Nothing Special   »   [go: up one dir, main page]

JPH01230581A - Novel metal-free phtalocyanine compound, its production and electrophotographic photoreceptor using the same - Google Patents

Novel metal-free phtalocyanine compound, its production and electrophotographic photoreceptor using the same

Info

Publication number
JPH01230581A
JPH01230581A JP5747888A JP5747888A JPH01230581A JP H01230581 A JPH01230581 A JP H01230581A JP 5747888 A JP5747888 A JP 5747888A JP 5747888 A JP5747888 A JP 5747888A JP H01230581 A JPH01230581 A JP H01230581A
Authority
JP
Japan
Prior art keywords
metal
free phthalocyanine
phthalocyanine compound
free
electrophotographic photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5747888A
Other languages
Japanese (ja)
Inventor
Toshio Enokida
年男 榎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP5747888A priority Critical patent/JPH01230581A/en
Publication of JPH01230581A publication Critical patent/JPH01230581A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

NEW MATERIAL:A nonmetal phtalocyanine having an X-ray diffraction pattern showing distinctive peaks at Bragg angle (2theta+ or -2 deg.), 6.7 deg., 7.3 deg., 13.5 deg., 14.9 deg., 15.9 deg., 16.7 deg., 24.7 deg. and 26.1 deg.. USE:Electrophotographic photoreceptor. It has excellent exposure sensitivity characteristics, wavelength characteristics, deterioration resistance in repetitive use for a long period of time, printing resistance and image stability. PREPARATION:A metal-free phtalocyanine which is prepared from a metal phtalocyanine by the acid pasting method is milled with mechanical stress at 30-220 deg.C, preferably at 60-130 deg.C to convert the crystal morphology.

Description

【発明の詳細な説明】 〔発明の目的] (産業上の利用分野) 本発明は、新規な無金属フタロシアニン化合物。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention is a novel metal-free phthalocyanine compound.

その製造方法およびそれを用いた電子写真感光体に関す
る。
The present invention relates to a manufacturing method thereof and an electrophotographic photoreceptor using the same.

(従来の技術) 従来、電子写真感光体の感光体としては、セレン。(Conventional technology) Conventionally, selenium has been used as the photoreceptor for electrophotographic photoreceptors.

セレン合金、酸化亜鉛、硫化カドミウムおよびテルルな
どの無機光導電体を用いたものが主として使用されて来
た。近年、半導体レーザーの発展は目覚ましく、小型で
安定したレーザー発振器が安価に入手出来るようになり
、電子写真用光源として用いられ始めている。しかし、
これらの装置に短波長光を発振する半導体レーザーを用
いるのは、寿命、出力等を考えれば問題が多い。従って
、従来用いられて来た短波長領域に感度を持つ材料を半
導体レーザー用に使うには不適当であり、長波長領域(
780n+m以上)に高感度を持つ材料を研究する必要
が生じて来た。最近は有機系の材料、特に長波長領域に
感度を持つことが期待されるフタロシアニンを使用し、
これを積層した積層型有機感光体の研究が盛んに行なわ
れている。例えば、二価のフタロシアニンとしては、ε
型銅フタロシアニン(ε−CuPc)、X型無金属フタ
ロシアニン(X−H2Pc)、  τ型無金属フタロシ
アニン(τ−H2Pc)が長波長領域に感度を持つ。三
価、四価の金属フタロシアニンとしては、クロロアルミ
ニウムフタロシアニン(,6j2Pcc1)、クロロア
ルミニウムフタロシアニンクロライド(CIAIPcC
l)、オキソチタニウムフタロシアニン(TiOPc)
またはクロロインジウムフタロシアニン(InPcC1
)を蒸着し1次いで可溶性溶媒の蒸気に接触させて長波
長、高怒度化する方法(特開昭57−39484号、特
開昭59−166959号公報)、第■族金属としてT
i。
Inorganic photoconductors such as selenium alloys, zinc oxide, cadmium sulfide and tellurium have been used primarily. In recent years, the development of semiconductor lasers has been remarkable, and small and stable laser oscillators have become available at low cost and are beginning to be used as light sources for electrophotography. but,
Using semiconductor lasers that emit short-wavelength light in these devices has many problems in terms of lifespan, output, etc. Therefore, the conventionally used materials sensitive in the short wavelength region are unsuitable for use in semiconductor lasers, and the materials sensitive in the long wavelength region (
It has become necessary to research materials with high sensitivity to wavelengths of 780n+m or higher. Recently, organic materials, especially phthalocyanine, which is expected to have sensitivity in the long wavelength region, have been used.
Research into multilayer organic photoreceptors in which these materials are laminated is being actively conducted. For example, as a divalent phthalocyanine, ε
Type copper phthalocyanine (ε-CuPc), X-type metal-free phthalocyanine (X-H2Pc), and τ-type metal-free phthalocyanine (τ-H2Pc) have sensitivity in the long wavelength region. Trivalent and tetravalent metal phthalocyanines include chloroaluminum phthalocyanine (,6j2Pcc1), chloroaluminum phthalocyanine chloride (CIAIPcC
l), oxotitanium phthalocyanine (TiOPc)
or chloroindium phthalocyanine (InPcC1)
) is vapor-deposited and then brought into contact with the vapor of a soluble solvent to make it have a long wavelength and a high degree of anger (Japanese Unexamined Patent Publication No. 57-39484, JP-A No. 59-166959).
i.

Snおよびpbを含有するフタロシアニンを各種の置換
基、誘導体またはクラウンエーテルなどのシフト化剤を
用いて長波長処理をする方法(特願昭59−36254
号、特願昭59−204045号)により、長波長領域
に感度を得ている。
A method of long-wavelength treatment of phthalocyanine containing Sn and Pb using various substituents, derivatives, or shifting agents such as crown ether (Japanese Patent Application No. 59-36254)
(Japanese Patent Application No. 59-204045), sensitivity is obtained in the long wavelength region.

しかしながら、現在までは、初期および繰り返し時の電
子写真感光体において、満足のいく特性が得られていな
いのが現状であった。
However, until now, the current situation has been that satisfactory characteristics have not been obtained in electrophotographic photoreceptors at initial and repeated stages.

プリンター用のデジタル光源として、LEDも実用化さ
れている。可視光領域のLEDも使われているが、一般
に実用化されているものは、650r+m以上、標準的
には660nmの発振波長を持っている。
LEDs have also been put into practical use as digital light sources for printers. LEDs in the visible light range are also used, but those that are generally put into practical use have an oscillation wavelength of 650 r+m or more, typically 660 nm.

アゾ化合物、ペリレン化合物、セレン、酸化亜鉛等は、
650nm前後で充分な光感度を有するとは言えないが
、フタロシアニン化合物は、650nm前後に吸収ピー
クを持つため、LED用電荷発生剤としても有効な材料
として使用できる。
Azo compounds, perylene compounds, selenium, zinc oxide, etc.
Although it cannot be said that the phthalocyanine compound has sufficient photosensitivity at around 650 nm, it has an absorption peak around 650 nm, so it can be used as an effective material as a charge generating agent for LEDs.

(発明が解決しようとする問題点) 本発明の目的は、優れた露光感度特性、波長特性に加え
、長期にわたる繰り返し使用時の耐劣化特性。
(Problems to be Solved by the Invention) The purpose of the present invention is to provide excellent exposure sensitivity characteristics and wavelength characteristics, as well as deterioration resistance during repeated use over a long period of time.

耐剛性2画像安定性を有す、る電子写真感光体を得るこ
とにある。
The object of the present invention is to obtain an electrophotographic photoreceptor having rigidity resistance and image stability.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段および作用)本発明は、
ブラッグ角度(2θ±0.2’)の6.7°、7.3°
、13.5°、14.9°、15.9°、16゜7°、
24.7@および26.1°の位置に明確なX線回折ピ
ークを示すX線回折図を有する無金属フタロシアニン化
合物であり、アシッドペースティング法により、金属フ
タロシアニン化合物から金属を脱離させて作製した無金
属フタロシアニン化合物を、30〜220℃、好ましく
は60〜130℃において。
(Means and effects for solving the problems) The present invention has the following features:
Bragg angle (2θ±0.2') of 6.7° and 7.3°
, 13.5°, 14.9°, 15.9°, 16°7°,
It is a metal-free phthalocyanine compound with an X-ray diffraction diagram showing clear X-ray diffraction peaks at the positions of 24.7@ and 26.1°, and is produced by removing the metal from the metal phthalocyanine compound using the acid pasting method. of the metal-free phthalocyanine compound at 30 to 220°C, preferably 60 to 130°C.

機械的歪力をもってミリングして結晶変換させ、つまり
結晶形が変換するのに充分な時間およびもしくは攪拌に
より機械的歪力をもってミリングする上記無金属フタロ
シアニン化合物の製造方法である。さらには、導電性支
持体上に、電荷発生剤および電荷移動剤を使用してなる
電子写真感光体において、電荷発生剤が上記無金属フタ
ロシアニン化合物である電子写真感光体である。
In this method, the metal-free phthalocyanine compound is produced by milling with a mechanical strain force to convert the crystal, that is, milling with a mechanical strain force for a sufficient time and/or stirring to convert the crystal form. Furthermore, the present invention is an electrophotographic photoreceptor comprising a charge generating agent and a charge transfer agent on a conductive support, wherein the charge generating agent is the metal-free phthalocyanine compound described above.

また9本発明に関わる無金属フタロシアニン化合物は、
いかなる置換基を有していても良い。
In addition, 9 metal-free phthalocyanine compounds related to the present invention are:
It may have any substituent.

本発明の無金属フタロシアニン化合物は以下の方法によ
り作製されるが、これらに限ら、れるものではない。
The metal-free phthalocyanine compound of the present invention is produced by the following method, but is not limited thereto.

一般的にフタロシアニンは、フタロジニトリルと金属塩
化物とを加熱融解または有機溶媒存在下で加熱するフタ
ロジニトリル法、無水フタル酸を尿素および金属塩化物
と加熱融解または有機溶媒存在下で加熱するワイラー法
、シアノベンズアミドと金属塩とを高温で反応させる方
法、ジリチウムフタロシアニンと金属塩を反応させる方
法があるが、これらに限定されるものではない。また有
機溶媒としては。
Generally, phthalocyanine is produced using the phthalodinitrile method, which involves heating and melting phthalodinitrile and a metal chloride or by heating in the presence of an organic solvent, or by heating and melting phthalic anhydride with urea and a metal chloride or by heating in the presence of an organic solvent. Examples include, but are not limited to, the Weiler method, the method of reacting cyanobenzamide with a metal salt at high temperature, and the method of reacting dilithium phthalocyanine with a metal salt. Also as an organic solvent.

α−クロロナフタレン、β−クロロナフタレン、α−メ
チルナフタレン、メトキシナフタレン、ジフェニルエタ
ン、エチレングリコール、ジアルキルエーテル、キノリ
ン、スルホラン、ジクロロベンゼン。
α-chloronaphthalene, β-chloronaphthalene, α-methylnaphthalene, methoxynaphthalene, diphenylethane, ethylene glycol, dialkyl ether, quinoline, sulfolane, dichlorobenzene.

ジクロロトルエンなどの反応不活性な高沸点の溶媒が望
ましい。すなわち上記の有機溶媒中、150〜300℃
の温度範囲で加熱攪拌して合成することが出来る。また
、フタロジニトリルの代りに、ジイミノイソインドリン
などのインドリン系化合物、もしくは、1−アミノ−3
−イミノイソインドレニンなどのインドレニン系化合物
を使用することも出来る。
Reaction-inert, high-boiling solvents such as dichlorotoluene are preferred. That is, in the above organic solvent, 150 to 300°C
It can be synthesized by heating and stirring in the temperature range of . Also, instead of phthalodinitrile, indoline compounds such as diiminoisoindoline, or 1-amino-3
- Indolenine compounds such as iminoisoindolenine can also be used.

本発明で使用するフタロシアニンは、モーザーおよびト
ーマスの「フタロシアニン化合物J(Moser  a
nd  Thomas″Phtha 1ocyanin
e  Compounds”)等の公知方法および前記
の適切な方法によって得られた合成物を酸、アルカリ、
アセトン、メチルエチルケトン、テトラヒドロフラン、
ピリジン、キノリン、スルホラン、α−クロロナフタレ
ン、トルエン、ジオキサン。
The phthalocyanine used in the present invention is described in "Phthalocyanine Compound J" by Moser and Thomas.
nd Thomas″Phtha 1ocyanin
Compounds obtained by known methods such as "e Compounds") and the appropriate methods described above are treated with acids, alkalis,
Acetone, methyl ethyl ketone, tetrahydrofuran,
Pyridine, quinoline, sulfolane, α-chloronaphthalene, toluene, dioxane.

キシレン、クロロホルム、四塩化炭素、ジクロロメタン
、ジクロロエタン、トリクロロプロパン、N。
Xylene, chloroform, carbon tetrachloride, dichloromethane, dichloroethane, trichloropropane, N.

N゛−ジメチルアセトアミド、N−メチルピロリドン、
N、N” −ジメチルホルムアミド等により精製して得
られる。精製法としては洗浄法、再結晶法。
N-dimethylacetamide, N-methylpyrrolidone,
Obtained by purification with N,N''-dimethylformamide, etc. Purification methods include washing method and recrystallization method.

ソックスレー等の抽出法、および熱懸濁法などがある。Examples include extraction methods such as Soxhlet, and thermal suspension methods.

また、昇華精製することも可能である。精製方法は、こ
れらに限られるものではなく、未反応物。
It is also possible to purify by sublimation. Purification methods are not limited to these, and unreacted substances can be purified.

反応副生成物および不純物を取り除く作用であればいず
れでも良い。
Any action that removes reaction by-products and impurities may be used.

以上の方法により作製した金属フタロシアニン化合物、
主として、ジリチウムフタロシアニン(LizPc)、
ジナトリウムフタロシアニン(NazPc)、ジカリウ
ムフタロシアニン(K□Pc)などのアルカリ金属フタ
ロシアニン類をアシッドペースティング法により脱金属
させて、無金属フタロシアニン化合物を得る。
Metal phthalocyanine compound produced by the above method,
Mainly dilithium phthalocyanine (LizPc),
Alkali metal phthalocyanines such as disodium phthalocyanine (NazPc) and dipotassium phthalocyanine (K□Pc) are demetallized by an acid pasting method to obtain a metal-free phthalocyanine compound.

アシッドペースティング法は、従来より知られている硫
酸等の強酸を用いる顔料化法である。粗顔料(crud
e pigment)をやや大量の濃硫酸等に溶解して
処理するのがアシッドペースティング法である。
The acid pasting method is a conventionally known pigmentation method using a strong acid such as sulfuric acid. crude pigment (crud)
The acid pasting method is a process in which E. pigment) is dissolved in a relatively large amount of concentrated sulfuric acid or the like.

アシッドペースティング法により脱金属した無金属フタ
ロシアニン化合物は、α型の結晶型を有している。α型
無金属フタロシアニン化合物は、一般には、光導電性等
の電子写真特性が充分でなく、電荷発生材料として使用
出来ない。そこで、このα無金属フタロシアニン化合物
をミリングすることにより機械的せん断力または歪力を
加えて2本発明の無金属フタロシアニン化合物に結晶転
移させ、電子写真感光体用の電荷発生材料に使用するこ
とを可能にした。
The metal-free phthalocyanine compound demetallized by the acid pasting method has an α-type crystal form. α-type metal-free phthalocyanine compounds generally do not have sufficient electrophotographic properties such as photoconductivity and cannot be used as charge-generating materials. Therefore, by milling this α metal-free phthalocyanine compound and applying mechanical shearing force or strain force, it is possible to cause crystal transition to the metal-free phthalocyanine compound of the present invention and use it as a charge generating material for electrophotographic photoreceptors. made possible.

ミリングに使用される装置としては、ニーグー。The equipment used for milling is Nigoo.

バンバリーミキサ−、アトライター、エツジランナーミ
ル、ロールミル、ボールミル、サンドミル、5PEXミ
ル、ホモミキサー、ディスパーザ−、アジター、ショー
クラッシャー、スタンプミル、カッターミル、マイクロ
ナイザー等あるが、これらに限られるものではない。
These include, but are not limited to, Banbury mixers, attritors, edge runner mills, roll mills, ball mills, sand mills, 5PEX mills, homomixers, dispersers, agitators, show crushers, stamp mills, cutter mills, micronizers, etc. .

使用される分散メディアとしては9例えば、ガラスピー
ズ、スチールビーズ、ジルコニアビーズ、アルミナボー
ル、ジルコニアボール、鋼球、フリント石が挙げられる
が、必ずしも必要ではない。
Dispersion media that may be used include, but are not necessarily required to include, for example, glass beads, steel beads, zirconia beads, alumina balls, zirconia balls, steel balls, and flint stones.

また、必要があれば1食塩やばう硝等の磨砕助剤を使用
することも可能である。粒子の調整は歪力やせん断力が
試料に最も効率良く加わる乾式法、または粒子の均一調
整の容易な湿式法が選択される。湿式法は、ミリング時
に液状の溶剤を使用する。例えば、グリセリン、エチレ
ングリコール、ジエチレングリコール、ポリエチレング
リコール等のアルコール系溶剤、カルピトール系溶剤、
セロソルブ系溶剤。
Further, if necessary, it is also possible to use a grinding aid such as common salt or sulfur sulfate. For particle preparation, a dry method that applies strain force or shear force to the sample most efficiently, or a wet method that allows easy adjustment of particles uniformity is selected. The wet method uses a liquid solvent during milling. For example, alcohol-based solvents such as glycerin, ethylene glycol, diethylene glycol, polyethylene glycol, carpitol-based solvents,
Cellosolve solvent.

ケトン系溶剤、エステルケトン系溶剤等の中から1種以
上選択される。
One or more types are selected from ketone solvents, ester ketone solvents, and the like.

ミリング時の温度は30〜220℃、好ましくは60〜
130℃が望ましい。
The temperature during milling is 30-220℃, preferably 60-220℃
130°C is desirable.

本発明により得られた無金属フタロシアニン化合物を用
いた電荷発生層は、光吸収効率の大きな均一層であり、
電荷発生層中の粒子間、電荷発生層と電荷移動層の間、
電荷発生層と下引き層または導電性基板の間の空隙が少
なく、繰り返し使用時での、電位安定性、明部電位の上
昇防止等の電子写真感光体としての特性、および0画像
欠陥の減少、耐剛性等。
The charge generation layer using the metal-free phthalocyanine compound obtained by the present invention is a uniform layer with high light absorption efficiency,
Between particles in the charge generation layer, between the charge generation layer and the charge transfer layer,
There are few voids between the charge generation layer and the undercoat layer or the conductive substrate, which provides characteristics as an electrophotographic photoreceptor such as potential stability and prevention of increase in bright area potential during repeated use, and reduced zero image defects. , stiffness resistance, etc.

多くの要求を満足する電子写真感光体を得ることができ
る。
An electrophotographic photoreceptor that satisfies many requirements can be obtained.

n型感光体は、導電性基板上に、下引き層、電荷発生層
、電荷移動層の順に積層し作成される。またp型態光体
は、下引き層上に電荷移動層、電荷発生層の順に積層し
たもの、または、下引き層上に電荷発生剤と電荷移動剤
とを適当な樹脂と共に分散塗工し作成されたものがある
。両感光体ともに必要があれば表面保護およびトナーに
よるフィルミング防止等の意味でオーバーコート層を設
けることも出来る。
An n-type photoreceptor is fabricated by laminating an undercoat layer, a charge generation layer, and a charge transfer layer in this order on a conductive substrate. In addition, the p-type photomaterial is obtained by laminating a charge transfer layer and a charge generation layer in this order on an undercoat layer, or by dispersing and coating a charge generation agent and a charge transfer agent together with an appropriate resin on the undercoat layer. There is something created. If necessary, an overcoat layer may be provided on both photoreceptors for surface protection and prevention of toner filming.

また、下引き層は、必要がなければ除くことが出来る。Further, the undercoat layer can be removed if unnecessary.

本発明の無金属フタロシアニン化合物は、前記各種感光
体についてすべて好適に用いられる。また。
The metal-free phthalocyanine compound of the present invention can be suitably used for all of the above-mentioned various photoreceptors. Also.

電荷発生層は、無金属フタロシアニン化合物と樹脂とを
適切な溶媒とで分散塗工して得られるが、必要であれば
、樹脂を除いて溶媒のみで分散塗工しても使用出来る。
The charge generation layer can be obtained by dispersing and coating a metal-free phthalocyanine compound and a resin in a suitable solvent, but if necessary, it can also be used by dispersing and coating only a solvent without the resin.

本発明により得られた材料は、微小な一次粒子まで処理
され、また粒子間に存在した不純物が除去されるために
きわめて効率良(蒸着することが出来。
The material obtained by the present invention can be deposited with extremely high efficiency (vapor deposition) because it is processed down to the minute primary particles and impurities existing between the particles are removed.

蒸着用材料としても有効である。It is also effective as a material for vapor deposition.

感光体の塗工は、スピンコーター、アプリケーター、ス
プレーコーター、バーコーター、titf4コーター、
ドクターブレード、ローラーコーター、カーテンコータ
ー、ビードコーター装置を用いて行ない。
For coating the photoreceptor, use a spin coater, applicator, spray coater, bar coater, titf4 coater,
This is done using a doctor blade, roller coater, curtain coater, or bead coater.

乾燥は、40〜200℃、10分〜6時間の範囲で静止
または送風条件下で行なう。乾燥後膜厚は0.Olから
5ミクロン、望ましくは0.1から1ミクロンになるよ
うに塗工される。
Drying is performed at 40 to 200° C. for 10 minutes to 6 hours under stationary or blowing air conditions. The film thickness after drying is 0. It is coated to a thickness of 5 microns from Ol, preferably 0.1 to 1 micron.

電荷発生層を塗工によって形成する際に用いうるバイン
ダーとしては広範な絶縁性樹脂から選択でき。
The binder that can be used when forming the charge generation layer by coating can be selected from a wide variety of insulating resins.

またポリ−N−ビニルカルバゾール、ポリビニルアント
ラセンやポリビニルピレンなどの有機光導電性ポリマー
から選択できる。好ましくは、ポリビニルブチラール、
ボリアリレート(ビスフェノールAとフタル酸の縮重合
体など)、ポリカーボネート、ポリエステル、フェノキ
シ樹脂、ポリ酢酸ビニル、アクリル樹脂、ポリアクリル
アミド樹脂、ポリアミド樹脂、ポリビニルピリジン、セ
ルロース系樹脂、ウレタン樹脂、エポキシ樹脂、シリコ
ン樹脂、ポリスチレン、ポリケトン樹脂、ポリ塩化ビニ
ル、塩ビー酸ビ共重合体、ポリビニルアセクール、ポリ
ビニルホルマール、ポリアクリロニトリル、フェノール
樹脂、メラミン樹脂、カゼイン、ポリビニルアルコール
、ポリビニルピロリドン等の絶縁性樹脂を挙げることが
できる。電荷発生層中に含有丈る樹脂は、100重量%
以下、好ましくは40重世%以下が適している。またこ
れらの樹脂は、1種または2種以上組合せて用いても良
い。これらの樹脂を溶解する溶剤は樹脂の種類によって
異なり、後述する電荷発生層や下引き層を塗工時に影響
を与えないものから選択することが好ましい、具体的に
はベンゼン、キシレン、リグロイン、モノクロルベンゼ
ン、ジクロルベンゼンなどの芳香族炭化水素、アセトン
、メチルエチルケトン、シクロヘキサノンなどのケトン
類。
It can also be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene and polyvinylpyrene. Preferably polyvinyl butyral,
Polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin, polyamide resin, polyvinylpyridine, cellulose resin, urethane resin, epoxy resin, silicone Insulating resins such as resin, polystyrene, polyketone resin, polyvinyl chloride, vinyl chloride copolymer, polyvinyl acecool, polyvinyl formal, polyacrylonitrile, phenol resin, melamine resin, casein, polyvinyl alcohol, polyvinylpyrrolidone, etc. Can be done. The resin contained in the charge generation layer is 100% by weight.
Below, preferably 40 times % or less is suitable. Further, these resins may be used alone or in combination of two or more. The solvent for dissolving these resins varies depending on the type of resin, and it is preferable to select a solvent that does not affect the charge generation layer or undercoat layer described later during coating.Specifically, solvents such as benzene, xylene, ligroin, and monochloride are selected. Aromatic hydrocarbons such as benzene and dichlorobenzene, ketones such as acetone, methyl ethyl ketone, and cyclohexanone.

メタノール、エタノール、イソプロパツールなどのアル
コール類、酢酸エチル、メチルセロソルブ、などのエス
テル類、四塩化炭素、クロロホルム、ジクロルメタン、
ジクロルエタン、トリクロルエチレンなどの脂肪族ハロ
ゲン化炭化水素類、テトラヒドロフラン、ジオキサン、
エチレングリコールモノメチルエーテルなどのエーテル
類、N、N−ジメチルホルムアミド、N、N−ジメチル
アセトアミドなどのアミド類、およびジメチルスルホキ
シドなどのスルホキシド類が用いられる。蒸着法により
電荷発生層を形成することも出来、10−’= l O
−bTorr程度の真空下で蒸着し、膜厚は0.01か
ら5ミクロン、望ましくは0.05から0.5ミクロン
が良い。
Alcohols such as methanol, ethanol, isopropanol, esters such as ethyl acetate, methyl cellosolve, carbon tetrachloride, chloroform, dichloromethane,
Aliphatic halogenated hydrocarbons such as dichloroethane and trichloroethylene, tetrahydrofuran, dioxane,
Ethers such as ethylene glycol monomethyl ether, amides such as N,N-dimethylformamide, N,N-dimethylacetamide, and sulfoxides such as dimethyl sulfoxide are used. The charge generation layer can also be formed by vapor deposition, and 10-'= l O
The film is deposited under a vacuum of about -bTorr, and the film thickness is from 0.01 to 5 microns, preferably from 0.05 to 0.5 microns.

電荷移動層は、電荷移動剤単体または結着剤樹脂に溶解
分散させて形成される。電荷移動物質としては電子移動
物質と正孔移動性物質がある。
The charge transfer layer is formed by dissolving and dispersing a charge transfer agent alone or in a binder resin. Charge transfer substances include electron transfer substances and hole transfer substances.

電荷移動剤は、いずれでも良いが、オキサゾール化合物
、オキサジアゾール化合物、ヒドラゾン化合物、ピラゾ
リン化合物、スチルベン化合物、トリフェニルアミン化
合物およびブタジェン化合物などの材料が好適である。
Any charge transfer agent may be used, but materials such as oxazole compounds, oxadiazole compounds, hydrazone compounds, pyrazoline compounds, stilbene compounds, triphenylamine compounds, and butadiene compounds are suitable.

結着剤樹脂、溶剤および塗工方法は電荷発生層で記述し
た中から選択される。乾燥後の膜厚は15〜20ミクロ
ンが望ましい。
The binder resin, solvent and coating method are selected from those described for the charge generating layer. The film thickness after drying is preferably 15 to 20 microns.

これらの各層に加えて、帯電性の低下防止、接着性向上
などの目的で下引き層を導電性基板上に設けることがで
きる。下引き層として、ナイロン6、ナイロン66、ナ
イロン11.ナイロン61O2共重合ナイロン、アルコ
キシメチル化ナイロンなどのポリアミド、カゼイン、ポ
リビニルアルコール、ニトロセルロース、エチレン−ア
クリル酸コホリマー。
In addition to these layers, an undercoat layer can be provided on the conductive substrate for the purpose of preventing deterioration of chargeability, improving adhesion, and the like. As an undercoat layer, nylon 6, nylon 66, nylon 11. Polyamides such as nylon 61O2 copolymerized nylon and alkoxymethylated nylon, casein, polyvinyl alcohol, nitrocellulose, and ethylene-acrylic acid copolymer.

ゼラチン、ポリウレタン、ポリビニルブチラールおよび
酸化アルミニウムなどの金属酸化物が用いられる。また
、酸化亜鉛、酸化チタン等の金属酸化物。
Gelatin, polyurethane, polyvinyl butyral and metal oxides such as aluminum oxide are used. Also, metal oxides such as zinc oxide and titanium oxide.

窒化ケイ素、炭化ケイ素やカーボンブラッグなどの導電
性および誘電性粒子を樹脂中に含有させて調整すること
も出来る。
The resin can also be prepared by incorporating conductive and dielectric particles such as silicon nitride, silicon carbide, and carbon Bragg.

以下1本発明の実施例について具体的に説明する。Hereinafter, one embodiment of the present invention will be specifically described.

例中で部とは1重量部を示す。In the examples, part means 1 part by weight.

実施例1〜3 第1表に示す金属化合物3部とアミノイミノイソインド
レニン14.5部をトリクロロベンゼン50部中で20
0℃にて2時間加熱し9反応後、水蒸気蒸留で溶媒を除
き、2%塩酸水溶液、続いて2%水酸化ナトリウム水溶
液で精製した後、水で十分洗浄後、乾燥することによっ
て金属フタロシアニンを得た。
Examples 1 to 3 3 parts of the metal compounds shown in Table 1 and 14.5 parts of aminoiminoisoindolenine were mixed in 50 parts of trichlorobenzene at 20%
After heating for 2 hours at 0°C and 9 reactions, the solvent was removed by steam distillation, and the metal phthalocyanine was purified by using a 2% aqueous hydrochloric acid solution, followed by a 2% aqueous sodium hydroxide solution, thoroughly washed with water, and dried. Obtained.

このようにして得た金属フタロシアニンはβ型の結晶形
を有している。
The metal phthalocyanine thus obtained has a β-type crystal form.

第  1  表 β型からα型への転移は次の操作で製造される。Table 1 The transition from β type to α type is produced by the following operation.

10℃以下の98%硫酸IO部の中に1部のβ型金属フ
タロシアニンを少しずつ溶解し、その混合物を約2時間
の間、5℃以下の温度を保ちながら攪拌する。続いて硫
酸溶液を200部の氷水中に注入し。
One part of β-type metal phthalocyanine is dissolved little by little in IO part of 98% sulfuric acid at below 10°C, and the mixture is stirred for about 2 hours while maintaining the temperature below 5°C. Subsequently, the sulfuric acid solution was poured into 200 parts of ice water.

析出した結晶をろ過する。結晶を酸が残留しなくなるま
で蒸留水で洗浄し、乾燥すると0.95部のα型無金属
フタロシアニンが得られる。
Filter the precipitated crystals. The crystals are washed with distilled water until no acid remains and are dried to obtain 0.95 parts of α-type metal-free phthalocyanine.

以上の方法で得られたα型無金属フタロシアニンは、ブ
ラッグ角度(2θ±0.2°)の6.7°、7.2°、
13.5°、14.8°、15.3°、16.2°、2
4、1 °、  24.8 °、  26.6°および
27.3°に明確なX線回折ピークを有している(Cu
Kα線)。実施例1のα型無金属フタロシアニンのX線
回折図を第1図に示す。
The α-type metal-free phthalocyanine obtained by the above method has a Bragg angle (2θ±0.2°) of 6.7°, 7.2°,
13.5°, 14.8°, 15.3°, 16.2°, 2
It has clear X-ray diffraction peaks at 4, 1°, 24.8°, 26.6° and 27.3° (Cu
Kα radiation). The X-ray diffraction pattern of the α-type metal-free phthalocyanine of Example 1 is shown in FIG.

次に、このα型無金属フタロシアニン100部。Next, 100 parts of this α-type metal-free phthalocyanine.

食塩200部およびポリエチレングリコール80部をニ
ーグーに入れて、60〜130℃で8時間ミリングした
。取り出し後、2%の硫酸溶液で精製し。
200 parts of common salt and 80 parts of polyethylene glycol were placed in a Nigu and milled at 60 to 130°C for 8 hours. After taking it out, it was purified with a 2% sulfuric acid solution.

ろ過、水洗、乾燥して1本発明の新規無金属フタロシア
ニン化合物を得た。
A novel metal-free phthalocyanine compound of the present invention was obtained by filtration, washing with water, and drying.

以上の方法により得られた無金属フタロシアニン化合物
は、ブラッグ角度(2θ±0.2°)の6.7’。
The metal-free phthalocyanine compound obtained by the above method has a Bragg angle (2θ±0.2°) of 6.7'.

7.3°、  13.5 °、  14.9 °、  
15.9°、16.7’。
7.3°, 13.5°, 14.9°,
15.9°, 16.7'.

24.7°および26.1”に明確なX線回折ピークを
有していた。実施例1の新規無金属フタロシアニンのX
線回折図を第2図に示す。ブラッグ角度の200以下は
、α型とほとんどが同じ位置にピークを有しているが、
200以上のピークが大きく異なり光導電性の優れた構
造にスクッキングしていることが推測される。
It had clear X-ray diffraction peaks at 24.7° and 26.1".
A line diffraction diagram is shown in FIG. For Bragg angles below 200, most have peaks at the same position as the α type, but
It is presumed that the peaks of 200 or more differ greatly and are reflected in a structure with excellent photoconductivity.

次に、電子写真感光体の作製方法を述べる。Next, a method for manufacturing an electrophotographic photoreceptor will be described.

共重合ナイロン(東し製アミランCM−8000)10
部をエタノール190部とともにボールミルで3時間混
合し、溶解させた塗液を、ポリエチレンテレフタレート
(PET)フィルム上にアルミニウムを蒸着したシート
上に、ワイヤーバーで塗布した後、100℃で1時間乾
燥させて膜厚0.5ミクロンの下引き層を持つシートを
得た。
Copolymerized nylon (Amiran CM-8000 manufactured by Toshi) 10
was mixed with 190 parts of ethanol in a ball mill for 3 hours, and the dissolved coating liquid was applied with a wire bar onto a sheet of polyethylene terephthalate (PET) film with aluminum vapor-deposited, and then dried at 100°C for 1 hour. A sheet having a subbing layer with a thickness of 0.5 microns was obtained.

本実施例で得た無金属フタロシアニン2部をTHF  
97部にポリビニルブチラール樹脂1部(積木化学製B
H−3)を溶解した樹脂液とともにボールミルで6時間
分散した。
Two parts of the metal-free phthalocyanine obtained in this example was dissolved in THF.
97 parts and 1 part of polyvinyl butyral resin (B
H-3) was dispersed in a ball mill for 6 hours together with the dissolved resin liquid.

この分散液を下引き層上に塗布し、乾燥させた後。After applying this dispersion onto the undercoat layer and drying it.

0、2ミクロンの電荷発生層を形成3次に電荷移動剤と
して、1−フェニル−1,2,3,4−テトラヒドロキ
ノリン−6−カルポキシアルデヒドー1′、1’−ジフ
ェニル上19フフ10部、ポリカーボネート樹脂(奇人
化成製パンライl−に1300)10部を塩化メチレン
100重量部に溶かした液を電荷発生層上に塗布、乾燥
し、15ミクロンの電荷移動層を形成し、電子写真感光
体を得て、その特性を測定した。
Form a charge generation layer of 0.2 microns 3. Next, use 1-phenyl-1,2,3,4-tetrahydroquinoline-6-carpoxyaldehyde 1',1'-diphenyl as a charge transfer agent. A solution prepared by dissolving 10 parts of polycarbonate resin (Kijin Kasei Panrye L-1300) in 100 parts by weight of methylene chloride was applied onto the charge generation layer and dried to form a charge transfer layer of 15 microns. We obtained the body and measured its properties.

電子写真特性は以下の方法で測定した。Electrophotographic properties were measured by the following method.

静電複写紙試験装置5P−428(川口電機型)により
、スタティックモード2.コロナ帯電は−5゜2KVで
1表面電位(■0)および51uxの白色光またはlμ
Wに調整した800部mの光を照射して帯電量が1/2
まで減少する時間から白色光半減露光量感度(El/2
)を調べた。
Static mode 2. Corona charging is -5° 2KV with 1 surface potential (■0) and 51ux white light or lμ
The amount of charge is 1/2 when irradiated with 800 parts m of light adjusted to W.
The white light half-exposure sensitivity (El/2
) was investigated.

第   2   表 比較例1〜3 実施例1〜3で作製したα型無金属フタロシアニンをそ
れぞれ電荷発生剤として用いる以外は、実施例1〜3と
同様の方法で電子写真感光体を作製して。
Table 2 Comparative Examples 1 to 3 Electrophotographic photoreceptors were prepared in the same manner as in Examples 1 to 3, except that the α-type metal-free phthalocyanine prepared in Examples 1 to 3 was used as a charge generating agent, respectively.

その特性を測定した。結果を第3表に示す。Its properties were measured. The results are shown in Table 3.

第   3   表 以上の結果より本発明の無金属フタロシアニンは。Table 3 From the above results, the metal-free phthalocyanine of the present invention.

優れた光導電性および帯電性を有しているが、ミリング
の出発原料であるα型無金属フタロシアニンは。
Alpha-type metal-free phthalocyanine, which is the starting material for milling, has excellent photoconductivity and chargeability.

帯電性が−120(V)以下であり、感度も大幅に劣っ
ていた。従って1本発明の無金属フタロシアニンは78
0na+に発振波長を有する半導体レーザー用感光体の
電荷発生材料として有効に使用出来る。
The charging property was −120 (V) or less, and the sensitivity was also significantly inferior. Therefore, the metal-free phthalocyanine of the present invention is 78
It can be effectively used as a charge-generating material for a photoreceptor for a semiconductor laser having an oscillation wavelength of 0na+.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ実施例1で作製したα型無金
属フタロシアニンおよび新規無金属フタロシアニンのX
線回折図。
Figures 1 and 2 show the α-type metal-free phthalocyanine prepared in Example 1 and the new metal-free phthalocyanine, respectively.
Line diffraction diagram.

Claims (1)

【特許請求の範囲】 1、ブラッグ角度(2θ±0.2°)の6.7°、7.
3°、13.5°、14.9°、15.9°、16.7
°、24.7°および26.1°の位置に明確なX線回
折ピークを示すX線回折図を有する無金属フタロシアニ
ン化合物。 2、アシッドペースティング法により、金属フタロシア
ニン化合物から金属を脱離させて作製した無金属フタロ
シアニン化合物を、30〜220℃、好ましくは60〜
130℃において、機械的歪力をもってミリングして結
晶変換させることを特徴とする請求項1記載の無金属フ
タロシアニン化合物の製造方法。 3、導電性支持体上に、電荷発生剤および電荷移動剤を
使用してなる電子写真感光体において、電荷発生剤が、
請求項1記載の無金属フタロシアニン化合物であること
を特徴とする電子写真感光体。
[Claims] 1. Bragg angle (2θ±0.2°) of 6.7°; 7.
3°, 13.5°, 14.9°, 15.9°, 16.7
A metal-free phthalocyanine compound with an X-ray diffraction diagram showing distinct X-ray diffraction peaks at positions 24.7°, 24.7° and 26.1°. 2. A metal-free phthalocyanine compound prepared by removing metal from a metal phthalocyanine compound by an acid pasting method is heated at 30 to 220°C, preferably 60 to
2. The method for producing a metal-free phthalocyanine compound according to claim 1, wherein the crystal conversion is carried out by milling at 130° C. with mechanical strain. 3. In an electrophotographic photoreceptor using a charge generating agent and a charge transfer agent on a conductive support, the charge generating agent is
An electrophotographic photoreceptor comprising the metal-free phthalocyanine compound according to claim 1.
JP5747888A 1988-03-11 1988-03-11 Novel metal-free phtalocyanine compound, its production and electrophotographic photoreceptor using the same Pending JPH01230581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5747888A JPH01230581A (en) 1988-03-11 1988-03-11 Novel metal-free phtalocyanine compound, its production and electrophotographic photoreceptor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5747888A JPH01230581A (en) 1988-03-11 1988-03-11 Novel metal-free phtalocyanine compound, its production and electrophotographic photoreceptor using the same

Publications (1)

Publication Number Publication Date
JPH01230581A true JPH01230581A (en) 1989-09-14

Family

ID=13056816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5747888A Pending JPH01230581A (en) 1988-03-11 1988-03-11 Novel metal-free phtalocyanine compound, its production and electrophotographic photoreceptor using the same

Country Status (1)

Country Link
JP (1) JPH01230581A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4213620A1 (en) * 1991-04-26 1992-12-03 Fuji Xerox Co Ltd HYDROXYGALLIUMPHTHALOCYANINE CRYSTALS, METHOD FOR PRODUCING THE CRYSTALS, PHOTO-CONDUCTIVE MATERIAL THAT CONTAINS THE CRYSTAL AND AN ELECTROPHOTOGRAPHIC PHOTO RECEPTOR THAT CONTAINS THE MATERIAL
US5432277A (en) * 1992-10-16 1995-07-11 Basf Aktiengesellschaft Metal-free phthalocyanine of the γ-form
KR100431717B1 (en) * 2001-06-21 2004-05-17 제일모직주식회사 Composition of phthalocyanine-based mixed crystals and electrophotographic photoreceptor employing the same
JP2014055203A (en) * 2012-09-11 2014-03-27 Ricoh Co Ltd Hydroxygallium phthalocyanine crystal and production method of the same, and electrophotographic photoreceptor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4213620A1 (en) * 1991-04-26 1992-12-03 Fuji Xerox Co Ltd HYDROXYGALLIUMPHTHALOCYANINE CRYSTALS, METHOD FOR PRODUCING THE CRYSTALS, PHOTO-CONDUCTIVE MATERIAL THAT CONTAINS THE CRYSTAL AND AN ELECTROPHOTOGRAPHIC PHOTO RECEPTOR THAT CONTAINS THE MATERIAL
DE4213620C2 (en) * 1991-04-26 2002-09-19 Fuji Xerox Co Ltd Hydroxygallium phthalocyanine crystals, process for producing the crystals containing the crystal and an electrophotographic photoreceptor containing the material
US5432277A (en) * 1992-10-16 1995-07-11 Basf Aktiengesellschaft Metal-free phthalocyanine of the γ-form
KR100431717B1 (en) * 2001-06-21 2004-05-17 제일모직주식회사 Composition of phthalocyanine-based mixed crystals and electrophotographic photoreceptor employing the same
JP2014055203A (en) * 2012-09-11 2014-03-27 Ricoh Co Ltd Hydroxygallium phthalocyanine crystal and production method of the same, and electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
JP2561940B2 (en) Gallium phthalocyanine compound and electrophotographic photoreceptor using the same
JP2782765B2 (en) Method for producing phthalocyanine crystal
JPS63198067A (en) Photosemiconductor material and electrophotographic sensitive body using same
JP2512081B2 (en) R-type titanium phthalocyanine compound, method for producing the same, and electrophotographic photoreceptor using the same
JPS63116158A (en) Photosemiconductor material and electrophotographic sensitive body prepared by using it
JPH01230581A (en) Novel metal-free phtalocyanine compound, its production and electrophotographic photoreceptor using the same
JP2861116B2 (en) Electrophotographic photoreceptor
JPH01123868A (en) Quasi-noncrystalline titanium phthalocyanine compound, its production and electrophotographic material
JP2589705B2 (en) Optical semiconductor material and electrophotographic photosensitive member using the same
JPH01247464A (en) Epsilon-form zinc phthalocyanine compound and electrophotographic photoreceptor prepared therefrom
JPH01144057A (en) Photosemiconductive material and electrophotographic sensitive body using same
JPH02289657A (en) Epsilon type cobalt phthalocyanine compound and electrophotographic sensitive body using same compound
JP2805866B2 (en) Electrophotographic photoreceptor
JP2542716B2 (en) Epsilon-type nickel phthalocyanine compound and electrophotographic photoreceptor using the same
JPH01217362A (en) Electrophotographic sensitive body
JP2805896B2 (en) Electrophotographic photoreceptor
JPH0572776A (en) Electrophotographic sensitive material and production of coppor phthalocynine
JP2861083B2 (en) Electrophotographic photoreceptor
JP3189495B2 (en) Metal phthalocyanine compound and electrophotographic photoreceptor using the same
JP2805915B2 (en) Electrophotographic photoreceptor
JPS62275272A (en) Material for photosemiconductor and electrophotographic sensitive body using same
JPH01172462A (en) Quasi-noncrystalline titanium phthalocyanine compound and electrophotographic photoreceptor prepared therefrom
JPH05247361A (en) Production of chlorogallium phthalocyanine crystal
JPH01161061A (en) Production of amorphous titanium phthalocyanine compound
JPH11256061A (en) New mixed crystal of phthalocyanine and production of electrophotographic photoreceptor by using the same