JPH0142137B2 - - Google Patents
Info
- Publication number
- JPH0142137B2 JPH0142137B2 JP56073874A JP7387481A JPH0142137B2 JP H0142137 B2 JPH0142137 B2 JP H0142137B2 JP 56073874 A JP56073874 A JP 56073874A JP 7387481 A JP7387481 A JP 7387481A JP H0142137 B2 JPH0142137 B2 JP H0142137B2
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- aqueous solution
- crystal structure
- pure water
- alkali halide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013078 crystal Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000003513 alkali Substances 0.000 claims description 5
- 150000004820 halides Chemical class 0.000 claims description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 4
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 claims description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 3
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 claims description 3
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 2
- 229910000765 intermetallic Inorganic materials 0.000 claims description 2
- 239000011780 sodium chloride Substances 0.000 claims description 2
- 238000005498 polishing Methods 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 8
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 239000006061 abrasive grain Substances 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02628—Liquid deposition using solutions
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
- Weting (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Hall/Mr Elements (AREA)
Description
【発明の詳細な説明】
この発明は、ホール素子用半導体化合物の表面
を、完全結晶構造を維持し無歪に研摩する表面仕
上方法に関する。
電子機器用デバイスとして、ホール効果を用い
た電磁変換素子が汎用されているが、今日、各種
電子機器が小型化、高性能化されるにともない、
このホール素子自体の性能向上が強く求められて
いる。
例えば、ホール素子用半導体化合物のうち最も
電子移動度の高いInSbは、その単結晶ウエハー
の最終仕上に化学研摩方法を用いているが、仕上
精度が悪く、仕上表面の完全結晶性が得られない
ものであつた。
すなわち、従来行なわれている化学研摩は、そ
の前加工工程における残留加工歪が影響し、化学
反応速度が各々相違するため、表面の平坦かつ平
滑な面精度を得ることが困難であり、前工程より
さらに面精度がわるくなる。
この発明は、かかる半導体材料の表面仕上にお
いて、表面結晶構造の規則性、完全性を改良する
ものである。
この発明は、金属間化合物半導体材料を、アル
カリ・ハライドを純水中に0.5〜20wt%含有する
水溶液により研摩することを要旨とする仕上方法
である。
詳しく説明すると、この方法は半導体材料の結
晶構造上の特徴を考慮して、類似の構造を有する
ポリツシユ反応材を用いて、かかる素材表面を完
全結晶構造に無歪仕上する。
すなわち、InSbやGaAs等のB3型イオン性結晶
に対し、主として原子系が極性の異なるイオン間
のクーロン引力によつて結合しているイオン結晶
のアルカリ・ハライドを用いて、これを純水中に
含有する水溶液とし、イオン反応による無歪のポ
リツシユを行なわせるものである。この発明方法
を便宜上以下において、イオンポリツシユと呼
ぶ。
ここでアルカリ・ハライドとして、NaBr,
KBr,NaCl,KCl,LiF,CaF2等があり、純水
中水溶液は反応性溶解量を考慮してアルカリ・ハ
ライドを0.5〜20wt%含有するのが望ましい。
次にポリツシユ方法であるが、通常のSiCやダ
イヤモンド砥粒による粗ラツプを施したのち、こ
のイオンポリツシユを行なう。ポリツシユ装置
は、アルカリ・ハライドの純水中に含有する水溶
液で研摩することができるものであれば、いかな
る構成でもよく、例えば、容器底面にラツプを回
転可能に配設し、被加工素材を貼着等で拘持する
部材を、上記水溶液を入れた上記容器内で対向さ
せたラツプを回転させるよう構成した装置とする
のもよい。
また、イオンポリツシユにおいて、加工時間、
ラツプ材質、上記装置における回転数、水溶液の
選定等は、被加工素材の種類や大きさ、加工精
度、加工能率等を考慮して適宜選定すべきことは
明らかなことである。
以上に詳述したイオンポリツシユによつて、半
導体素材の表面をほぼ完全結晶構造に仕上げるこ
とができる。
次に、この発明による実施例を示しその効果を
明らかにする。
ラツプ装置には上述した構成と同等の装置を用
い、ラツプ用貼付板に25mm〓×2mmtにスライス
したInSbウエハーを貼着し、前記InSbウエハー
の(111)面をまずダイヤモンド砥粒による粗ラ
ツプを行なつたのち、下記の条件でイオンポリツ
シユを施した(実施例A)。
クロス……ポリテツクス シユープリーム
水溶液……純水3、KClパウダー150g
ラツプ回転数……50rpm
加工時間……30分
また、上記の素材をダイヤモンド砥粒で研摩し
た場合(比較例B)を合せて行なつた。
以上の2種の加工を行なつたInSbウエハーの
表面粗さ及び結晶構造の規則性を測定した。表面
粗さはタリステツプ(Talystep)縦倍率50万倍
で測定した。結晶規則性は表面に380keVHe+イ
オンのビームを照射し、後方散乱光強度を測定
し、その結果を第1図に示し、さらにランダム・
スペクトラム(R・S)に対する強度比(χmin)
を表面粗さと共に表−1に示す。結果から明らか
な如く、この発明によるオインポリツシユは従来
法と比較して、表面仕上精度並びに結晶規則性が
著しく向上していることがわかる。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface finishing method for polishing the surface of a semiconductor compound for a Hall element without strain while maintaining a perfect crystal structure. Electromagnetic conversion elements using the Hall effect are commonly used as devices for electronic devices, but as various electronic devices become smaller and more sophisticated,
There is a strong demand for improved performance of the Hall element itself. For example, chemical polishing is used for the final finishing of single crystal wafers for InSb, which has the highest electron mobility among semiconductor compounds for Hall elements, but the finishing accuracy is poor and perfect crystallinity of the finished surface cannot be achieved. It was hot. In other words, in conventional chemical polishing, it is difficult to obtain a flat and smooth surface because the chemical reaction rate is different due to the influence of residual machining strain from the pre-processing process. The surface accuracy becomes even worse. The present invention improves the regularity and completeness of the surface crystal structure in the surface finish of such semiconductor materials. The present invention is a finishing method that includes polishing an intermetallic compound semiconductor material with an aqueous solution containing 0.5 to 20 wt% of an alkali halide in pure water. To explain in detail, this method takes into consideration the crystal structure characteristics of semiconductor materials and uses a polishing reaction material having a similar structure to finish the surface of the material into a perfect crystal structure without distortion. In other words, for a B3 type ionic crystal such as InSb or GaAs, an alkali halide, which is an ionic crystal whose atomic system is mainly bound by Coulomb attraction between ions with different polarities, is used, and it is placed in pure water. This is an aqueous solution containing ion, which allows distortion-free polishing to be performed by ionic reaction. For convenience, this inventive method will hereinafter be referred to as ion polishing. Here, NaBr,
There are KBr, NaCl, KCl, LiF, CaF 2 , etc., and it is desirable that the aqueous solution in pure water contains 0.5 to 20 wt% of alkali halide in consideration of the amount of reactive dissolution. Next, as for the polishing method, after applying a rough lap using ordinary SiC or diamond abrasive grains, this ion polishing is performed. The polishing device may have any configuration as long as it can polish with an aqueous solution containing alkali halide in pure water. The holding member may be a device configured to rotate opposing wraps within the container containing the aqueous solution. In addition, in ion polishing, processing time,
It is obvious that the material of the wrap, the number of revolutions in the above-mentioned apparatus, the selection of the aqueous solution, etc. should be appropriately selected in consideration of the type and size of the material to be processed, processing accuracy, processing efficiency, etc. By the ion polishing described in detail above, the surface of the semiconductor material can be finished into a nearly perfect crystal structure. Next, an example according to the present invention will be shown to clarify its effects. A lapping device having the same configuration as that described above is used, and an InSb wafer sliced into 25 mm x 2 mm thick is adhered to the lapping plate, and the (111) side of the InSb wafer is first roughly lapped using diamond abrasive grains. After this, ion polishing was performed under the following conditions (Example A). Cloth...Polytex Supreme aqueous solution...Pure water 3, KCl powder 150g Wrap rotation speed...50rpm Processing time...30 minutes In addition, the case where the above materials were polished with diamond abrasive grains (Comparative Example B) was also carried out. Ta. The surface roughness and crystal structure regularity of InSb wafers subjected to the above two types of processing were measured. The surface roughness was measured using Talystep at a vertical magnification of 500,000 times. Crystal regularity was determined by irradiating the surface with a beam of 380keVHe + ions and measuring the backscattered light intensity. The results are shown in Figure 1.
Intensity ratio (χmin) to spectrum (R・S)
are shown in Table 1 along with the surface roughness. As is clear from the results, it can be seen that the surface finish precision and crystal regularity of the oil polish according to the present invention are significantly improved compared to the conventional method. 【table】
第1図は実施例におけるチヤンネルNo.
(ChannelNo.)と散乱光強度との関係を示す図表
である。
Figure 1 shows channel numbers in the example.
It is a chart showing the relationship between (Channel No.) and scattered light intensity.
Claims (1)
NaBr,KBr,NaCl,KCl,LiF,CaF2等をアル
カリ・ハライドを純水中に0.5〜20wt%含有する
水溶液により研摩する金属間化合物半導体材料の
表面仕上方法。1 A semiconductor compound material with an ionic crystal structure,
A surface finishing method for intermetallic compound semiconductor materials in which NaBr, KBr, NaCl, KCl, LiF, CaF 2 , etc. are polished with an aqueous solution containing 0.5 to 20 wt% of alkali halide in pure water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56073874A JPS57188890A (en) | 1981-05-15 | 1981-05-15 | Method of finishing surface of intermetallic compound semiconductor material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56073874A JPS57188890A (en) | 1981-05-15 | 1981-05-15 | Method of finishing surface of intermetallic compound semiconductor material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57188890A JPS57188890A (en) | 1982-11-19 |
JPH0142137B2 true JPH0142137B2 (en) | 1989-09-11 |
Family
ID=13530773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56073874A Granted JPS57188890A (en) | 1981-05-15 | 1981-05-15 | Method of finishing surface of intermetallic compound semiconductor material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57188890A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6408236B2 (en) * | 2014-04-03 | 2018-10-17 | 昭和電工株式会社 | Polishing composition and substrate polishing method using the polishing composition |
-
1981
- 1981-05-15 JP JP56073874A patent/JPS57188890A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57188890A (en) | 1982-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0165107B1 (en) | Method and composition for polishing metal surface | |
US5916819A (en) | Planarization fluid composition chelating agents and planarization method using same | |
JP2819196B2 (en) | Polishing compound and polishing method | |
JP5002175B2 (en) | Polishing slurry and wafer recycling method | |
JP3441142B2 (en) | Polishing method for semiconductor wafer | |
CN107532067B (en) | Polishing composition | |
US4022625A (en) | Polishing composition and method of polishing | |
Stewart et al. | Anion Effects on Cu–benzotriazole Film Formation: Implications for CMP | |
JPH0142137B2 (en) | ||
US7070485B2 (en) | Polishing composition | |
KR102410159B1 (en) | Method of polishing semiconductor substrate | |
US4383857A (en) | Attack polish for nickel-base alloys and stainless steels | |
JPH07326597A (en) | Polishing agent for silicon wafer polishing and polishing method | |
JPH05156238A (en) | Abrasive for mechanochemical grinding and method of grinding material piece | |
JPH01193170A (en) | Specular face grinding/polishing method | |
US4108716A (en) | Polishing of CdS crystals | |
US3295938A (en) | Method of polishing hygroscopic materials | |
JPH10279928A (en) | Compound for controlling polishing speed | |
JP4159304B2 (en) | Polishing method | |
DE3302881C2 (en) | Machining of disk-shaped workpieces made of silicon | |
JPS5887829A (en) | Polishing of si wafer | |
JPH0441656A (en) | Mirror-finish polishing method for titanium material | |
JPS5927316B2 (en) | Method for polishing crystal-free irregular mirror surfaces | |
JPH01153262A (en) | Mirror finishing method | |
JP3400694B2 (en) | Silicon wafer etching method |