JPH01272995A - Roof slab of fast reactor - Google Patents
Roof slab of fast reactorInfo
- Publication number
- JPH01272995A JPH01272995A JP63100289A JP10028988A JPH01272995A JP H01272995 A JPH01272995 A JP H01272995A JP 63100289 A JP63100289 A JP 63100289A JP 10028988 A JP10028988 A JP 10028988A JP H01272995 A JPH01272995 A JP H01272995A
- Authority
- JP
- Japan
- Prior art keywords
- box
- roof slab
- shaped structure
- heat
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005192 partition Methods 0.000 claims abstract description 9
- 239000002826 coolant Substances 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims 1
- 230000008646 thermal stress Effects 0.000 abstract description 8
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 12
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の目的〕
(産業上の利用分野)
本発明は高速増殖炉(以下、高速炉と呼ぶ)の炉容器を
閉塞する高速炉のルーフスラブに関する。DETAILED DESCRIPTION OF THE INVENTION (Objective of the Invention) (Industrial Application Field) The present invention relates to a fast reactor roof slab that closes the reactor vessel of a fast breeder reactor (hereinafter referred to as a fast reactor).
(従来の技術)
高速炉の炉容器上部開口にはその炉容器を閉塞するため
のルーフスラブが設けられ、このルーフスラブによって
炉心上部機構および中間熱交換器等が支持されている。(Prior Art) A roof slab for closing the reactor vessel is provided at the upper opening of the reactor vessel of a fast reactor, and the core upper mechanism, intermediate heat exchanger, etc. are supported by this roof slab.
ところが、このルーフスラブの下面は炉内の高温に曝さ
れているが、その上部は人間が立入るため常温になって
いる。このため軸方向に温度分布か生じるので熱変形ま
たは熱応力か発生する。従来はこれを防止するため下面
に断熱(Δを設置し、その上部に強度部側である箱形構
造物を設置している。また、この箱形構造物の熱変形ま
た(J、熱応力発生を防止するため、この箱形構造物に
冷却手段を設りでいる。However, while the lower surface of this roof slab is exposed to the high temperature inside the furnace, the upper surface is at room temperature because people enter it. Therefore, a temperature distribution occurs in the axial direction, resulting in thermal deformation or thermal stress. Conventionally, in order to prevent this, heat insulation (Δ) is installed on the bottom surface, and a box-shaped structure that is the strength part is installed above it. In order to prevent this from occurring, this box-shaped structure is equipped with cooling means.
この冷却手段は箱形構造物内【こ複雑な迷路を形成して
、この迷路に冷却材である窒素カス又は空気等を流す構
造である。This cooling means has a structure in which a complex maze is formed within a box-shaped structure, and a cooling material such as nitrogen scum or air is flowed through this maze.
(発明が解決しようとする課題)
しかしながら、このような構造では迷路の人口部と出口
部で温度差か生じるのでルーフスラブにも温度分イDか
生じて熱変形または熱応力発生覆る。(Problem to be Solved by the Invention) However, in such a structure, a temperature difference occurs between the artificial part and the exit part of the maze, and a temperature difference D also occurs in the roof slab, resulting in thermal deformation or thermal stress.
また迷路にあいで破1(4が牛じたり、流路閉塞が生じ
たりするおそれがある。さらに複雑な迷路を形成するに
【5j、製造コストも大ぎくなること等の問題点があっ
た。In addition, there is a risk that the pieces 1 (4) may get stuck in the maze or the flow path may become blocked.There are also problems with forming a more complex maze (5j), such as increased manufacturing costs. .
本発明【J、かかる点に鑑み、ルーフスラブの熱変形ま
たは熱応力の原因となるルーフスラブの温度分布の不均
一さを緩和し、かつ冷却流路を多重化、簡素化して流路
の破損、閉塞等に対し信頼性を高め、しかも製造容易な
高速炉のルーフスラブを提供することを目的と覆る。In view of this, the present invention [J] alleviates the uneven temperature distribution of the roof slab, which causes thermal deformation or thermal stress of the roof slab, and multiplies and simplifies the cooling channels to prevent damage to the channels. The objective is to provide a roof slab for a fast reactor that is easy to manufacture and has improved reliability against blockages.
(課題を解決覆るための手段)
本発明は高速炉の炉容器の上部開口をIM]塞するため
に設Cプられ、下面に断熱祠を設置し、その上部に強度
部4g ’−cある箱形4fl+造物を6ジ置した高速
炉のルーツスラブにa3いて、前記箱形構造物内を仕切
板で十十ノ“)向に二段の部屋を形成し、その上段部屋
ににj、7I々則線し1’)へいのための]]ンクリー
へを充てんしたコンクリート層を設置するとともに前記
箱形構造物の上面に冷却端を突出させ、前記]ンクリー
1〜層を貫通し、下段部屋に加熱端か突出するようにヒ
ートパイプを設【プたことを特徴とする。これによって
上記課題を解決するための手段は箱形fj構造物上面に
冷却材を流すことにJ、り達成される。(Means for Solving the Problems) The present invention is designed to close the upper opening of the reactor vessel of a fast reactor, a heat insulating shrine is installed on the lower surface, and a strength part 4g'-c is installed on the upper part. A3 is placed on the roots slab of a fast reactor in which 4 fl + 6 box-shaped structures are placed, and inside the box-shaped structure, a two-tiered room is formed in the direction of 10 degrees with a partition plate, and in the upper room, there are A concrete layer filled with a concrete layer is installed on the top surface of the box-shaped structure, and a cooling end is protruded from the top surface of the box-shaped structure, penetrating through the concrete layers 1 to 1, and forming a lower layer. The feature is that a heat pipe is installed so that the heating end protrudes into the room.The means to solve the above problem is achieved by flowing a coolant over the top surface of the box-shaped structure. be done.
(作 用)
この構成によってルーフスラブの下面の熱は上面にピー
1〜パイプによって伝達され、−に而で放熱するのでル
ーフスラブの熱変形防止を簡単な構造で一達成できる。(Function) With this configuration, the heat on the lower surface of the roof slab is transmitted to the upper surface through the pipes and radiated through the pipes, so that prevention of thermal deformation of the roof slab can be achieved with a simple structure.
(実施例)
以下、図面を参照した本発明の=一実施例について説明
する。(Example) Hereinafter, one example of the present invention will be described with reference to the drawings.
第1図にa3いて、タンク型高速炉1はペデスタル2の
上端にルーフスラブ3の周囲に嵌合された筒状支持体4
によって支持されている。また、ルーフスラブ3の周囲
には炉容器5の上端か固定されるとともにルーフスラブ
3の内側は、炉心部7内の燃料を取り換える時に回転さ
れる大回転プラグε3か設(づられている。この大回転
プラグ8の内側には回転可能な小回転スラブ9が89(
ソられ′Cいる。この小回転プラグ9の内側には炉心に
伸びる制御棒案内管10と、この案内管10内に挿入さ
れる制御棒11を搭載する炉心上部I/3構12が配設
されている。また、ルーツスラブ3にはこの他炉心から
発生した熱を2次す1〜リウム系に伝える中間熱交換器
13および炉内のナトリウムを循環させる機械ポンプ1
4などが多数塔載支持される。炉内中間部には炉内の高
温す1〜リウム部15と低温ナトリウムefi16とを
イ1切る隔壁17が設りられ−でいる。前記ルーフスラ
ブ3月、j、ぞの搭載機器か1げ1斜し−(隔壁17お
よびそれと塔載機器とのシール部18に無理な変形また
は応力などを加えることかないように形成されている。A3 in FIG. 1, the tank-type fast reactor 1 has a cylindrical support 4 fitted around the roof slab 3 at the upper end of the pedestal 2.
Supported by Further, the upper end of the reactor vessel 5 is fixed around the roof slab 3, and a large rotating plug ε3 is installed inside the roof slab 3 to be rotated when replacing the fuel in the reactor core 7. Inside the large rotation plug 8 is a rotatable small rotation slab 9 89 (
There's sore'C. A control rod guide tube 10 extending into the reactor core and a core upper I/3 structure 12 on which control rods 11 inserted into the guide tube 10 are mounted are disposed inside the small rotation plug 9. In addition, the roots slab 3 includes an intermediate heat exchanger 13 that transfers heat generated from the reactor core to the secondary system and a mechanical pump 1 that circulates sodium in the reactor.
4 etc. are supported in large numbers. A partition wall 17 is provided in the middle part of the furnace to separate the high temperature sodium part 1 to the sodium part 15 and the low temperature sodium efi 16 in the furnace. The roof slab is formed so that no undue deformation or stress is applied to the bulkhead 17 and the sealing portion 18 between it and the tower-mounted equipment.
また、地震時の応力によって変形したり、ルーフスラブ
3の振動によって制御棒11の炉心部7への挿入位置か
変動することに対しての高速炉出力の大幅な変動を避り
るため、ルーフスラブ3は構造に形成されている。In addition, in order to avoid large fluctuations in the fast reactor output due to deformation due to stress during earthquakes or changes in the insertion position of the control rods 11 into the reactor core 7 due to vibrations of the roof slab 3, The slab 3 is formed into a structure.
第2図は第1図にお【づるルーフスラブ3の要部を拡大
して示す縦断面図で、ルーツスラブ3の強度部材である
箱形構造物20の熱的な変形を避CJるために下部に断
熱構造物19か設(ブられている。箱形構造物20の内
部は仕切板21で上下2段の部屋23、24に区画し、
この二段の部屋23.21を貫通づるように複数のに−
1〜パイプ28か設置され、上段部屋24には放射線じ
ゃへいのためにコンクリートが充てんされてコンクリー
ト層29が設けられる。FIG. 2 is an enlarged vertical cross-sectional view of the essential parts of the roots slab 3 shown in FIG. 1. A heat insulating structure 19 is installed at the bottom.The inside of the box-shaped structure 20 is divided into upper and lower rooms 23 and 24 by a partition plate 21.
There are multiple rooms running through this two-tiered room 23.21.
1 to 28 are installed, and the upper room 24 is filled with concrete to provide a concrete layer 29 for radiation protection.
前記箱形構造物20の上面には、強度部材ではないので
薄板22で冷却室25が設(プられでいる。この冷却室
25には冷却材を流すための冷ム旧A供給ヘッダ26と
冷却部もどりヘッダ27が設置されている。A cooling chamber 25 is provided on the upper surface of the box-shaped structure 20 with a thin plate 22 since it is not a strength member.In this cooling chamber 25, there is a cold cam old A supply header 26 for flowing the coolant. A cooling unit return header 27 is installed.
断熱構造物19を通して下段部屋23に侵入した熱ヒー
トパイプ28を通して上段部屋24に伝えれ、その熱は
前記ヘッダ26から供給した冷却材に伝えられもどりヘ
ッダ27からルーフスラブ外に持出される。The heat enters the lower room 23 through the heat insulating structure 19 and is transmitted to the upper room 24 through the heat pipe 28, and the heat is transmitted to the coolant supplied from the header 26 and returned to the header 27 to be taken out of the roof slab.
なお、下段部@23内は気体が満された状態になってい
る。Note that the inside of the lower part @23 is filled with gas.
このように構成されたルーフスラ13におりる軸方向の
温度分布について説明すれば、断熱構造物19を通過し
た熱【′A、下段部屋23に伝えられ、次にじ一1〜パ
イ−728によって上段部屋24に伝えられる。To explain the temperature distribution in the axial direction of the roof slab 13 configured in this way, the heat [' This will be communicated to the upper room 24.
この熱はヘッダ26.27から供給され排出される冷却
材によって除去される。ここで断熱構造物19 t、l
:熱伝動率が悪く、じ−ドパイブ28は熱伝導率か良好
なので軸方向の温度分イtiは第3図に示すようになる
。第3図中、縦軸はルーツスラブの軸方向位置を、横軸
は温度をそれぞれ示している。図から明らかなように、
断熱構造物の下方から上方に沿って急激な温度低下かあ
り、箱形構造物の上方へ向(プで緩やかに温1宴低下す
ること力舖忍められる。This heat is removed by coolant supplied and discharged from headers 26,27. Here, the insulation structure 19 t, l
:The thermal conductivity is poor, and the di-pipe 28 has good thermal conductivity, so the temperature in the axial direction is as shown in FIG. In FIG. 3, the vertical axis represents the axial position of the roots slab, and the horizontal axis represents the temperature. As is clear from the figure,
There is a rapid temperature drop from the bottom to the top of the insulating structure, and a gradual drop in temperature can be tolerated from the top of the box-shaped structure.
しかしで、ルーフスラブの強度部材である箱形構造物2
0の軸方向の温度差を低減できる。従って箱形構造物2
0の熱変形または熱応力の発生を防止できる3、また、
周方向の温)哀分イ1jについではヒートパイプ28が
多数説(プられていること、および周方向に設【プだヘ
ッダー26.27から均一に流出する冷却(Aによりら
熱を除去リ−ることができる。これによって、周方向温
度分イ5か緩和され、ルーフスラブに生じる周方向の熱
変形ヤ熱応力の発生も防止できる。However, the box-shaped structure 2 which is the strength member of the roof slab
The temperature difference in the axial direction of 0 can be reduced. Therefore, box-shaped structure 2
3. It can prevent the occurrence of thermal deformation or thermal stress.
Regarding heat pipe 28 (temperature in the circumferential direction), there are many theories regarding heat pipe 28 (temperature in the circumferential direction). As a result, the temperature in the circumferential direction (i5) is alleviated, and the occurrence of thermal stress due to circumferential thermal deformation in the roof slab can be prevented.
なお、ヘッダーの冷却材流出口閉塞事故またはヒートパ
イプの破局等の熱除去系の事故を想定した場合、ヘッダ
ー26.27か設(プられている冷却室25は強度部材
ではなく、かつ箱形4fIS造物20の上面に設【プら
れているので、人間の接近が容易であり、補修作業が容
易にできる。In addition, if we assume an accident with the heat removal system such as a blockage of the coolant outlet of the header or a failure of the heat pipe, the header 26. Since it is installed on the top surface of the 4fIS structure 20, it is easy for people to approach and repair work can be easily performed.
また、ヒートパイプ28が、多数説(ブられていること
によって設碌に多重↑イ1があるので事故時の影響は非
常に軽微なものとなり、信頼性が向−1−16゜さらに
、製造性につい−C苦えば、箱形構造物20内を仕切板
21て仕切り、この仕切板21にと−トパイプ28を固
定し、上段部屋24にコンクリートを充てんするだけで
あるので、製造性か非常に良好となる3゜
なお、上記実施例では箱形構造物の上面に冷却室を設り
た例で説明したが、通常箱形構造物の上部は人間が接近
するため、空調かなされているのでこの空調により冷却
室を設(プなくとも同等の冷却効果が得られる3、
(発明の効果)
本発明によれば、ルーフスラブの軸方向、周方向とも温
度弁孔を均一にできるのて゛熱変形または熱応力の発生
を防止てき、より安全性にすぐれる。In addition, since the heat pipes 28 are installed multiple times (due to being broken), the impact in the event of an accident will be very slight, and the reliability will be improved. As for performance, the inside of the box-shaped structure 20 is divided by the partition plate 21, the pipe 28 is fixed to the partition plate 21, and the upper chamber 24 is filled with concrete, so the manufacturability is very low. In the above example, the cooling chamber was provided on the top of the box-shaped structure, but since humans usually approach the top of the box-shaped structure, it is air-conditioned. Therefore, with this air conditioning, the same cooling effect can be obtained without having to install a cooling room.3 (Advantages of the Invention) According to the present invention, the temperature valve holes can be made uniform both in the axial direction and the circumferential direction of the roof slab. It prevents deformation or thermal stress from occurring, resulting in greater safety.
また、熱除去系の事故を想定した場合には、補修性か良
く、かつ多重性のある構造物と<>つており、信頼性が
向上する。Furthermore, in the event of an accident in the heat removal system, the structure is easily repairable and has redundancy, improving reliability.
ざらに、製造性か容易であるので、低廉なルーフスラブ
を提供できる。Moreover, since it is easy to manufacture, it is possible to provide an inexpensive roof slab.
第1図は高速炉全体構造を示す縦断面図、第2図1.−
1、本発明に係るルーフスラブの一実施例の要部を拡大
して示す縦断面図、第3図は第2図におりるルーツスラ
ブの軸方向温度分布を示す線図である。
3・・・ルーフスラブ 19・・・断熱構造物20
・・・箱形fff造物 21・・・仕切板22・
・・薄板 23・・・下段部屋24・・・
上段部屋 25・・・冷却室26.27・・・
冷却材ヘッダ
28・・・ビー1〜パイプ
29・・・コンクリ−1へ層
(8733) 代理人 ラを即十 猪 股 祥 晃(
はか1名)
第2図
第3図Figure 1 is a vertical cross-sectional view showing the overall structure of the fast reactor, Figure 2 is a longitudinal sectional view showing the overall structure of the fast reactor. −
1. A vertical cross-sectional view showing an enlarged main part of an embodiment of the roof slab according to the present invention. FIG. 3 is a diagram showing the axial temperature distribution of the roots slab shown in FIG. 2. 3... Roof slab 19... Insulating structure 20
... Box-shaped fff structure 21 ... Partition plate 22.
... Thin board 23 ... Lower room 24 ...
Upper room 25...Cooling room 26.27...
Coolant header 28...Bee 1 to pipe 29...Layer to concrete 1 (8733) Agent Ra wo Sokuju Yoshiaki Inomata (
(1 person) Figure 2 Figure 3
Claims (1)
口を閉塞する箱形構造物およびこの箱形構造物の下部に
設けられた断熱構造物とからなる高速炉のルーフスラブ
において、前記箱形構造物内を仕切板で上下方向に2段
部屋に区画し、その上段部屋内にコンクリート層を配設
するとともに、このコンクリート層を上下方向に貫通し
、その上端は前記箱形構造物の上面を突出しかつ下端は
前記箱形構造物内の下段部屋に突出するようにヒートパ
イプを設けたことを特徴とする高速炉のルーフスラブ。In the roof slab of a fast reactor, the roof slab of a fast reactor is composed of a box-shaped structure that closes an upper opening of a reactor vessel that houses a reactor core and a liquid coolant therein, and an insulating structure provided at a lower part of this box-shaped structure. The inside of the structure is divided vertically into two-tiered rooms using partition plates, and a concrete layer is provided in the upper-tiered room, and this concrete layer is penetrated in the vertical direction, and its upper end is connected to the top surface of the box-shaped structure. A roof slab for a fast reactor, characterized in that a heat pipe is provided at the lower end of the roof slab so as to protrude into the lower chamber of the box-shaped structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63100289A JPH01272995A (en) | 1988-04-25 | 1988-04-25 | Roof slab of fast reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63100289A JPH01272995A (en) | 1988-04-25 | 1988-04-25 | Roof slab of fast reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01272995A true JPH01272995A (en) | 1989-10-31 |
Family
ID=14270027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63100289A Pending JPH01272995A (en) | 1988-04-25 | 1988-04-25 | Roof slab of fast reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01272995A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008122248A (en) * | 2006-11-13 | 2008-05-29 | Toshiba Corp | Fast reactor |
-
1988
- 1988-04-25 JP JP63100289A patent/JPH01272995A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008122248A (en) * | 2006-11-13 | 2008-05-29 | Toshiba Corp | Fast reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100380128B1 (en) | Method and Apparatus for Enhancing Reactor Air-Cooling System Performance | |
EP0462810B1 (en) | Passive cooling safety system for liquid metal cooled nuclear reactors | |
EP0188389B1 (en) | Cryogenic vessel for a superconducting apparatus | |
IL28957A (en) | Liquid-cooled nuclear reactor | |
US4303474A (en) | Nuclear reactor core assembly | |
US3489206A (en) | Thermal shield for heating enclosure | |
US20100226471A1 (en) | System for evacuating the residual heat from a liquid metal or molten salts cooled nuclear reactor | |
JPH0238893A (en) | Pressurized water type nuclear reactor | |
JPS59137882A (en) | Module for pwr type reactor | |
US3446188A (en) | Steam generator or heater for an atomic power generating plant | |
JPH0237556B2 (en) | ||
US3205140A (en) | Nuclear reactor installation | |
JPH01272995A (en) | Roof slab of fast reactor | |
US4909981A (en) | Nuclear reactor | |
JPH10132994A (en) | Graphie deceleration reactor for thermoelectric power generation | |
JP2506875B2 (en) | Heat pipe | |
EP0119845B1 (en) | Fast breeder reactor | |
JPH1184056A (en) | Reactor container cooling facility | |
JPH01129195A (en) | Roof slab of fast breeder | |
JPH06235788A (en) | Roof deck structure for fast breeder reactor | |
JP3110901B2 (en) | Fast breeder reactor | |
US4465653A (en) | Nuclear reactor | |
JPS61268994A (en) | Intermediate heat exchanger | |
JPS63309894A (en) | Pressure tube reactor | |
JPH0469355B2 (en) |