Nothing Special   »   [go: up one dir, main page]

JPH02143462A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPH02143462A
JPH02143462A JP29702788A JP29702788A JPH02143462A JP H02143462 A JPH02143462 A JP H02143462A JP 29702788 A JP29702788 A JP 29702788A JP 29702788 A JP29702788 A JP 29702788A JP H02143462 A JPH02143462 A JP H02143462A
Authority
JP
Japan
Prior art keywords
gate electrode
thin film
gate
film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29702788A
Other languages
Japanese (ja)
Inventor
Terumine Hirayama
照峰 平山
Masataka Shingu
新宮 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP29702788A priority Critical patent/JPH02143462A/en
Publication of JPH02143462A publication Critical patent/JPH02143462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a TFT with high gate breakdown strength by forming a gate electrode on a substrate, and flatly forming a semiconductor thin film on the gate electrode. CONSTITUTION:A gate electrode 14 is formed on an SiO2 film 11; via a gate insulating film 13, a poly Si thin film 12 is laminated so as to be smaller than the electrode 14; the poly Si thin film 12 is covered with an interlayer insulating film 22; windows 22, 23 are selectively opened, Al wirings 24, 25 are formed, and connected with a source.drain region 16, 17. By this constitution, the gate insulating film 13 can be almost flatly formed, so that, in the gate insulating film 13, electric field concentration is not present between the source.drain region 16, 17 and the gate electrode 14. Since the gate electrode 14 is formed on the lower layer of the semiconductor thin film, each gate electrode can be formed in the same layer, when a TFT is formed in the same chip as a bulk transistor, thereby reducing the processes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板の上層に半導体薄膜が形成され、この半
導体薄膜内にチャネル領域が設けられているFJ’R’
Aトランジスタに関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an FJ'R' in which a semiconductor thin film is formed on the upper layer of a substrate, and a channel region is provided in this semiconductor thin film.
This relates to the A transistor.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様な薄膜トランジスタにおいて、基板
上に形成したゲート電極の上層に半導体薄膜を略平坦に
形成することによって、薄膜トラ〔従来の技術〕 薄膜トランジスタには各種構造のものがあるが、大別す
ると第4図及び第5図のものが従来から知られている。
The present invention provides a thin film transistor as described above, by forming a substantially flat semiconductor thin film over a gate electrode formed on a substrate. Broadly speaking, those shown in FIGS. 4 and 5 are conventionally known.

第4図は、特開昭61−65476号公報等にも記載さ
れている第1従来例を示している。この第1従来例では
、SiO□基板ll上に多結晶Si薄膜12が形成され
ており、この多結晶Si薄膜12はゲート酸化膜13に
覆われている。
FIG. 4 shows a first conventional example which is also described in Japanese Unexamined Patent Publication No. 61-65476. In this first conventional example, a polycrystalline Si thin film 12 is formed on a SiO□ substrate ll, and this polycrystalline Si thin film 12 is covered with a gate oxide film 13.

ゲート酸化膜13上にはゲート電極14が形成されてお
り、多結晶Si!膜12のうちでゲート電極14下の部
分がチャネル領域15、その両側がソース・ドレイン領
域16.17となっている。
A gate electrode 14 is formed on the gate oxide film 13 and is made of polycrystalline Si! A portion of the film 12 below the gate electrode 14 is a channel region 15, and both sides thereof are source/drain regions 16 and 17.

第5図は、第2従来例を示している。この第2従来例で
は、SiO□基板11上にゲート電極14が形成されて
おり、このゲー)”U+S14がゲート酸化膜13に覆
われている。
FIG. 5 shows a second conventional example. In this second conventional example, a gate electrode 14 is formed on a SiO□ substrate 11, and this gate electrode 14 is covered with a gate oxide film 13.

多結晶Si薄膜12はゲート電極14を跨ぐ様に形成さ
れており、この多結晶Sii膜12のうちでゲート電極
14上の部分がチャネル領域15、その両側がソース・
ドレイン領域16.17となっている。
The polycrystalline Si thin film 12 is formed so as to straddle the gate electrode 14, and the part of the polycrystalline Si film 12 above the gate electrode 14 is the channel region 15, and both sides thereof are the source region.
These are drain regions 16 and 17.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、第4図に示した第1従来例では、SiO□w
板11上にまず多結晶5ii膜12を形成し、その後に
ゲート電極14を形成する必要がある。
However, in the first conventional example shown in FIG.
It is necessary to first form the polycrystalline 5II film 12 on the plate 11, and then form the gate electrode 14.

このため、薄膜トランジスタをバルクトランジスタと同
一のチップに形成する場合等に、各々のゲート電極を同
一層で形成することができず、製造工程が多くなってし
まう。
For this reason, when forming a thin film transistor on the same chip as a bulk transistor, each gate electrode cannot be formed in the same layer, which increases the number of manufacturing steps.

一方、第5図に示した第2従来例では、ゲート電極14
と多結晶Si薄膜12との間のゲート酸化膜13に段差
部が存在しているので、この段差部にソース・ドレイン
領域16.17とゲート電極14との間の電界が集中し
、第1従来例に比べてゲート耐圧が低い。
On the other hand, in the second conventional example shown in FIG.
Since there is a stepped portion in the gate oxide film 13 between the polycrystalline Si thin film 12 and the polycrystalline Si thin film 12, the electric field between the source/drain region 16, 17 and the gate electrode 14 is concentrated on this stepped portion, and the first The gate breakdown voltage is lower than that of the conventional example.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による薄膜トランジスタは、基板11上に形成さ
れているゲート電極14と、このゲート電極14の上層
に略平坦に形成されている半導体薄膜12とを夫々具備
している。
The thin film transistor according to the present invention includes a gate electrode 14 formed on a substrate 11 and a semiconductor thin film 12 formed substantially flat above the gate electrode 14.

〔作用〕[Effect]

本発明による薄膜トランジスタでは、半導体薄膜12が
ゲート電極14の上層に略平坦に形成されているので、
ゲート電極14と半導体薄膜12との間のゲート絶縁膜
13も略平坦に形成することができる。このため、ゲー
ト絶縁膜13において、ソース・ドレイン領域16.1
7とゲート電極14との間の電界集中がない。
In the thin film transistor according to the present invention, since the semiconductor thin film 12 is formed substantially flat on the upper layer of the gate electrode 14,
The gate insulating film 13 between the gate electrode 14 and the semiconductor thin film 12 can also be formed substantially flat. Therefore, in the gate insulating film 13, the source/drain regions 16.1
There is no electric field concentration between 7 and the gate electrode 14.

また、ゲー)W極14が半導体重IJ12の下層に形成
されているので、薄膜トランジスタをバルクトランジス
タと同一のチップに形成する場合等に、各々のゲート電
極を同一層で形成することができる。
Further, since the gate electrode 14 is formed in the lower layer of the semiconductor heavy IJ 12, each gate electrode can be formed in the same layer when a thin film transistor is formed on the same chip as a bulk transistor.

〔実施例〕〔Example〕

以下、本発明の第1及び第2実施例を、第1図〜第3図
を参照しながら説明する。
Hereinafter, first and second embodiments of the present invention will be described with reference to FIGS. 1 to 3.

第1図が、第1実施例を示している。この第1実施例で
は、第1A図及び第1B図から明らかな様に、後に形成
される多結晶sin膜12よりも大きな面積のゲート電
極14がSiO□基板11上に形成されており、ゲート
酸化膜13を介してゲート電極14上に多結晶Si薄膜
12が形成されている。
FIG. 1 shows a first embodiment. In this first embodiment, as is clear from FIGS. 1A and 1B, a gate electrode 14 having a larger area than the polycrystalline sine film 12 that will be formed later is formed on the SiO□ substrate 11. A polycrystalline Si thin film 12 is formed on the gate electrode 14 with an oxide film 13 in between.

多結晶Si薄膜12は層間絶縁膜21に覆われており、
この層間絶縁膜21に形成された複数ずつのコンタクト
窓22.23を介してA1配線24.25が夫々ソース
・ドレイン領域16.17に接続されている。
The polycrystalline Si thin film 12 is covered with an interlayer insulating film 21,
A1 wirings 24 and 25 are connected to source and drain regions 16 and 17 through a plurality of contact windows 22 and 23 formed in this interlayer insulating film 21, respectively.

また、眉間絶縁膜21にはチャネル領域15に対するコ
ンタクト窓26も形成されており、チャネル領域15を
一定電位に固定するためのAβ配線27も接続されてい
る。なお、ゲート電極14に対する配線はSiO□基板
11に設けられている。
Further, a contact window 26 for the channel region 15 is also formed in the glabella insulating film 21, and an Aβ wiring 27 for fixing the channel region 15 to a constant potential is also connected thereto. Note that wiring for the gate electrode 14 is provided on the SiO□ substrate 11.

この第1実施例では、上述の第1及び第2従来例とは異
なり、ゲート電極14とソース・ドレイン領域16.1
7とが重畳している。しかし、例えば、ソース・ドレイ
ン領域16.17の面積を20μm×50μm、ゲート
酸化膜13の厚さを600人とすると、両者間の容量は
1pF以下である。
In this first embodiment, unlike the first and second conventional examples described above, the gate electrode 14 and the source/drain regions 16.1
7 are superimposed. However, for example, if the area of the source/drain regions 16 and 17 is 20 μm×50 μm and the thickness of the gate oxide film 13 is 600, the capacitance between them is 1 pF or less.

そして、例えば螢光表示管駆動用の高耐圧トランジスタ
では、上記の容量がnF程度までであれば動作に影響が
ない。従って、この様な螢光表示管駆動用の高耐圧トラ
ンジスタ等に、この第1実施例を適用することができる
For example, in a high voltage transistor for driving a fluorescent display tube, if the above-mentioned capacitance is up to about nF, the operation will not be affected. Therefore, the first embodiment can be applied to such high breakdown voltage transistors for driving fluorescent display tubes.

第2図が、第2実施例を示している。この第2実施例は
、ゲート電極14と路間し厚さの層間SiO□膜28が
SiO□基板11上に形成されており、ゲート電極14
上のゲート酸化膜13上と層間5iOz膜28上とに多
結晶Si薄膜12が略平坦に形成されていることを除い
て、上述の第1実施例と実質的に同様の構成を有してい
る。
FIG. 2 shows a second embodiment. In this second embodiment, an interlayer SiO□ film 28 having a thickness that is the same as that of the gate electrode 14 is formed on the SiO□ substrate 11.
This embodiment has substantially the same structure as the first embodiment described above, except that the polycrystalline Si thin film 12 is formed substantially flat on the upper gate oxide film 13 and the interlayer 5iOz film 28. There is.

この様な第2実施例を製造するには、第3A図に示す様
に、ゲート電極14を形成した後に層間SiO□膜28
をCVD等によってゲート電極14と同等以上の厚さに
堆積させ、更にフォトレジスト29を略平坦に塗布する
In order to manufacture such a second embodiment, as shown in FIG. 3A, after forming the gate electrode 14, an interlayer SiO□ film 28 is formed.
is deposited by CVD or the like to a thickness equal to or greater than that of the gate electrode 14, and then a photoresist 29 is applied substantially evenly.

次に、フォトレジスト29と層間SiO□膜28とが略
同じエツチング速度となる条件で、第3B図に示す様に
ゲート電極14が露出するまで、フォトレジスト29と
層間SiO□膜28とに対してRIEを行う。
Next, under the condition that the photoresist 29 and the interlayer SiO□ film 28 have approximately the same etching rate, the photoresist 29 and the interlayer SiO□ film 28 are etched until the gate electrode 14 is exposed as shown in FIG. 3B. Perform RIE.

そしてこの状態で、ゲート電極14を構成している多結
晶Si層の表面を熱酸化して、第3C図に示す様に、S
iO□から成るゲート酸化膜13を形成する。
In this state, the surface of the polycrystalline Si layer constituting the gate electrode 14 is thermally oxidized to form S as shown in FIG. 3C.
A gate oxide film 13 made of iO□ is formed.

その後は、従来公知の方法によって、多結晶Si薄膜1
2、ソース・ドレイン領域16.17、層間絶縁膜21
、コンタクト窓22.23、Al配線24.25等を形
成する。
Thereafter, the polycrystalline Si thin film 1
2. Source/drain region 16.17, interlayer insulating film 21
, contact windows 22, 23, Al interconnects 24, 25, etc. are formed.

〔発明の効果〕〔Effect of the invention〕

本発明による薄膜トランジスタでは、ゲート絶縁膜にお
いてソース・ドレイン領域とゲート電極との間の電界集
中がないので、ゲート耐圧が高い。
In the thin film transistor according to the present invention, there is no electric field concentration between the source/drain region and the gate electrode in the gate insulating film, so the gate breakdown voltage is high.

また、薄膜トランジスタをバルクトランジスタと同一の
チップに形成する場合等に各々のゲート電極を同一層で
形成することができるので、製造工程を少なくすること
ができる。
Further, when a thin film transistor is formed on the same chip as a bulk transistor, each gate electrode can be formed in the same layer, so that the number of manufacturing steps can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は本発明の第1実施例を示しており第1B図の
A−A線に沿う側断面図、第1B図は第1実施例の平面
図、第2図は第2実施例の側断面図、第3図は第2実施
例の製造工程を順次に示す側断面図である。 第4図及び第5図は本発明の夫々第1及び第2従来例の
側断面図である。 なお図面に用いた符号において、 11−−−〜−・−−−−−−・・−5iO□基板12
・・−・−−−−−−−−−−−−・・多結晶Si薄1
模ゲート電極 である。
Fig. 1A shows a first embodiment of the present invention; Fig. 1B is a side sectional view taken along line A-A in Fig. 1B, Fig. 1B is a plan view of the first embodiment, and Fig. 2 is a cross-sectional view of the second embodiment. FIG. 3 is a side sectional view sequentially showing the manufacturing process of the second embodiment. FIGS. 4 and 5 are side sectional views of first and second conventional examples of the present invention, respectively. In addition, in the symbols used in the drawings, 11--------------5iO□ substrate 12
・・−・−−−−−−−−−−−−・Polycrystalline Si thin 1
This is a simulated gate electrode.

Claims (1)

【特許請求の範囲】 基板上に形成されているゲート電極と、 このゲート電極の上層に略平坦に形成されている半導体
薄膜とを夫々具備する薄膜トランジスタ。
[Scope of Claims] A thin film transistor comprising a gate electrode formed on a substrate and a semiconductor thin film formed substantially flat above the gate electrode.
JP29702788A 1988-11-24 1988-11-24 Thin film transistor Pending JPH02143462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29702788A JPH02143462A (en) 1988-11-24 1988-11-24 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29702788A JPH02143462A (en) 1988-11-24 1988-11-24 Thin film transistor

Publications (1)

Publication Number Publication Date
JPH02143462A true JPH02143462A (en) 1990-06-01

Family

ID=17841277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29702788A Pending JPH02143462A (en) 1988-11-24 1988-11-24 Thin film transistor

Country Status (1)

Country Link
JP (1) JPH02143462A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161999A (en) * 1993-10-06 1995-06-23 Micron Semiconductor Inc Method for forming thin-film field effect transistor
US5858821A (en) * 1993-05-12 1999-01-12 Micron Technology, Inc. Method of making thin film transistors
US6018181A (en) * 1990-10-12 2000-01-25 Mitsubishi Denki Kabushiki Kaisha Thin film transistor and manufacturing method thereof
US6043507A (en) * 1997-09-24 2000-03-28 Micron Technology, Inc. Thin film transistors and methods of making
US6344378B1 (en) 1999-03-01 2002-02-05 Micron Technology, Inc. Field effect transistors, field emission apparatuses, thin film transistors, and methods of forming field effect transistors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173286A (en) * 1985-01-29 1986-08-04 株式会社東芝 Display unit
JPS61181164A (en) * 1985-02-07 1986-08-13 Matsushita Electric Ind Co Ltd Manufacture of thin-film field-effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173286A (en) * 1985-01-29 1986-08-04 株式会社東芝 Display unit
JPS61181164A (en) * 1985-02-07 1986-08-13 Matsushita Electric Ind Co Ltd Manufacture of thin-film field-effect transistor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018181A (en) * 1990-10-12 2000-01-25 Mitsubishi Denki Kabushiki Kaisha Thin film transistor and manufacturing method thereof
US5858821A (en) * 1993-05-12 1999-01-12 Micron Technology, Inc. Method of making thin film transistors
US6376287B1 (en) 1993-05-12 2002-04-23 Micron Technology, Inc. Method of making field effect
US6251714B1 (en) 1993-10-06 2001-06-26 Micron Technology, Inc. Method of making thin film field effect transistors
US5923965A (en) * 1993-10-06 1999-07-13 Micron Technology, Inc. Thin film transistors and method of making
US5847406A (en) * 1993-10-06 1998-12-08 Micron Technology, Inc. Thin film field effect transistor
US6150201A (en) * 1993-10-06 2000-11-21 Micron Technology, Inc. Methods of forming top-gated thin film field effect transistors
US6235562B1 (en) 1993-10-06 2001-05-22 Micron Technology, Inc. Method of making field effect transistors
JPH07161999A (en) * 1993-10-06 1995-06-23 Micron Semiconductor Inc Method for forming thin-film field effect transistor
US5807769A (en) * 1993-10-06 1998-09-15 Micron Technology, Inc. Methods of making thin film transistors
US6043507A (en) * 1997-09-24 2000-03-28 Micron Technology, Inc. Thin film transistors and methods of making
US6344378B1 (en) 1999-03-01 2002-02-05 Micron Technology, Inc. Field effect transistors, field emission apparatuses, thin film transistors, and methods of forming field effect transistors
US6504170B1 (en) 1999-03-01 2003-01-07 Micron Technology, Inc. Field effect transistors, field emission apparatuses, and a thin film transistor
US7329552B2 (en) 1999-03-01 2008-02-12 Micron Technology, Inc. Field effect transistor fabrication methods, field emission device fabrication methods, and field emission device operational methods

Similar Documents

Publication Publication Date Title
US4935792A (en) Thin film transistor array
EP0301571B1 (en) Thin film transistor array
JPH0519830B2 (en)
JP3070062B2 (en) Liquid crystal display device and method of manufacturing the same
JPS60160173A (en) Thin film transistor
KR970011766B1 (en) Thin film mos transistor having pair of gate electrodes opposing across semiconductor layer
JP3486426B2 (en) Semiconductor device and liquid crystal display device
JPH02143462A (en) Thin film transistor
JPH01251760A (en) Ferroelectric storage device
JPH06102528A (en) Production of thin-film transistor matrix
JP2690067B2 (en) Active matrix substrate
JPS61173286A (en) Display unit
JPH06160905A (en) Liquid crystal display device and its production
JPH0244769A (en) Thin film transistor
JP2653572B2 (en) Active matrix substrate manufacturing method
JPH0568708B2 (en)
JPH08262492A (en) Liquid crystal display device
JPH06132536A (en) Film transistor
JP2003152188A (en) Thin film transistor panel
JPH0716012B2 (en) Method of manufacturing thin film transistor array device
JPH0519831B2 (en)
JPH05190767A (en) Semiconductor device
JPH088255A (en) Wiring structure for semiconductor device and transistor array for display element
JPH0561071A (en) Liquid crystal display device
JPS60186063A (en) Thin film transistor