Nothing Special   »   [go: up one dir, main page]

JPH01129195A - Roof slab of fast breeder - Google Patents

Roof slab of fast breeder

Info

Publication number
JPH01129195A
JPH01129195A JP62287450A JP28745087A JPH01129195A JP H01129195 A JPH01129195 A JP H01129195A JP 62287450 A JP62287450 A JP 62287450A JP 28745087 A JP28745087 A JP 28745087A JP H01129195 A JPH01129195 A JP H01129195A
Authority
JP
Japan
Prior art keywords
heat
roof slab
coolant
temperature distribution
stage chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62287450A
Other languages
Japanese (ja)
Inventor
Kazuo Matsushita
和夫 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62287450A priority Critical patent/JPH01129195A/en
Publication of JPH01129195A publication Critical patent/JPH01129195A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Building Environments (AREA)

Abstract

PURPOSE:To flatten the temperature distribution of roof slabs and prevent thermal deformation by dividing the roof slabs into three chambers, filling coolant in an upper stage chamber and radio-active ray shielding concrete in a middle stage chamber and penetrate-three chambers by heat tubes. CONSTITUTION:Heat intruded in a lower stage chamber 23 through a heat insulating structure 19 is conducted to an upper stage chamber 25 through a heat tube 28, transmitted to coolant fed from a header 26 and exhausted out of roof slabs from a return header 27. Since the heat insulating structure 19 has low heat conductivity and the heat tube 28 has good heat conductivity, the axial temperature distribution has a distribution in which axial temperature difference of a box structure 20 including strength members of the roof slabs is lessened. Circumferential temperature distribution is moderated because many heat tubes 28 are provided and heat is removed by the coolant uniformly flowed out from circumferentially provided headers 26, 27.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、高速炉の炉容器を閉塞する高速炉のルーフス
ラブに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a roof slab for a fast reactor that closes a reactor vessel of the fast reactor.

(従来の技術) 高速増殖炉の炉容器上部には炉容器を閉塞するためのル
ーフスラブが設けられ、このルーフスラブによって炉心
上部機構および中間熱交換器等が支持されている。
(Prior Art) A roof slab for closing the reactor vessel is provided at the upper part of the reactor vessel of a fast breeder reactor, and the core upper mechanism, intermediate heat exchanger, etc. are supported by this roof slab.

ところがこのルーフスラブは下面は炉内の高温に曝され
、上部は人が立入るため常温になる。このため軸方向に
温度分布が生じるので熱変形や熱応力が発生する。従来
はこれを防止するため下面に断熱材を設置し、その上部
に強度部材である箱形構造物を設置し、この箱形構造物
の熱変形や熱応力発生を防止するため箱形構造物内に冷
却のための複雑な迷路を形成してここに冷却材である窒
素ガス又は空気等を流していた。
However, the bottom surface of this roof slab is exposed to the high temperature inside the furnace, and the top surface is at room temperature because people enter it. As a result, temperature distribution occurs in the axial direction, resulting in thermal deformation and thermal stress. Conventionally, to prevent this, a heat insulating material was installed on the bottom surface, and a box-shaped structure as a strength member was installed on top of it. A complex labyrinth was formed inside for cooling, through which a coolant such as nitrogen gas or air was passed.

(発明が解決しようとする問題点) しかしこの方法では迷路の入口部と出口部では温度差が
生じるのでルーフスラブにも温度分布が生じて熱変形や
熱応力発生すること、また迷路において破損が生じたり
、流路閉塞が生じたり・するおそれがあること、さらに
複雑な迷路を形成するには製造コストも大きくなること
等の問題点があった。
(Problem to be solved by the invention) However, in this method, there is a temperature difference between the entrance and exit of the maze, so a temperature distribution also occurs in the roof slab, causing thermal deformation and thermal stress, and damage in the maze. There are other problems, such as the possibility that the labyrinth may occur or blockage of the flow path, and that the manufacturing cost increases to form a more complex labyrinth.

本発明は、かかる点に鑑み、ルーフスラブの熱変形や熱
応力の原因となるルーフスラブの温度分布の不均一さを
緩和し、かつ冷却流路を多重化。
In view of these points, the present invention alleviates unevenness in the temperature distribution of the roof slab, which causes thermal deformation and thermal stress in the roof slab, and multiplexes cooling channels.

簡素化して流路の破損、閉塞等に対し信頼性を高め、さ
らに製造容易な高速炉ルーフスラブを提供することを目
的とする。
The object of the present invention is to provide a fast reactor roof slab that is simplified, has improved reliability against flow path damage, blockage, etc., and is easy to manufacture.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) かかる目的は、高速炉の上面を閉塞するために設けられ
、下面に断熱材を設置し、その上部に強度部材である箱
形構造物を設置した高速炉のルーフスラブにおいて前記
箱形構造物内を高さ方向に3つの部屋を形成しその中間
の部屋には放射線じゃへいのためのコンクリートを充て
んし、さらに3つの部屋を貫通するようにヒートパイプ
を設置し、上部部屋に冷却材を流すことによって達成さ
れる。
(Means for solving the problem) This purpose is to create a fast reactor that is installed to close off the top surface of the fast reactor, with a heat insulating material installed on the bottom surface, and a box-shaped structure as a strength member installed on the top. In the roof slab, three rooms are formed in the height direction within the box-shaped structure, the middle room is filled with concrete for radiation protection, and heat pipes are installed to penetrate the three rooms. This is achieved by installing and flowing coolant into the upper chamber.

(作用) この構成によってルーフスラブの下面の熱は上面にヒー
トパイプによって伝達され、上面で放熱するのでルーフ
スラブの熱変形を簡単な構造で達成できる。
(Function) With this configuration, the heat on the lower surface of the roof slab is transmitted to the upper surface by the heat pipe, and the heat is radiated on the upper surface, so that thermal deformation of the roof slab can be achieved with a simple structure.

(実施例) 以下1図面を参照して本発明の実施例について説明する
(Example) An example of the present invention will be described below with reference to one drawing.

第1図において、高速炉1はペデスタル2の上に、ルー
フスラブ3の周囲に嵌合された筒状の支持体4によって
支持されている。また、ルーフスラブ3の周囲には炉容
器5の上端が固着されるとともにルーフスラブ3の内側
は、炉心部7内の燃料を取り換える時に回転される大回
転プラグ8が設けられ、このプラグ8の内側にそれと同
時期に回転可能な小回転プラグ9が設けられ、さらにそ
の内側に、炉心に伸びる制御棒案内管1oとこの中に挿
入される制御棒11を搭載する炉心上部機構12が配置
されている。また、ルーフスラブ3には、この他、炉心
から、出た熱を2次ナトリウム系に伝える中間熱交換器
13および炉内のナトリウムを循環させる機械ポンプ1
4などが多数搭載支持される。炉内中間部には、炉内の
高温ナトリウム部15と低温ナトリウム部16とを仕切
る隔壁17が設けられており、前記ルーフスラブ3は、
その搭載機器が傾斜して、隔壁17や、それと搭載機器
とのシール部18に無理な変形や応力を加えることのな
いよう、また、地震時の応力により変形したり、ルーフ
スラブの振動によって、制御棒の炉心への挿入位置が変
動することによる、高速炉出力の大幅な変動を避けるた
めに剛な構造に形成されている。
In FIG. 1, a fast reactor 1 is supported on a pedestal 2 by a cylindrical support 4 fitted around a roof slab 3. Further, the upper end of the reactor vessel 5 is fixed around the roof slab 3, and the inside of the roof slab 3 is provided with a large rotating plug 8 that is rotated when replacing the fuel in the reactor core 7. At the same time, a rotatable small rotation plug 9 is provided, and further inside thereof, a core upper mechanism 12 is arranged in which a control rod guide tube 1o extending into the reactor core and a control rod 11 inserted therein are mounted. There is. In addition, the roof slab 3 also includes an intermediate heat exchanger 13 that transfers the heat emitted from the core to the secondary sodium system, and a mechanical pump 1 that circulates the sodium in the reactor.
4 etc. are installed and supported in large numbers. A partition wall 17 that partitions a high temperature sodium section 15 and a low temperature sodium section 16 in the furnace is provided in the middle part of the furnace, and the roof slab 3 is
To prevent the mounted equipment from tilting and applying unreasonable deformation or stress to the bulkhead 17 and the seal 18 between it and the mounted equipment, prevent it from being deformed by stress during an earthquake or by vibration of the roof slab. It has a rigid structure to avoid large fluctuations in the fast reactor output due to changes in the insertion position of the control rods into the reactor core.

第2図はループスラブの断面図で、ルーフスラブの強度
部材である箱形構造物20の熱的な変形を避けるために
下部に断熱構造部19が設けられている1箱形構造物2
0の内部は仕切板21と22で3つの部屋を構成し、こ
の3つの部屋を貫通するように複数のヒートパイプが設
置され、中段の部屋24には、放射線じゃへいのために
コンクリートが充てんされている。上段の部屋25には
、冷却材を流′すための冷却材給供ヘッダ26と冷却部
もどりヘッダ27が設置され断熱構造物19を通して下
段の部屋23(この部屋の内部は気体)に侵入した熱は
、ヒートパイプ28を通して上段の部屋25に伝えれ、
その熱は前記ヘッダ26から供給した冷却材に伝えられ
もどりヘッダ27からルーフスラブ外に持出される。
FIG. 2 is a cross-sectional view of the loop slab, which is a box-shaped structure 2 with a heat insulating structure 19 provided at the bottom to avoid thermal deformation of the box-shaped structure 20, which is a strength member of the roof slab.
The inside of 0 consists of three rooms with partition plates 21 and 22, and multiple heat pipes are installed to penetrate these three rooms, and the middle room 24 is filled with concrete to prevent radiation. has been done. In the upper room 25, a coolant supply header 26 and a cooling unit return header 27 are installed to flow the coolant, and the coolant enters the lower room 23 (gas inside this room) through the insulation structure 19. The heat is transmitted to the upper room 25 through the heat pipe 28,
The heat is transferred to the coolant supplied from the header 26 and taken out from the header 27 to the outside of the roof slab.

このように構成されたルーフスラブは、まず軸方向温度
分布については断熱構造物19を通過した熱は、下段部
屋23に伝えられ、次にヒートパイプ28により上段部
屋26に伝えられ、この熱はヘッダから供給され排出さ
れる冷却材により除去される。
With regard to the axial temperature distribution of the roof slab configured in this way, the heat that has passed through the heat insulating structure 19 is first transferred to the lower room 23, then transferred to the upper room 26 by the heat pipe 28, and this heat is It is removed by coolant supplied and discharged from the header.

ここで断熱構造物は熱伝導率が悪く、ヒートパイプは熱
伝導率が良いので軸方向温度分布は第3図に示すように
なり、ルーフスラブの強度部材である箱形構造物の軸方
向の温度差を低減でき、従って箱形構造物の熱変形や熱
応力の発生を防止できる。又1周方向の温度分布につい
てはヒートパイプが多数設けられていること、および周
方向に設けたヘッダーから均一に流出する冷却材により
熱を除去することにより、周方向温度分布が緩和され、
ルーフスラブに生じる周方向の熱変形や熱応力の発生も
防止できる。
Here, since the thermal insulation structure has poor thermal conductivity and the heat pipe has good thermal conductivity, the axial temperature distribution is as shown in Figure 3. Temperature differences can be reduced, and therefore thermal deformation and thermal stress of the box-shaped structure can be prevented. In addition, the temperature distribution in the circumferential direction is eased by the provision of a large number of heat pipes and the removal of heat by the coolant that flows out uniformly from the headers provided in the circumferential direction.
It is also possible to prevent circumferential thermal deformation and thermal stress that occur in the roof slab.

また、ヘッダーの冷却材流出口閉塞事故や、ヒートパイ
プの破損等の熱除去系の事故を想定した場合には、ヘッ
ダの流出口は多数設けられていることおよびヒートパイ
プも多数設けられていることにより、設備に多重性があ
るので事故の影響は非常に軽微なものとなり、信頼性が
向上している。
In addition, in the event of a heat removal system accident such as a blockage of the coolant outlet of the header or a damage to the heat pipe, it is important to note that the header has multiple outlet outlets and a large number of heat pipes. Due to the redundancy of equipment, the impact of accidents is extremely small and reliability is improved.

さらに製造性について言えば1箱形構造物内を仕切板2
1および仕切板22で仕切り、それにヒートパイプを固
定し、中段部屋24にコンクリートを充てんするだけで
あるので、製造性が非常に良い。
Furthermore, in terms of manufacturability, there are two partition plates inside a box-shaped structure.
1 and the partition plate 22, fixing the heat pipe thereto, and filling the middle chamber 24 with concrete, the manufacturing efficiency is very good.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、ルーフスラブの軸方向1
周方向とも温度分布を均一に出来熱変形や熱応力の発生
を防止でき、より安全性のあるルーフスラブとすること
が出来る。また熱除去系の事故を想定した時には、多重
性のある構造物となっており、信頼性を向上したルーフ
スラブとすることが出来る。さらに製造性についても容
易であるので、低廉なルーフスラブを提供できる等の効
果を有する。
As explained above, the present invention is directed to the axial direction 1 of the roof slab.
The temperature distribution can be made uniform in the circumferential direction, preventing the occurrence of thermal deformation and thermal stress, making it possible to create a safer roof slab. In addition, when assuming an accident in the heat removal system, the roof slab has a multiplicity structure and can be used as a roof slab with improved reliability. Furthermore, since it is easy to manufacture, it has the advantage of being able to provide an inexpensive roof slab.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高速炉全体構造を示す縦断面図、第2図は本発
明のルーフスラブの構造を示す縦断面図、第3図は本発
明のルーフスラブの軸方向温度分布を示す線図である。 3・・・ルーフスラブ 19・・・断熱構造部 20・・・箱形構造体 21.22・・・仕切板 28・・・ヒートパイプ 26.27・・・冷却材ヘッダ 25・・・上段部屋 24・・・中段部屋 23・・・下段部屋 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図 第2図
FIG. 1 is a longitudinal cross-sectional view showing the overall structure of the fast reactor, FIG. 2 is a longitudinal cross-sectional view showing the structure of the roof slab of the present invention, and FIG. 3 is a diagram showing the axial temperature distribution of the roof slab of the present invention. be. 3... Roof slab 19... Heat insulation structure 20... Box-shaped structure 21.22... Partition plate 28... Heat pipe 26.27... Coolant header 25... Upper room 24...Middle room 23...Lower room Agent Patent attorney Nori Ken Yudo Chika Ken Daishimaru Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)内部に炉心および液体冷却材を収容した炉容器の
上面を閉塞する箱形構造物およびその下部に設けられた
断熱構造物とからなるルーフスラブにおいて、この箱形
構造物の内部を上下方向に少なくとも3層に区画し、中
層部にコンクリートを配設するとともにこのコンクリー
ト層を上下に貫通してヒートパイプを設けたことを特徴
とする高速炉のルーフスラブ。
(1) In a roof slab consisting of a box-shaped structure that closes off the top surface of the reactor vessel that houses the reactor core and liquid coolant inside, and an insulating structure provided at the bottom of the box-shaped structure, the inside of this box-shaped structure is 1. A roof slab for a fast reactor, characterized in that the roof slab is partitioned into at least three layers in the direction, concrete is provided in the middle layer, and heat pipes are provided vertically penetrating the concrete layer.
JP62287450A 1987-11-16 1987-11-16 Roof slab of fast breeder Pending JPH01129195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62287450A JPH01129195A (en) 1987-11-16 1987-11-16 Roof slab of fast breeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62287450A JPH01129195A (en) 1987-11-16 1987-11-16 Roof slab of fast breeder

Publications (1)

Publication Number Publication Date
JPH01129195A true JPH01129195A (en) 1989-05-22

Family

ID=17717485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62287450A Pending JPH01129195A (en) 1987-11-16 1987-11-16 Roof slab of fast breeder

Country Status (1)

Country Link
JP (1) JPH01129195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115579A (en) * 1991-10-31 1993-05-14 Ishikawajima Shibaura Mach Co Ltd Control unit for fire engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115579A (en) * 1991-10-31 1993-05-14 Ishikawajima Shibaura Mach Co Ltd Control unit for fire engine

Similar Documents

Publication Publication Date Title
KR100380128B1 (en) Method and Apparatus for Enhancing Reactor Air-Cooling System Performance
US3182002A (en) Liquid cooled nuclear reactor with improved heat exchange arrangement
US4045286A (en) Molten fuel-salt reactor
US2736696A (en) Reactor
US5043135A (en) Method for passive cooling liquid metal cooled nuclear reactors, and system thereof
US3668070A (en) Nuclear reactor with heat pipes for heat extraction
US3793144A (en) Fuel element for a nuclear reactor of the passive method hydride control type
US3186913A (en) Graphite moderated nuclear reactor
US4795607A (en) High-temperature reactor
JPH01129195A (en) Roof slab of fast breeder
US4592888A (en) Device for emergency removal of the heat dissipated by a fast breeder nuclear reactor when shut down
JPH10132994A (en) Graphie deceleration reactor for thermoelectric power generation
US20230106712A1 (en) Liquid metal cooled nuclear reactor incorporating a fully passive decay heat removal (dhr) system with a modular cold source
JPH0321878B2 (en)
US4664876A (en) Fast breeder reactor
US3493758A (en) Radiation shielding and cooling for nuclear reactor utilizing molten metal
JPH01272995A (en) Roof slab of fast reactor
JPH06207996A (en) Device and method of removing after-power from fast neutron reactor at time of stoppage
JPS60205278A (en) Fast breeder reactor
JPS61120092A (en) Nuclear reactor structure
EP0169425B1 (en) Improved radial neutron reflector
JPS60238787A (en) Cooling device of roof slab for tank type fast breeder reactor
JPS5990084A (en) Containment chamber of reactor building
JPH06235788A (en) Roof deck structure for fast breeder reactor
JP2009002762A (en) Radioactive material storage method and storage facility