyethylene microporous membrane | |
JP5235484B2 (en) | Polyolefin microporous membrane | |
JP2018141029A (en) | Polyolefin microporous membrane | |
JP4220329B2 (en) | Polyolefin microporous membrane and method for producing the same | |
JP5235324B2 (en) | Polyolefin microporous membrane | |
WO2020137336A1 (en) | Microporous polyolefin membrane and method for producing microporous polyolefin membrane | |
JP2020079426A (en) | Polyolefin microporous membrane | |
JP4033546B2 (en) | Method for producing separator for lithium ion secondary battery | |
JP4408016B2 (en) | Microporous membrane | |
WO2021065283A1 (en) | Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP4181677B2 (en) | Porous film and method for producing the same | |
JP2012136704A (en) | Microporous membrane made of polyethylene and battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080722 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080917 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4230584 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131212 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |