Nothing Special   »   [go: up one dir, main page]

JPH01144057A - Photosemiconductive material and electrophotographic sensitive body using same - Google Patents

Photosemiconductive material and electrophotographic sensitive body using same

Info

Publication number
JPH01144057A
JPH01144057A JP30377287A JP30377287A JPH01144057A JP H01144057 A JPH01144057 A JP H01144057A JP 30377287 A JP30377287 A JP 30377287A JP 30377287 A JP30377287 A JP 30377287A JP H01144057 A JPH01144057 A JP H01144057A
Authority
JP
Japan
Prior art keywords
phthalocyanine
tin
electrophotographic photoreceptor
charge
charge transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30377287A
Other languages
Japanese (ja)
Inventor
Toshio Enokida
年男 榎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP30377287A priority Critical patent/JPH01144057A/en
Publication of JPH01144057A publication Critical patent/JPH01144057A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain superior exposure sensitivity characteristics and wavelength characteristics, as well as characteristics resisting deterioration due to repeated use for a long period, printing resistance, and image stability by incorporating a tin-phthalocyanine derivative having intense peaks at the specified Bragg angles in the X-ray diffraction diagram. CONSTITUTION:The electrophotographic sensitive body uses an electric charge transfer material and as a charge generating material the tin-phthalocyanine derivative crystals having intense peaks at the Bragg angles (2theta+ or -0.2 deg.) of 8.6 deg., 12.2 deg., 14.9 deg., 17.4 deg., 19.4 deg., and 27.6 deg. in the diffraction diagram using the Cu-Kalpha line, thus permitting the obtained electrophotographic sensitive body to have superior exposure sensitivity characteristics and wavelength characteristics as well as deterioration resisting characteristics, printing resistance, and image stability at the time of repeated uses for a long period.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、中心金属としてスズを含有するフタロシアニ
ンを用いた電子写真感光体等に有用な光半導体材料に関
し、更に詳細に言えば、優れた露光感度特性、波長特性
を有する電子写真感光体に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a photosemiconductor material useful for electrophotographic photoreceptors etc. that uses phthalocyanine containing tin as a central metal. In other words, it relates to an electrophotographic photoreceptor having excellent exposure sensitivity characteristics and wavelength characteristics.

(従来の技術) 従来、電子写真感光体の感光体としては、セレン。(Conventional technology) Conventionally, selenium has been used as the photoreceptor for electrophotographic photoreceptors.

セレン合金、酸化亜鉛、硫化カドミウムおよびテルルな
どの無機光導電体を用いたものが主として使用されて来
た。近年、半導体レーザーの発展は目覚ましく、小型で
安定したレーザー発振器が安価に入手出来るようになり
、電子写真用光源として用いられ始めている。しかし、
これらの装置に短波長光を発振する半導体レーザーを用
いるのは、寿命、出力等を考えれば問題が多い。従って
、従来用いられて来た短波長領域に感度を持つ材料を半
導体レーザー用に使うには不適当であり、長波長領域(
780nm以上)に高感度を持つ材料を研究する必要が
生じて来た。最近は有機系の材料、特に長波長領域に感
度を持つことが期待されるフタロシアニンを使用し、こ
れを積層した積層型有機感光体の研究が盛んに行なわれ
ている。例えば、二価の金属フタロシアニンとしては、
ε型銅フタロシアニン(ε−CuPc)。
Inorganic photoconductors such as selenium alloys, zinc oxide, cadmium sulfide and tellurium have been used primarily. In recent years, the development of semiconductor lasers has been remarkable, and small and stable laser oscillators have become available at low cost and are beginning to be used as light sources for electrophotography. but,
Using semiconductor lasers that emit short-wavelength light in these devices has many problems in terms of lifespan, output, etc. Therefore, the conventionally used materials sensitive in the short wavelength region are unsuitable for use in semiconductor lasers, and the materials sensitive in the long wavelength region (
It has become necessary to research materials with high sensitivity to wavelengths of 780 nm and above. Recently, research has been actively conducted on multilayer organic photoreceptors using organic materials, especially phthalocyanine, which is expected to have sensitivity in the long wavelength region. For example, as a divalent metal phthalocyanine,
ε-type copper phthalocyanine (ε-CuPc).

X型無金属フタロシアニン(X−H2PC)、  τ型
無金属フタロシアニン(τ−H2Pc)が長波長領域に
感度を持つ。三価、四価の金属フタロシアニンとしては
、クロロアルミニウムフタロシアニン(AIPccl)
、クロロアルミニウムフタロシアニンクロライド(C4
!AlPcC1)、またはチタニルフタロシアニン(T
iOPc)、クロロインジウムフタロシアニン(InP
cC1)を蒸着し1次いで可溶性溶媒の蒸気に接触させ
て長波長、高感度化する方法(特開昭57−39484
号、特開昭59−166959号公報)、第■族金属と
してTi、Snおよびpbを含有するフタロシアニンを
各種の置換基、誘導体またはクラウンエーテルなどのシ
フト化剤を用いて長波長処理をする方法(特願昭59−
36254号、特願昭59−204045号)により、
長波長領域に感度を得ている。
X-type metal-free phthalocyanine (X-H2PC) and τ-type metal-free phthalocyanine (τ-H2Pc) have sensitivity in the long wavelength region. As trivalent and tetravalent metal phthalocyanine, chloroaluminum phthalocyanine (AIPccl)
, chloroaluminum phthalocyanine chloride (C4
! AlPcC1), or titanyl phthalocyanine (T
iOPc), chloroindium phthalocyanine (InP
A method of vapor depositing cC1) and then contacting it with vapor of a soluble solvent to achieve long wavelength and high sensitivity (Japanese Patent Application Laid-Open No. 57-39484
JP-A No. 59-166959), a method in which phthalocyanine containing Ti, Sn, and Pb as Group Ⅰ metals is subjected to long wavelength treatment using various substituents, derivatives, or shifting agents such as crown ethers. (Special application 1982-
No. 36254, patent application No. 59-204045),
Sensitivity is obtained in the long wavelength region.

また、特開昭57−148745号には、スズ。Furthermore, JP-A-57-148745 discloses tin.

アルミニウム等の金属から選ばれた金属フタロシアニン
の蒸着膜を電荷発生層として作製した感光体も報告され
ているが、帯電性が著しく劣り、実用的ではなかった。
Photoreceptors have also been reported in which a charge generation layer is made of a vapor-deposited film of metal phthalocyanine selected from metals such as aluminum, but these have extremely poor charging properties and are not practical.

特開昭62−119547号により、熱水処理した後、
N−メチルピロリドン処理して精製したスズフタロシア
ニン化合物とバインダポリマーを含む電荷発生層を設け
た電子写真感光体は、N−メチルピロリドンによる熱懸
濁処理の前後に使用されるアルコール類およびエーテル
類は極性が強いため、精製工程中スズフタロシアニン化
合物の結晶粒子は強固に凝集し、その後Φ精製は困難に
なる。合成時に生成する酸類、中間不純物はa集粒子の
中や表面に残りやすく、そのために次の工程で使用され
るN−メチルピロリドンは分解し2反応を起こし電気的
緒特性は低下せざるを得ない。
After hot water treatment according to Japanese Patent Application Laid-Open No. 62-119547,
An electrophotographic photoreceptor provided with a charge generation layer containing a tin phthalocyanine compound purified by N-methylpyrrolidone treatment and a binder polymer may contain alcohols and ethers used before and after thermal suspension treatment with N-methylpyrrolidone. Due to its strong polarity, the crystal particles of the tin phthalocyanine compound strongly aggregate during the purification process, making Φ purification difficult. Acids and intermediate impurities generated during synthesis tend to remain in or on the surface of the a-collection particles, and for this reason, the N-methylpyrrolidone used in the next step decomposes and undergoes two reactions, resulting in a decline in electrical characteristics. do not have.

これらの場合光吸収効率が十分でなく、電荷発生層のキ
ャリア発生効率の低下、電荷移動層へのキャリアーの注
入効率の低下、さらには、長期にわたる繰り返し使用時
の耐劣化特性、耐剛性1画像安定性などの電子写真緒特
性を十分満足していない欠点があった。
In these cases, the light absorption efficiency is insufficient, resulting in a decrease in the carrier generation efficiency of the charge generation layer, a decrease in the carrier injection efficiency into the charge transfer layer, and a decrease in deterioration resistance and rigidity resistance during repeated use over a long period of time. It had the drawback of not fully satisfying electrophotographic properties such as stability.

以上、従来まで報告されているスズフタロシアニンは3
強固に凝集した塊状粒子であり、凝集した粒子間に含ま
れる不純物が多く、結晶化の際に必ず結晶成長するため
、また顔料粒子径が大きいなどのために、それらを用い
て蒸着および分散塗布された電荷発生層は1分散安定性
を欠き塗工性の低下を引き起こしていた。それにより、
均質な電荷発生層を得ることが難しく、美しい画像およ
び安定した電子写真特性を得ることは難しかった。
As mentioned above, there are 3 tin phthalocyanines that have been reported so far.
These are strongly aggregated lump particles, and since there are many impurities contained between the aggregated particles, which inevitably cause crystal growth during crystallization, and because the pigment particle size is large, they are used for vapor deposition and dispersion coating. The resulting charge generation layer lacked dispersion stability, resulting in a decrease in coatability. Thereby,
It has been difficult to obtain a homogeneous charge generation layer, and it has been difficult to obtain beautiful images and stable electrophotographic properties.

プリンター用のデジタル光源として、LEDも実用化さ
れている。可視光領域のLEDも使われているが、一般
に実用化されているものは、650nm以上、標準的に
は660nn+の発振波長を持っている。
LEDs have also been put into practical use as digital light sources for printers. LEDs in the visible light range are also used, but those that are generally put into practical use have an oscillation wavelength of 650 nm or more, typically 660 nm+.

アゾ化合物、ペリレン化合物、セレン、酸化亜鉛等は、
650nm前後で充分な光感度を有するとは言えないが
、フタロシアニン化合物は、650nm前後に吸収ピー
クを持つため、LED用電荷発生剤としても有効な材料
として使用できる。
Azo compounds, perylene compounds, selenium, zinc oxide, etc.
Although it cannot be said that the phthalocyanine compound has sufficient photosensitivity at around 650 nm, it has an absorption peak around 650 nm, so it can be used as an effective material as a charge generating agent for LEDs.

(発明が解決しようとする問題点) 本発明の目的は、優れた露光感度特性、波長特性に加え
、長期にわたる繰り返し使用時の耐劣化特性。
(Problems to be Solved by the Invention) The purpose of the present invention is to provide excellent exposure sensitivity characteristics and wavelength characteristics, as well as deterioration resistance during repeated use over a long period of time.

耐剛性2画像安定性を有する電子写真感光体を得ること
にある。
The object of the present invention is to obtain an electrophotographic photoreceptor having rigidity resistance and image stability.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段および作用)本発明は、
ブラッグ角度2θに、特定の強いピークを示すX線回折
図を有するスズフタロシアニン系化合物結晶粒子を用い
てなる新規の光半導体材料であり、さらには電荷発生剤
およびtffr移動剤を使用してなる電子写真感光体に
おいて、電荷発生剤が該新規スズフタロシアニン系化合
物結晶粒子である電子写真感光体により前記の目的を達
成した。
(Means and effects for solving the problems) The present invention has the following features:
This is a novel optical semiconductor material made using tin phthalocyanine compound crystal particles having an X-ray diffraction diagram showing a specific strong peak at the Bragg angle 2θ, and furthermore, an electron The above object has been achieved by an electrophotographic photoreceptor in which the charge generating agent is crystal particles of the novel tin phthalocyanine compound.

具体的には、(u−Kctgを用いてブラッグ角度(2
θ±0.2@)の8.6゜、12.2゜、14.9@。
Specifically, we use (u-Kctg to calculate the Bragg angle (2
θ±0.2@) 8.6°, 12.2°, 14.9@.

17.4゜、19.4°および27.6°の位置に強い
ピークを示すX線回折図を有するスズフタロシアニン系
化合物が選ばれる。
A tin phthalocyanine compound having an X-ray diffraction diagram showing strong peaks at positions of 17.4°, 19.4° and 27.6° is selected.

本発明で使用されるスズフタロシアニン系化合物は、−
数式(III)で表わされる化合物である。
The tin phthalocyanine compound used in the present invention is -
This is a compound represented by formula (III).

(式中+R9はハロゲン原子、酸素原子、アルコキシ基
を表わし+R111〜R13は水素原子、ハロゲン原子
、アルキル基、アルコキシ基、アリール基、アリールオ
キシ基、ニトロ基、シアノ基、水酸基、ベンジルオキシ
基、アミノ基等の置換基を表し、jは1または2の整数
、に、I!、m、nは0〜4の整数を表す、 ) 本発明のスズフタロシアニン系化合物、は、その置換基
の種類、または置換数に拘らず、前記のX線回折ピーク
が認められている。
(In the formula, +R9 represents a halogen atom, an oxygen atom, an alkoxy group, and +R111 to R13 represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a nitro group, a cyano group, a hydroxyl group, a benzyloxy group, represents a substituent such as an amino group, j is an integer of 1 or 2, and I!, m, and n are integers of 0 to 4) The tin phthalocyanine compound of the present invention is defined by the type of substituent. , or the number of substitutions, the above-mentioned X-ray diffraction peak is observed.

従って、ブラッグ角度(2θ±0.2”)の8.6@。Therefore, the Bragg angle (2θ±0.2”) is 8.6@.

12.2”、14.9゜、17.4゜、19.4@およ
び27.6”の位置に強いピークを持つスズフタロシア
ニン系化合物であれば、いずれでも良く、また、それら
の二種および三種以上の混合物であっても良い。
Any tin phthalocyanine compound having strong peaks at the positions of 12.2", 14.9°, 17.4°, 19.4@ and 27.6" may be used, or two types thereof and It may be a mixture of three or more types.

従来報告されている結晶性粗大二次粒子を電荷発生層に
含有した電子写真感光体は、光吸収効率の低下により、
キャリア発生数が減少し光感度が低下する。また電荷発
生層が不均一のため電荷輸送層に対するキャリアの注入
効率も低下し、その結果、静電特性としては、インダク
ション現象が起きたり2表面電位が低下したり、繰り返
し使用時の電位安定性が劣る等の感光体の感度上好まし
くない現象が生じる。また9画像としても均質性を欠き
、微小な欠陥を生じる。
Conventionally reported electrophotographic photoreceptors containing coarse crystalline secondary particles in the charge generation layer suffer from a decrease in light absorption efficiency.
The number of carriers generated decreases and the photosensitivity decreases. Furthermore, since the charge generation layer is non-uniform, the injection efficiency of carriers into the charge transport layer decreases, resulting in electrostatic properties such as induction phenomenon, decrease in surface potential, and potential stability during repeated use. Unfavorable phenomena occur in terms of the sensitivity of the photoreceptor, such as poor sensitivity. Further, even if the nine images are used, they lack homogeneity and produce minute defects.

電荷発生層として使用されるスズフタロシアニン化合物
としては、特開昭62−119547号に開示されたジ
ハロゲノスズフタロシアニン(S n Cl1zPc)
があり、λ=1.5418  (A、  U、 )のC
ukαの放射線を用いて2θ(+2°)=8.4゜、1
3.8゜、22.4゜、28.2°および30.0”な
どに強いX線回折ピークを有しているが、開示された方
法で合成および溶剤で精製された材料は前記記載の理由
で問題が多く、高品位の感光体であるとは言い難い。
As the tin phthalocyanine compound used as the charge generation layer, dihalogeno tin phthalocyanine (S n Cl1zPc) disclosed in JP-A-62-119547 is used.
, and C of λ=1.5418 (A, U, )
Using ukα radiation, 2θ (+2°) = 8.4°, 1
Although it has strong X-ray diffraction peaks at 3.8°, 22.4°, 28.2°, and 30.0", the material synthesized by the disclosed method and purified with a solvent is For various reasons, there are many problems, and it is difficult to say that it is a high-quality photoreceptor.

しかしながら2本発明のスズフタロシアニン化合物は、
充分均一に微粒子化された結晶粒子であり。
However, the two tin phthalocyanine compounds of the present invention are
It is a sufficiently uniformly finely divided crystal grain.

公知のジハロゲノスズフタロシアニンの欠点を補う新規
な電荷発生材料である。
This is a new charge-generating material that compensates for the drawbacks of known dihalogenotin phthalocyanines.

フタロシアニンは、フタロジニトリルと金属塩化物とを
加熱融解または有機溶媒存在下で加熱するフタロジニト
リル法、無水フタル酸を尿素および金属塩化物と加熱融
解または有機溶媒存在下で加熱するワイラー法、シアノ
ベンズアミドと金属塩とを高温で反応させる方法、ジリ
チウムフタロシアニンと金属塩を反応させる方法がある
が、これらに限定されるものではない。また有機溶媒と
しては、α−クロロナフタレン、β−クロロナフタレン
、α−メチルナフタレン、メトキシナフタレン、ジフェ
ニルエタン、エチレングリコール、ジアルキルエーテル
、キノリン、スルホラン、ジクロルベンゼンなど反応不
活性な高沸点の溶媒が望ましい。
Phthalocyanine can be produced by the phthalodinitrile method, in which phthalodinitrile and metal chloride are heated and melted or heated in the presence of an organic solvent; the Weiler method, in which phthalic anhydride is heated and melted with urea and metal chloride, or heated in the presence of an organic solvent; There are a method of reacting cyanobenzamide and a metal salt at a high temperature, and a method of reacting a dilithium phthalocyanine and a metal salt, but the methods are not limited to these. Examples of organic solvents include reaction-inactive high-boiling point solvents such as α-chloronaphthalene, β-chloronaphthalene, α-methylnaphthalene, methoxynaphthalene, diphenylethane, ethylene glycol, dialkyl ether, quinoline, sulfolane, and dichlorobenzene. desirable.

本発明で使用するスズを含有するフタロシアニンは、モ
ーザーおよびトーツスの[フタロシアニン化合物J  
(Moser  and  Thomas”Phtha
locyanine  Compounds”)等の公
知方法および前記の適切な方法によって得られた合成物
を酸、アルカリ、アセトン、メチルエチルケトン、テト
ラヒドロフラン、ピリジン、キノリン、スルホラン、α
−クロロナフタレン、トルエン、ジオキサン、キシレン
、クロロホルム、四塩化炭素、ジクロロメタン、ジクロ
ロエタン、トリクロロプロパン、N、N’  −ジメチ
ルアセトアミド。
The tin-containing phthalocyanine used in the present invention is [Phthalocyanine Compound J] by Moser and Torts.
(Moser and Thomas"Phtha
Compounds obtained by known methods such as "Locyanine Compounds") and the above-mentioned appropriate methods are combined with acids, alkalis, acetone, methyl ethyl ketone, tetrahydrofuran, pyridine, quinoline, sulfolane, α
-chloronaphthalene, toluene, dioxane, xylene, chloroform, carbon tetrachloride, dichloromethane, dichloroethane, trichloropropane, N,N'-dimethylacetamide.

N−・メチルピロリドン、N、N’  −ジメチルホル
ムアミド等により精製して得られる。精製法としては溶
剤洗浄、再結晶法、ソックスレー等の抽出法、および熱
懸濁法などがある。また、昇華精製することも可能であ
る。精製方法は、これらに限られるものではない。
It is obtained by purification with N-methylpyrrolidone, N,N'-dimethylformamide, etc. Purification methods include solvent washing, recrystallization, extraction methods such as Soxhlet, and thermal suspension methods. It is also possible to purify by sublimation. Purification methods are not limited to these.

粗合成物の有するX線回折ピークは、任意のものであっ
て良い。
The crude compound may have any X-ray diffraction peak.

本発明のX線回折図を有するスズフタロシアニン化合物
への結晶転移は、モーザーおよびトーマスの「フタロシ
アニン化合物」等に記載された公知の方法により行われ
るが、微粒子化および結晶転移工程を同時に行うことの
出来るアシッドペースティング法が最も良く選択される
。ここで、アシッドペースティング法とは硫酸中にフタ
ロシアニン化合物を溶解した後に、水へ注入して再析出
させる方法を示す。
The crystal transition to the tin phthalocyanine compound having the X-ray diffraction pattern of the present invention is carried out by the known method described in "Phthalocyanine Compounds" by Moser and Thomas. Acid pasting methods are best chosen if possible. Here, the acid pasting method refers to a method in which a phthalocyanine compound is dissolved in sulfuric acid and then poured into water to be reprecipitated.

得られた新規結晶は充分微粒子であるが1機械的摩砕法
によりさらに微粒子として使用することも出来る。
Although the obtained new crystals are sufficiently fine particles, they can also be used as finer particles by mechanical trituration.

また、必要があれば1食塩やばう硝等の摩砕助剤を使用
することも可能である。
Further, if necessary, it is also possible to use a grinding aid such as common salt or sulfur sulfate.

また、摩砕時に使用される装置としては、ニーダ−、バ
ンバリーミキサ−、アトライター、エツジランナーミル
、ロールミル、ボールミル、サンドミル。
Equipment used during grinding includes a kneader, Banbury mixer, attritor, edge runner mill, roll mill, ball mill, and sand mill.

5PEXミル、ホモミキサー、ディスパーザ−、アジタ
ー、ジョークラフシャー、スタンプミル、カンタ−ミル
、マイクロナイザー等あるが、これらに限られるもので
はない。
Examples include, but are not limited to, 5PEX mills, homo mixers, dispersers, agitators, jaw graphers, stamp mills, canter mills, and micronizers.

本発明の、特定のブラッグ角度2θにおいて1強いピー
クを示すx1回折図を有するスズフタロシアニン系化合
物を用いた電荷発生層は、光吸収効率の大きな均一層で
あり、電荷発生層中の粒子間、電荷発生層と電荷移動層
の間、電荷発生層と下引き層または導電性基板の間の空
隙が少なく、繰り返し使用時での、電位安定性、明部電
位の上昇防止等の電子写真感光体としての特性、および
1画像欠陥の減少。
The charge generation layer of the present invention using a tin phthalocyanine compound having an x1 diffraction pattern showing a strong 1 peak at a specific Bragg angle 2θ is a uniform layer with high light absorption efficiency. An electrophotographic photoreceptor with few voids between the charge generation layer and the charge transfer layer, and between the charge generation layer and the undercoat layer or conductive substrate, which provides stable potential and prevents bright area potential from increasing during repeated use. characteristics, and a reduction in 1-image defects.

耐剛性環、多くの要求を満足する電子写真感光体を得る
ことができる。
An electrophotographic photoreceptor with a rigid ring that satisfies many requirements can be obtained.

n型感光体は、導電性基板上に、下引き層、電荷発生層
、電荷移動層の順に積層し作成される。またp型感光体
は、下引き層上に電荷移動層、電荷発生層の順に積層し
たもの、または、下引き層上に電荷発生剤と電荷移動剤
とを適当な樹脂と共に分散塗工し作成されたものがある
。両感光体ともに必要があれば表面保護およびトナーに
よるフィルミング防止等の意味でオーバーコート層を設
けることも出来る。
An n-type photoreceptor is fabricated by laminating an undercoat layer, a charge generation layer, and a charge transfer layer in this order on a conductive substrate. P-type photoreceptors are made by laminating a charge transfer layer and a charge generation layer in this order on an undercoat layer, or by dispersing and coating a charge generation agent and a charge transfer agent together with a suitable resin on the undercoat layer. There are things that have been done. If necessary, an overcoat layer may be provided on both photoreceptors for surface protection and prevention of toner filming.

本発明のスズフタロシアニン系化合物は、前記各種感光
体についてすべて好適に用いられる。また。
The tin phthalocyanine compound of the present invention can be suitably used for all of the above-mentioned various photoreceptors. Also.

電荷発生層は、スズフタロシアニン化合物と樹脂とを適
切な溶媒とで分散塗工して得られるが、必要であれば、
樹脂を除いて分散塗工しても使用出来る。
The charge generation layer can be obtained by dispersing and coating a tin phthalocyanine compound and a resin in an appropriate solvent.
It can also be used by dispersion coating without the resin.

また電荷発生層を蒸着により得ることは公知であるが2
本発明により得られた材料は、微小な一次粒子まで処理
され、さらに適切な溶剤によって結晶が極めて整えられ
ているので9粒子間に存在した不純物が除去されるため
にきわめて効率良く蒸着することができ、蒸着用材料と
しても有効である。
It is also known that a charge generation layer can be obtained by vapor deposition.
The material obtained by the present invention has been processed down to the minute primary particles, and the crystals have been extremely well-organized using an appropriate solvent, so that impurities existing between the nine particles can be removed, making it possible to deposit the material very efficiently. It is also effective as a material for vapor deposition.

感光体の塗工は、スピンコーター、アプリケーター、ス
プレーコーター、バーコーター、浸漬コーター、ドクタ
ーブレード、ローラーコーター、カーテンコーター、ビ
ードコーター装置を用いて行ない。
The photoreceptor is coated using a spin coater, applicator, spray coater, bar coater, dip coater, doctor blade, roller coater, curtain coater, or bead coater.

乾燥は、望ましくは加熱乾燥で40〜200℃、10分
〜6時間の範囲で静止または送風条件下で行なう。乾燥
後膜厚は0.01から5ミクロン、望ましくは0.1か
ら1ミクロンになるように塗工される。
Drying is preferably carried out by heating at 40 to 200° C. for 10 minutes to 6 hours under stationary or blowing air conditions. After drying, the film is coated to a thickness of 0.01 to 5 microns, preferably 0.1 to 1 micron.

電荷発生層を塗工によって形成する際に用いうるバイン
ダーとしては広範な絶縁性樹脂から選択でき。
The binder that can be used when forming the charge generation layer by coating can be selected from a wide variety of insulating resins.

またポリ−N−ビニルカルバゾール、ポリビニルアント
ラセンやポリビニルピレンなどの有機光導電性ポリマー
から選択できる。好ましくは、ポリビニルブチラール、
ボリアリレート(ビスフェノールAとフタル酸の縮重合
体など)、ポリカーボネートポリエステル、フェノキシ
樹脂、ポリ酢酸ビニル、アクリル樹脂、ポリアクリルア
ミド樹脂、ポリアミド樹脂、ポリビニルピリジン、セル
ロース系樹脂、ウレタン樹脂、エポキシ樹脂、シリコン
樹脂、ポリスチレン、ポリケトン樹脂、ポリ塩化ビニル
、塩ビー酸ビ共重合体、ポリビニルアセタール、ポリア
クリロニトリル、フェノール樹脂、メラミン樹脂、カゼ
イン、ポリビニルアルコール、ポリビニルピロリドン等
の絶縁性樹脂を挙げることができる。電荷発生層中に含
有する樹脂は、100重量%以下、好ましくは40重量
%以下が適している。またこれらの樹脂は、1種または
2種以上組合せて用いても良い。
It can also be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene and polyvinylpyrene. Preferably polyvinyl butyral,
Polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.), polycarbonate polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin, polyamide resin, polyvinylpyridine, cellulose resin, urethane resin, epoxy resin, silicone resin , polystyrene, polyketone resin, polyvinyl chloride, vinyl chloride copolymer, polyvinyl acetal, polyacrylonitrile, phenol resin, melamine resin, casein, polyvinyl alcohol, polyvinylpyrrolidone, and other insulating resins. The resin contained in the charge generation layer is suitably 100% by weight or less, preferably 40% by weight or less. Further, these resins may be used alone or in combination of two or more.

これらの樹脂を溶解する溶剤は樹脂の種類によって異な
り、後述する電荷発生層や下引き層を塗工時に影響を与
えないものから選択することが好ましい。
The solvent for dissolving these resins varies depending on the type of resin, and it is preferable to select a solvent that does not affect the charge generation layer and undercoat layer, which will be described later, during coating.

具体的にはベンゼン、キシレン、リグロイン、モノクロ
ルベンゼン、ジクロルベンゼンなどの芳香族炭化水素、
アセトン、メチルエチルケトン、シクロヘキサノンなど
のケトン類、メタノール、エタノール。
Specifically, aromatic hydrocarbons such as benzene, xylene, ligroin, monochlorobenzene, dichlorobenzene,
Ketones such as acetone, methyl ethyl ketone, and cyclohexanone, methanol, and ethanol.

イソプロパツールなどのアルコール類、酢酸エチル。Alcohols such as isopropanol, ethyl acetate.

メチルセロソルブ、などのエステル類、四塩化炭素。Esters such as methyl cellosolve, carbon tetrachloride.

クロロホルム、ジクロルメタン、ジクロルエタン。Chloroform, dichloromethane, dichloroethane.

トリクロルエチレンなどの脂肪族ハロゲン化炭化水素類
、テトラヒドロフラン、ジオキサン、エチレングリコー
ルモノメチルエーテルなどのエーテル類。
Aliphatic halogenated hydrocarbons such as trichlorethylene, ethers such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether.

N、N−ジメチルホルムアミド、N、N−ジメチルアセ
トアミドなどのアミド類、およびジメチルスルホキシド
などのスルホキシド類が用いられる。
Amides such as N,N-dimethylformamide and N,N-dimethylacetamide, and sulfoxides such as dimethylsulfoxide are used.

電荷移動層は、電荷移動剤単体もしくは結着剤樹脂に溶
解分散させて形成される0本感光体に使用される電荷移
動剤は、下記−数式(1)または(II)が望ましいが
、これらに限られるものではなく、また、〔■〕および
(II)を混合して使用することもR8 (R+、RzまたはR1は、置換基を有してもよいアル
キル基、アラルキル基、アリール基または複素環残基、
あるいはR8とR1とで複素環を形成してもよい、) (式中* R4,R,は水素原子、アルキル基、アルコ
キシ基またはアリール基+  R&I R?I R1は
水素原子または−NR,,(Rs)基を示し、nは0ま
たは1である。) 一般式(n)の特に好ましい例としては、R4゜Rsが
ともにエチル基であり+R&〜R,lが水素原子である
化合物、あるいはR1−R1のいずれかがNCzHs(
CzHs)である化合物である。
The charge transfer layer is formed by a charge transfer agent alone or by dissolving and dispersing it in a binder resin.The charge transfer agent used in the photoconductor is preferably the following formula (1) or (II). [■] and (II) may also be used in combination. heterocyclic residue,
Alternatively, R8 and R1 may form a heterocycle.) (In the formula, * R4, R, is a hydrogen atom, an alkyl group, an alkoxy group, or an aryl group + R&I R?I R1 is a hydrogen atom or -NR,, (Rs) group, and n is 0 or 1.) Particularly preferable examples of general formula (n) include compounds in which R4゜Rs are both ethyl groups and +R&~R, l are hydrogen atoms, or Either R1-R1 is NCzHs (
CzHs).

これらの他に、セレン、セレン−テルルアモルファスシ
リコン、硫化カドミウムなどの無機材料も用いることが
できる。
In addition to these, inorganic materials such as selenium, selenium-tellurium amorphous silicon, and cadmium sulfide can also be used.

また、電荷移動物質は、1種または2種以上組合せて用
いることができる。電荷移動層に用いられる樹脂は、シ
リコン樹脂、ケトン樹脂、ポリメチルメタクリレート、
ポリ塩化ビニル、アクリル樹脂、ボリアリレート、ポリ
エステル、ポリカーボネート。
Further, charge transfer substances can be used alone or in combination of two or more types. Resins used for the charge transfer layer include silicone resin, ketone resin, polymethyl methacrylate,
Polyvinyl chloride, acrylic resin, polyarylate, polyester, polycarbonate.

ポリスチレン、アクリロニトリル−スチレンコポリマー
、アクリロニトリル−ブタジェンコポリマー。
Polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene copolymer.

ポリビニルブチラール、ポリビニルホルマール、ポリス
ルホン、ポリアクリルアミド、ポリアミド、塩素化ゴム
などの絶縁性樹脂、ポリ−N−ビニルカルバゾール、ポ
リビニルアントラセン、ポリビニルピレンなどが用いら
れる。
Insulating resins such as polyvinyl butyral, polyvinyl formal, polysulfone, polyacrylamide, polyamide, chlorinated rubber, poly-N-vinylcarbazole, polyvinylanthracene, polyvinylpyrene, etc. are used.

塗工方法は、スピンコーター、アプリケーター。Coating methods include spin coater and applicator.

スプレーコーター、バーコーター、浸漬コーター。Spray coater, bar coater, dip coater.

ドクターブレード、ローラーコーター、カーテンコータ
ー、ビードコーター装置を用いて行ない、乾燥後膜厚は
5から50ミクロン、望ましくは10から20ミクロン
になるように塗工されるものが良い。
The coating is carried out using a doctor blade, roller coater, curtain coater, or bead coater, and the film thickness after drying is preferably 5 to 50 microns, preferably 10 to 20 microns.

これらの各層に加えて、帯電性の低下防止、接着性向上
などの目的で下引き層を導電性基板上に設けることがで
きる。下引き層として、ナイロン6、ナイロン66、ナ
イロン11.ナイロン610.共重合ナイロン、アルコ
キシメチル化ナイロンなどのポリアミド、カゼイン、ポ
リビニルアルコール、ニトロセルロース、エチレン−ア
クリル酸コポリマー、ゼラチン、ポリウレタン、ポリビ
ニルブチラールおよび酸化アルミニウムなどの金属酸化
物が用いられる。
In addition to these layers, an undercoat layer can be provided on the conductive substrate for the purpose of preventing deterioration of chargeability, improving adhesion, and the like. As an undercoat layer, nylon 6, nylon 66, nylon 11. Nylon 610. Polyamides such as copolymerized nylon and alkoxymethylated nylon, casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymers, gelatin, polyurethane, polyvinyl butyral, and metal oxides such as aluminum oxide are used.

また、酸化亜鉛、酸化チタン等の金属酸化物、窒化ケイ
素、炭化ケイ素やカーボンブラッグなどの導電性および
誘電性粒子を樹脂中に含有させて調整することも出来る
Further, the resin can be prepared by incorporating conductive and dielectric particles such as metal oxides such as zinc oxide and titanium oxide, silicon nitride, silicon carbide, and carbon Bragg.

本発明の材料は800m以上および650r+n+の波
長に吸収ピークを持ち、電子写真感光体として複写機、
プリンターに用いられるだけでなく、太陽電池。
The material of the present invention has absorption peaks at wavelengths of 800 m or more and 650 r+n+, and can be used as an electrophotographic photoreceptor in copying machines,
In addition to being used in printers, solar cells.

光電変換素子および光デイスク用吸収材料としても好適
である。
It is also suitable as an absorbing material for photoelectric conversion elements and optical disks.

(実 施 例) 以下9本発明の実施例について具体的に説明する。(Example) Hereinafter, nine embodiments of the present invention will be specifically described.

例中で部とは9重量部を示す。In the examples, parts refer to 9 parts by weight.

実施例1 フタロジニトリル20.4部、四塩化スズ10.4部を
キノリン200部中で220℃にて4時間加熱反応後、
水蒸気蒸留で溶媒を除いた。次いで、アセトンで精製し
、試料を乾燥してジクロロスズフタロシアニン(S n
 Cl z P c ) 20.3部を得た。
Example 1 After heating reaction of 20.4 parts of phthalodinitrile and 10.4 parts of tin tetrachloride in 200 parts of quinoline at 220°C for 4 hours,
The solvent was removed by steam distillation. It is then purified with acetone and the sample is dried to give dichlorotin phthalocyanine (S n
20.3 parts of Cl z P c ) were obtained.

このジクロロスズフタロシアニン2部を5℃の98%硫
酸40部の中に少しづつ溶解し、その混合物を約1時間
、5℃以下の温度を保ちながら攪拌する。
Two parts of this dichlorotin phthalocyanine are dissolved in portions in 40 parts of 98% sulfuric acid at 5°C, and the mixture is stirred for about 1 hour while maintaining the temperature below 5°C.

続いて硫酸溶液を高速攪拌した400部の氷水中に。Subsequently, the sulfuric acid solution was placed in 400 parts of ice water with high speed stirring.

ゆっ(りと注入し、析出した結晶を濾過する。結晶を酸
が残留しなくなるまで蒸留水で洗浄し、アセトンで精製
した後、乾燥して1.8部を得た。
The crystals were slowly poured and the precipitated crystals were filtered. The crystals were washed with distilled water until no acid remained, purified with acetone, and dried to obtain 1.8 parts.

得られたジクロロスズフタロシアニンのX線回折図を図
1に示す。このジクロロスズフタロシアニンは、ブラッ
グ角度(2θ±0.2’)の8.6゜、12゜2゜、1
4.9゜、17.4゜、19.4°および27.6°の
位置に強いピークを有していた。
The X-ray diffraction diagram of the obtained dichlorotin phthalocyanine is shown in FIG. This dichlorotin phthalocyanine has a Bragg angle (2θ±0.2') of 8.6°, 12°2°, 1
It had strong peaks at positions of 4.9°, 17.4°, 19.4° and 27.6°.

次にこのジクロロスズフタロシアニンを、電荷発生剤と
して使用した電子写真感光体の作成方法を述べる。
Next, a method for producing an electrophotographic photoreceptor using this dichlorotin phthalocyanine as a charge generating agent will be described.

共重合ナイロン(東し製アミランCM−8000)10
部をエタノール190部とともにボールミルで3時間混
合し、溶解させた塗液を、ポリエチレンテレフタレート
(PET)フィルム上にアルミニウムを蒸着したシート
上に、ワイヤーバーで塗布した後、100℃で1時間乾
燥させて膜厚0.5ミクロンの下引き層を持つシートを
得た。
Copolymerized nylon (Amiran CM-8000 manufactured by Toshi) 10
was mixed with 190 parts of ethanol in a ball mill for 3 hours, and the dissolved coating liquid was applied with a wire bar onto a sheet of polyethylene terephthalate (PET) film with aluminum vapor-deposited, and then dried at 100°C for 1 hour. A sheet having a subbing layer with a thickness of 0.5 microns was obtained.

本実施例で得たジクロロスズフタロシアニン2部をTH
F97部に塩ビー酢ビ共重合樹脂1部(ユニオンカーバ
イド社製VMCH)を溶解した樹脂液ととも、にボール
ミルで6時間分散した。
Two parts of dichlorotin phthalocyanine obtained in this example was added to TH
The mixture was dispersed in a ball mill for 6 hours with a resin solution prepared by dissolving 1 part of vinyl chloride-vinyl acetate copolymer resin (VMCH manufactured by Union Carbide) in 97 parts of F.

この分散液を下引き層上に塗布し、100℃で1時間乾
燥させた後、0.3ミクロンの電荷発生層を形成した。
This dispersion was applied onto the undercoat layer and dried at 100°C for 1 hour to form a charge generation layer of 0.3 microns.

次に電荷移動剤として、−数式(1)の化合物の例示化
合物(1−a)1部、ポリカーボネート樹脂(奇人化成
■製パンライトL−1250)1部を塩化メチレン8部
で混合溶解した。この液を電荷発生層上に塗布し、50
℃で1時間乾燥した後、15ミクロンの電荷移動層を形
成し、電子写真特性を測定した。
Next, as a charge transfer agent, 1 part of exemplified compound (1-a) of the compound of formula (1) and 1 part of polycarbonate resin (Panlite L-1250 manufactured by Kijin Kasei) were mixed and dissolved in 8 parts of methylene chloride. Coat this solution on the charge generation layer,
After drying at .degree. C. for 1 hour, a 15 micron charge transport layer was formed and electrophotographic properties were measured.

実施例2 電荷移動剤として、−数式(II)の化合物の例示化合
物(n−a)を使用する以外は実施例1と同様の方法で
感光体を作製し電子写真特性を測定した。
Example 2 A photoreceptor was prepared in the same manner as in Example 1, except that the exemplified compound (n-a) of formula (II) was used as a charge transfer agent, and its electrophotographic properties were measured.

感光体の電子写真特性は、下記の方法で測定した。The electrophotographic properties of the photoreceptor were measured by the following method.

静電複写紙試験装置5P−428(川口電機製)により
スタティックモード2.コロナ帯電は−5,2KVで1
表面電位と51.uxの白色光または1μWの800部
mに調整した光を照射して、帯電量が1/2および11
5まで減少する時間から白色光半減露光ffi怒度(E
l/2およびE115)を調べた。また。
Static mode 2. Corona charge is 1 at -5.2KV
Surface potential and 51. By irradiating with white light of UX or light adjusted to 800 parts of 1 μW, the charge amount is 1/2 and 11
White light half-exposure ffi anger degree (E
l/2 and E115). Also.

繰り返し特性の評価は−5,2KV、コロナ線速度12
0mm/secの条件で帯電、2秒間暗所に放置、5L
uxで3秒露光の順で繰り返し2表面電位、感度の変化
を測定した。
Evaluation of repetition characteristics is -5.2KV, corona linear velocity 12
Charged at 0mm/sec, left in the dark for 2 seconds, 5L
Changes in surface potential and sensitivity were measured repeatedly in the order of 3-second exposure using UX.

また2分光感度は、静電帯電試験装置を用いて。In addition, 2 spectral sensitivity was measured using an electrostatic charging test device.

感光体に−5,4K Vのコロナ帯電をさせた後、50
0Wのキセノンランプを光源とし、モノクロメータ−(
ジョバンイポン製)で単色光として照射し、帯電露光時
の光減衰で測定した。
After corona charging the photoreceptor to -5.4KV, 50
A 0W xenon lamp was used as the light source, and a monochromator (
(manufactured by Jovan Ipon) as monochromatic light, and the light attenuation during charging exposure was measured.

電子写真特性の結果を第1表に示す。The results of electrophotographic properties are shown in Table 1.

第  1  表 (初期特性) (1万回繰り返し後) 第1表の結果より、実施例1.2の感光体は初期特性お
よび1万回繰り返し後も高感度な特性を示した。
Table 1 (Initial characteristics) (After 10,000 repetitions) From the results in Table 1, the photoreceptor of Example 1.2 exhibited high sensitivity characteristics both in the initial characteristics and even after 10,000 repetitions.

実施例3 実施例1と同条件で形成した下引き層を有するPETフ
ィルム上に、  10−’Torrの真空条件下、45
0℃で0.15μmの膜厚の電荷発生層を得た。その上
に、実施例1と同条件で電荷移動層を作成し、電子写真
特性を測定した。
Example 3 On a PET film having an undercoat layer formed under the same conditions as Example 1, under a vacuum condition of 10-' Torr, 45
A charge generation layer having a thickness of 0.15 μm was obtained at 0°C. A charge transfer layer was formed thereon under the same conditions as in Example 1, and the electrophotographic properties were measured.

第3表 第3表の結果より、実施例3の感光体は初期および1万
回繰り返し後も高感度な特性を示した0本発明のジクロ
ロスズフタロシアニンを使用した電荷発生層を持つ感光
体は9分散法および蒸着法の画法でほぼ同一の感度を有
していた。
Table 3 From the results shown in Table 3, the photoreceptor of Example 3 exhibited high sensitivity characteristics both at the initial stage and after 10,000 repetitions. The sensitivities of the 9 dispersion and vapor deposition methods were almost the same.

比較例1 フタロジニトリル20.4部、四塩化スズ10.4部を
α−クロロナフタレン200部中で220℃にて4時間
加熱反応後、冷却して水蒸気蒸留で溶媒を除いた。次い
で、メタノール、N−メチルピロリドンの順で熱懸濁を
行い、順次濾過する。濾過物を乾燥して18.6部のジ
クロロスズフタロシアニンを得た。
Comparative Example 1 20.4 parts of phthalodinitrile and 10.4 parts of tin tetrachloride were heated and reacted in 200 parts of α-chloronaphthalene at 220° C. for 4 hours, then cooled and the solvent was removed by steam distillation. Next, hot suspension is carried out in methanol and N-methylpyrrolidone in this order, followed by filtration in that order. The filtrate was dried to obtain 18.6 parts of dichlorotin phthalocyanine.

得られたジクロロスズフタロシアニンのX線回折図を図
2に示す。ブラッグ角度(2θ±0.2°)の8゜4゜
、13.8゜、22.4゜、28.2°および30.0
0の位置に強いピークを有し0本発明のジクロロスズフ
タロシアニンとは全く異なる結晶であった。次に、この
ジクロロスズフタロシアニンを使用して実施例1と同様
の方法で感光体を作製して電子写真特性を測定した。
The X-ray diffraction pattern of the obtained dichlorotin phthalocyanine is shown in FIG. Bragg angle (2θ±0.2°) of 8°4°, 13.8°, 22.4°, 28.2° and 30.0
The crystal had a strong peak at the 0 position and was completely different from the dichlorotin phthalocyanine of the present invention. Next, a photoreceptor was prepared using this dichlorotin phthalocyanine in the same manner as in Example 1, and its electrophotographic properties were measured.

第4表 第4表の結果より、比較例1で作製した感光体は実施例
1〜3の感光体に比べて感度が大幅に劣っていた。
Table 4 From the results shown in Table 4, the photoreceptor produced in Comparative Example 1 was significantly inferior in sensitivity than the photoreceptors of Examples 1 to 3.

〔発明の効果〕〔Effect of the invention〕

本発明により、優れた露光感度特性、波長特性に加え、
長期にわたる繰り返し使用時の耐劣化特性。
With the present invention, in addition to excellent exposure sensitivity characteristics and wavelength characteristics,
Deterioration resistance properties during repeated use over long periods of time.

耐剛性1画像安定性を有する電子写真感光体を得ること
が出来た。
An electrophotographic photoreceptor having rigidity resistance of 1 and image stability could be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で作製したジクロロスズフタロシア
ニンのX151回折図、第2図は比較例1で作製したジ
クロロスズフタロシアニンのX線回折図。
FIG. 1 is an X151 diffraction diagram of dichlorotin phthalocyanine produced in Example 1, and FIG. 2 is an X-ray diffraction diagram of dichlorotin phthalocyanine produced in Comparative Example 1.

Claims (1)

【特許請求の範囲】 1、ブラッグ角度(2θ±0.2゜)の8.6゜、12
.2゜、14.9゜、17.4゜、19.4゜および2
7.6゜の位置に強いピークを示すX線回折図を有する
スズフタロシアニン系化合物からなることを特徴とする
光半導体材料。 2、導電性支持体上に、電荷発生剤および電荷移動剤を
使用してなる電子写真感光体において、電荷発生剤が、
ブラッグ角度(2θ±0.2゜)の8.6゜、12.2
゜、14.9゜、17.4゜、19.4゜および27.
6゜の位置に強いピークを示すX線回折図を有するスズ
フタロシアニン系化合物からなることを特徴とする電子
写真感光体。 3、導電性支持体上に、電荷発生剤および電荷移動剤を
使用してなる電子写真感光体において、電荷発生剤が特
許請求の範囲第2項記載のスズフタロシアニン系化合物
であり、電荷移動剤が下記一般式〔 I 〕または〔II〕
であることを特徴とする電子写真感光体。▲数式、化学
式、表等があります▼〔 I 〕 (R_1、R_2またはR_3は、置換基を有してもよ
いアルキル基、アラルキル基、アリール基または複素環
残基、あるいはR_2とR_3とで複素環を形成しても
よい。) ▲数式、化学式、表等があります▼〔II〕 (式中、R_4、R_5は水素原子、アルキル基、アル
コキシ基またはアリール基、R_6、R_7、R_8は
水素原子または−NR_4(R_5)基を示し、nは0
または1である。) 4、導電性支持体上に、無機または有機物の下引き層を
有する特許請求の範囲第2項および第3項記載の電子写
真感光体。
[Claims] 1. Bragg angle (2θ±0.2°) of 8.6°, 12
.. 2°, 14.9°, 17.4°, 19.4° and 2
An optical semiconductor material comprising a tin phthalocyanine compound having an X-ray diffraction diagram showing a strong peak at a position of 7.6°. 2. In an electrophotographic photoreceptor using a charge generating agent and a charge transfer agent on a conductive support, the charge generating agent is
Bragg angle (2θ±0.2°) of 8.6° and 12.2
°, 14.9 °, 17.4 °, 19.4 ° and 27.
An electrophotographic photoreceptor comprising a tin phthalocyanine compound having an X-ray diffraction diagram showing a strong peak at a 6° position. 3. In an electrophotographic photoreceptor comprising a charge generating agent and a charge transfer agent on a conductive support, the charge generating agent is a tin phthalocyanine compound according to claim 2, and the charge transfer agent is the following general formula [I] or [II]
An electrophotographic photoreceptor characterized by: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [I] (R_1, R_2, or R_3 are alkyl groups, aralkyl groups, aryl groups, or heterocyclic residues that may have substituents, or R_2 and R_3 combine to form a heterocyclic group. (May form a ring.) ▲Mathematical formulas, chemical formulas, tables, etc.▼[II] (In the formula, R_4 and R_5 are hydrogen atoms, alkyl groups, alkoxy groups, or aryl groups, and R_6, R_7, and R_8 are hydrogen atoms. or -NR_4(R_5) group, n is 0
or 1. 4. The electrophotographic photoreceptor according to claims 2 and 3, which has an inorganic or organic subbing layer on a conductive support.
JP30377287A 1987-12-01 1987-12-01 Photosemiconductive material and electrophotographic sensitive body using same Pending JPH01144057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30377287A JPH01144057A (en) 1987-12-01 1987-12-01 Photosemiconductive material and electrophotographic sensitive body using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30377287A JPH01144057A (en) 1987-12-01 1987-12-01 Photosemiconductive material and electrophotographic sensitive body using same

Publications (1)

Publication Number Publication Date
JPH01144057A true JPH01144057A (en) 1989-06-06

Family

ID=17925099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30377287A Pending JPH01144057A (en) 1987-12-01 1987-12-01 Photosemiconductive material and electrophotographic sensitive body using same

Country Status (1)

Country Link
JP (1) JPH01144057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283145A (en) * 1991-05-01 1994-02-01 Fuji Xerox Co., Ltd. Crystals of dichlorotin phthalocyanine, method of preparing the crystal, and electrophotographic photoreceptor comprising the crystal
US5308728A (en) * 1991-08-16 1994-05-03 Fuji Xerox Co., Ltd. Dichlorotin phthalocyanine crystal, process for producing the same, and electrophotographic photoreceptor using the same
US5336578A (en) * 1992-01-13 1994-08-09 Fuji Xerox Co., Ltd. Phthalocyanine mixed crystal and electrophotographic photoreceptor containing the same
US5338636A (en) * 1991-09-27 1994-08-16 Fuji Xerox Co., Ltd. Dichlorotin phthalocyanine crystal electrophotographic photoreceptor using the same, and coating composition for electrophotographic photoreceptor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283145A (en) * 1991-05-01 1994-02-01 Fuji Xerox Co., Ltd. Crystals of dichlorotin phthalocyanine, method of preparing the crystal, and electrophotographic photoreceptor comprising the crystal
US5308728A (en) * 1991-08-16 1994-05-03 Fuji Xerox Co., Ltd. Dichlorotin phthalocyanine crystal, process for producing the same, and electrophotographic photoreceptor using the same
US5416207A (en) * 1991-08-16 1995-05-16 Fuji Xerox Co., Ltd. Dichlorotin phthalocyanine crystal, process for producing the same, and electrophotographic photoreceptor using the same
US5338636A (en) * 1991-09-27 1994-08-16 Fuji Xerox Co., Ltd. Dichlorotin phthalocyanine crystal electrophotographic photoreceptor using the same, and coating composition for electrophotographic photoreceptor
US5463043A (en) * 1991-09-27 1995-10-31 Fuji Xerox Co., Ltd. Process for producing a dichlorotin phthalocyanine crystal
US5336578A (en) * 1992-01-13 1994-08-09 Fuji Xerox Co., Ltd. Phthalocyanine mixed crystal and electrophotographic photoreceptor containing the same

Similar Documents

Publication Publication Date Title
JP2561940B2 (en) Gallium phthalocyanine compound and electrophotographic photoreceptor using the same
JPS63198067A (en) Photosemiconductor material and electrophotographic sensitive body using same
JP2512081B2 (en) R-type titanium phthalocyanine compound, method for producing the same, and electrophotographic photoreceptor using the same
JPH0560863B2 (en)
JPH09157540A (en) Phthalocyanine composition, its production, and electrophotographic photoreceptor and coating fluid for charge generation layer each using the same
JPH01144057A (en) Photosemiconductive material and electrophotographic sensitive body using same
US5420268A (en) Oxytitanium phthalocyanine imaging members and processes thereof
JP2861116B2 (en) Electrophotographic photoreceptor
JPH01123868A (en) Quasi-noncrystalline titanium phthalocyanine compound, its production and electrophotographic material
JP2599170B2 (en) Electrophotographic photoreceptor
JP2589705B2 (en) Optical semiconductor material and electrophotographic photosensitive member using the same
US5534376A (en) Tetrafluoro hydroxygallium phthalocyanines and photoconductive imaging members
US6180301B1 (en) Tetrafluoro hydroxygallium phthalocyanines and photoconductive imaging members
JPH01204969A (en) Titanium phthalocyanine compound and electrophotographic photoreceptor containing same
JP2861220B2 (en) Electrophotographic photoreceptor
JPH01247464A (en) Epsilon-form zinc phthalocyanine compound and electrophotographic photoreceptor prepared therefrom
JPH02178358A (en) Novel phthalocyanine compound and sensitive material for electrophotography using the compound
JPH01230581A (en) Novel metal-free phtalocyanine compound, its production and electrophotographic photoreceptor using the same
JPH0572776A (en) Electrophotographic sensitive material and production of coppor phthalocynine
JP2000338695A (en) Metal phthalocyanine crystal grain, its production and electrophotographic photoreceptor and electrophotographic process using the same
JPH02289657A (en) Epsilon type cobalt phthalocyanine compound and electrophotographic sensitive body using same compound
JPH02256059A (en) Electrophotographic sensitive body
JP2805896B2 (en) Electrophotographic photoreceptor
JPH01268763A (en) Vanadium phthalocycanine compound and electrophotographic sensitive material using said compound
JP2985254B2 (en) Electrophotographic photoreceptor