JPH01145589A - Drive method of ceramic superconductive magnetic sensor - Google Patents
Drive method of ceramic superconductive magnetic sensorInfo
- Publication number
- JPH01145589A JPH01145589A JP62193018A JP19301887A JPH01145589A JP H01145589 A JPH01145589 A JP H01145589A JP 62193018 A JP62193018 A JP 62193018A JP 19301887 A JP19301887 A JP 19301887A JP H01145589 A JPH01145589 A JP H01145589A
- Authority
- JP
- Japan
- Prior art keywords
- current
- magnetic field
- electrodes
- ceramic
- magnetic sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000002887 superconductor Substances 0.000 claims abstract description 16
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052709 silver Inorganic materials 0.000 abstract description 2
- 239000004332 silver Substances 0.000 abstract description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract 1
- 230000008021 deposition Effects 0.000 abstract 1
- 229910052719 titanium Inorganic materials 0.000 abstract 1
- 239000010936 titanium Substances 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 4
- 239000010949 copper Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、発明者らが発明した新しい原理に基づく高感
度の超電導磁気センサの駆動方式に関するものであり、
更に詳細には、高精度かつ、信頼性、安定性をもつ磁界
測定を必要とする産業分野、医療分野の高感度な計測に
用いて好適な超電導磁気センサの駆動方式に関するもの
である。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a driving method for a highly sensitive superconducting magnetic sensor based on a new principle invented by the inventors.
More specifically, the present invention relates to a drive method for a superconducting magnetic sensor suitable for use in highly sensitive measurements in the industrial and medical fields that require highly accurate, reliable, and stable magnetic field measurements.
〈従来の技術及びその問題点〉
従来、磁気検出のためには、半導体や磁性体を用いた磁
気抵抗効果素子が用いられているが、磁界検出感度は数
100ガウス程度であった。また、磁気抵抗効果素子の
抵抗増加は、ある領域で磁界の2乗に比例するので、磁
界の低い値に対しては抵抗増加は著しく小さい。<Prior Art and its Problems> Conventionally, magnetoresistive elements using semiconductors or magnetic materials have been used for magnetic detection, but the magnetic field detection sensitivity has been on the order of several hundred Gauss. Further, since the increase in resistance of the magnetoresistive element is proportional to the square of the magnetic field in a certain region, the increase in resistance is extremely small for low values of the magnetic field.
更に超伝導体を用いた5QUID磁束センサがあるが、
構造が複雑な上、極低温を必要としていた。Furthermore, there is a 5QUID magnetic flux sensor that uses superconductors.
It had a complex structure and required extremely low temperatures.
上記した従来の磁気センサの問題点を解決するため、本
発明者等は先に特許願「超電導磁気検出素子」(昭和6
2年7月29日出願)として第1図に示すようにセラミ
ックス超電導体素子1に電流電極2,3及び電圧電極4
,5を接触させただけの極めて簡単な構造にて、第2図
に示すようにその動作特性を詳細に検討した所、ある種
のセラミックス超電導磁気センサは一定電流を流したま
まで低磁界の下で、その強さを変化させると、第3図に
示すようなヒステリシス現象を示すことを見い出した。In order to solve the above-mentioned problems of conventional magnetic sensors, the present inventors first applied for a patent entitled "Superconducting Magnetic Detection Element" (1983).
As shown in FIG.
, 5 in contact with each other, and a detailed study of its operating characteristics as shown in Figure 2 revealed that a certain type of ceramic superconducting magnetic sensor can operate under a low magnetic field while a constant current is flowing. It was discovered that when the strength was changed, a hysteresis phenomenon as shown in FIG. 3 was exhibited.
このヒステリシス現象は微小磁界の検出にあたっては誤
差を生じる。This hysteresis phenomenon causes errors when detecting minute magnetic fields.
本発明は、上記の点に鑑みて創案されたものであり、ヒ
ステリシス現象があっても安定な磁界検出を可能とする
セラミックス超電導磁気センサの駆動方式を提蚕するこ
とを目的としたものである。The present invention was created in view of the above points, and aims to propose a driving method for a ceramic superconducting magnetic sensor that enables stable magnetic field detection even when there is a hysteresis phenomenon. .
く問題点を解決するための手段及び作用〉上記の目的を
達成するため、本発明のセラミックス超電導磁気センサ
の駆動方式は、セラミックス超電導体よりなる磁気セン
サにおいて、その駆動電流として電流が零の状態を含む
駆動電流を用いるように構成している。Means and operation for solving the above problems> In order to achieve the above object, the driving method of the ceramic superconducting magnetic sensor of the present invention is such that the magnetic sensor made of the ceramic superconductor is driven by a state in which the driving current is zero. The configuration is such that a drive current including .
セラミックス超電導体を超電導状態を示す臨界温度以下
の温度に保ちながら超電導体に磁界をかけると、第2図
に示す様に磁界が0〜5工ルステツド程度まで超電導状
態を維持し、超電導体の抵抗は零である。磁界が5工ル
ステツド以上になると超電導状態が破れ、電気抵抗を示
す。このとき電気抵抗は印加磁界に対して、従来の磁気
抵抗効果素子に比べて急峻な立上り特性を示すことを本
発明者等は見出した。When a magnetic field is applied to a ceramic superconductor while keeping it at a temperature below the critical temperature at which it becomes superconducting, the superconducting state is maintained until the magnetic field reaches about 0 to 5 degrees, as shown in Figure 2, and the resistance of the superconductor decreases. is zero. When the magnetic field exceeds 5 degrees, the superconducting state is broken and electrical resistance is exhibited. The inventors have discovered that the electrical resistance exhibits a steeper rise characteristic in response to the applied magnetic field than in conventional magnetoresistive elements.
セラミックス超電導体を用いた磁気センサの上記のよう
な特性は、発明者等は次のように理解している。The above-mentioned characteristics of a magnetic sensor using a ceramic superconductor are understood by the inventors as follows.
即ち、上記のような特性は、セラミックス焼結体が多く
の超電導体粒子より構成され、その粒子境界に極めて薄
い絶縁物が存在するか、あるいは粒子間の接触部分がポ
イント状になる等、いわゆる超電導の弱結合の集合体と
みなすことが出来、弱磁界(臨界磁界)で超電導状態が
破れる結果、生じるものであり、換言すれば、セラミッ
クス超電導体粒子同志の接触界面のトンネル現象の結果
、生じるものと考えている。In other words, the above characteristics are caused by the fact that the ceramic sintered body is composed of many superconductor particles, and there is an extremely thin insulator at the grain boundaries, or the contact area between the particles is point-shaped. It can be regarded as an aggregate of weakly coupled superconductors, and is produced as a result of the superconducting state being broken by a weak magnetic field (critical magnetic field).In other words, it is produced as a result of the tunneling phenomenon at the contact interface between ceramic superconductor particles. I think of it as something.
しかし上記した磁界に対する急峻な立上がり特性を示す
動作特性を詳細に検討した所第3図に示ス様ナヒステク
シス現象を示し、このヒステリシスの程度は全体として
は極めて小さく、大きな磁界の検出に当っては、さほど
実用上問題とならないが、数十ガウス程度の微小磁界に
対して出力電圧に大きな誤差を発生することになる。However, a detailed study of the operating characteristics that show the steep rise characteristic in response to the magnetic field described above shows a nahysthesis phenomenon as shown in Figure 3.The degree of this hysteresis is extremely small overall, and it is difficult to detect large magnetic fields. Although this does not pose much of a practical problem, a large error will occur in the output voltage for a minute magnetic field of several tens of Gauss.
発明者らは、−度、該超電導体に流す素子電流を切り、
零としてから、電流を流せば、一定磁界に対しては常に
一定出力を検出することが出来ることを確認した。The inventors cut off the element current flowing through the superconductor for - degrees,
We confirmed that if we set the current to zero and then let the current flow, we could always detect a constant output for a constant magnetic field.
〈実施例〉
以下、図面を参照して本発明の一実施例を詳細に説明す
る。<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
第1図は本発明の駆動方式の適用されるセラミックス超
電導磁気センサの構成例を示す斜視図である。FIG. 1 is a perspective view showing a configuration example of a ceramic superconducting magnetic sensor to which the driving method of the present invention is applied.
超電導素子1は、酸化イツトリウムy2o3 、炭酸バ
リウABaCO3+酸化銅CuOを1:2:3に秤量し
、充分に分散混合した微粒子を900℃。Superconducting element 1 was prepared by weighing yttrium oxide y2o3, barium carbonate ABaCO3 + copper oxide CuO in a ratio of 1:2:3, and thoroughly dispersing and mixing fine particles at 900°C.
5時間空気中で仮焼成し、それを再び粉砕2分散させ、
ペロブスカイト型酸化物超電導体の均一な微粒子(1μ
mφ以下)からなる粉体を作製し、次に最適な形、例え
ば円状のベレットに加圧力1toned にて加圧形
成した後、空気中で1000℃。Calcined in air for 5 hours, crushed and dispersed again,
Uniform fine particles of perovskite oxide superconductor (1μ
mφ or less), and then pressurized into an optimal shape, for example, a circular pellet, at a pressure of 1toned, and then heated at 1000°C in air.
の適用されるセラミックス超電導磁気センサはこれに限
定されることなく1例えばLa−Ba−Cu−〇系、Y
−5r−Ba−Cu−0系等のlna族元素。Ceramic superconducting magnetic sensors to which this can be applied are not limited to these, but include, for example, La-Ba-Cu-○ system, Y
lna group elements such as -5r-Ba-Cu-0 series.
Ila族元素、銅(Cu)元素及び酸素(0)元素を構
成元素とした超電導セラミックスよりなる磁気センスで
ヒステリシス特性を有するものに用いても同様に実施す
ることが出来ることは言うまでもない。It goes without saying that the same effect can be achieved even when the magnetic sensor is made of superconducting ceramics containing Ila group elements, copper (Cu) elements, and oxygen (0) elements and has hysteresis characteristics.
次に、上記のようにして作製した材料より、薄い長方形
に切り出してセラミックス超電導体素子1を作製した。Next, a thin rectangular shape was cut out from the material produced as described above to produce a ceramic superconductor element 1.
上記の例における超電導体素子89(Y (−Ba 2
−Cu 3 ) 06の組成になっており、超電導の弱
結合状態の破られる磁界(臨界磁界)は約5エルステツ
ドである。Superconductor element 89 (Y (-Ba 2
-Cu 3 ) 06, and the magnetic field (critical magnetic field) at which the weakly coupled superconducting state is broken is approximately 5 oersteds.
この素子1の両端及びその内側近傍にそれぞれオーム性
の電流電極2,3及び電圧電極4,5をチタン(Ti
)の蒸着膜及び銀ペーストを用いて形成し、電流電極2
.3を定電流源6に接続すると共に、電圧電極4,5を
電圧検出器7に接続した。Ohmic current electrodes 2, 3 and voltage electrodes 4, 5 are provided at both ends of this element 1 and near the inside thereof, respectively.
) and silver paste to form the current electrode 2.
.. 3 was connected to a constant current source 6, and voltage electrodes 4 and 5 were connected to a voltage detector 7.
上記のような構成において、定電流源6より一定電流を
素子1に流したままで、磁界Hを減少させた場合には、
セラミックスの結晶粒界に存在する弱結合の超電導性が
破れたままに保持される結果、ヒステリシスが現われる
と考えられる。In the above configuration, when the magnetic field H is decreased while a constant current is still flowing through the element 1 from the constant current source 6,
It is thought that hysteresis appears as a result of the superconductivity of the weak bonds that exist at the grain boundaries of ceramics remaining broken.
したがって、このような第1図に示される素子1に第4
図(a)のように−度零から流れ始まる電流や第4図(
b)のようなパルス電流、第4図(C)のような交番電
流あるいは第4図(d)のような鋸歯状電流等、常に一
度電流値が零に戻る性質を持つ電流すなわち、常に電流
零の状態からある電流値の電流が流れる様な素子の駆動
方式を用いれば、磁界の変化に対する出力電圧のヒステ
リシスは全く現われず第5図のように安定で信頼性の高
い磁界検出が得られる。なお、第4図(c) tたは(
d)に示すような波形の電流を供給して磁界を測定する
場合には、増加する電流値のピーク値等の所定の値のタ
イミングで磁界のサンプリング測定を行なう必要がある
。Therefore, in the element 1 shown in FIG.
As shown in Figure (a), the current starts flowing from -degree zero, and as shown in Figure 4 (
A current whose current value always returns to zero, such as a pulse current as shown in b), an alternating current as shown in Fig. 4(C), or a sawtooth current as shown in Fig. 4(d), that is, a current that always returns to zero. If we use an element drive method that allows a certain current value to flow from a zero state, no hysteresis will appear in the output voltage due to changes in the magnetic field, and stable and reliable magnetic field detection can be obtained as shown in Figure 5. . In addition, Fig. 4(c) t or (
When measuring a magnetic field by supplying a current with a waveform as shown in d), it is necessary to perform sampling measurement of the magnetic field at a predetermined value timing such as the peak value of the increasing current value.
以上のようにセラミックス超電導体を用いた磁気センサ
において、駆動電流として常に電流零の状態からある数
値の電流が流れるような駆動電流を該磁気センサに印加
することにより、極めて安定に、信頼性高く磁界の強さ
の検出を行うことが出来る。As described above, in a magnetic sensor using a ceramic superconductor, by applying a driving current to the magnetic sensor such that a current of a certain value always flows from a current state of zero, it is possible to achieve extremely stable and highly reliable driving current. It is possible to detect the strength of the magnetic field.
〈発明の効果〉
以上の説明の通り本発明は、セラミックス超電導素子の
磁界に対する電気抵抗の変化が大きく、超電導体特有の
ヒステリシス現象を解消し、極めて安定に、信頼性高く
、磁界の強さの検出を行うことのできる駆動方式であり
、高度の精度を必要とする医療診断用の磁気測定あるい
はFA等高い精度の磁気計測技術に適用して効果は絶大
なものであシ、産業上に大きく貢献するものである。<Effects of the Invention> As explained above, the present invention has a ceramic superconducting element that exhibits a large change in electrical resistance with respect to a magnetic field, eliminates the hysteresis phenomenon peculiar to superconductors, and extremely stably and reliably changes the magnetic field strength. It is a drive method that can perform detection, and it is extremely effective when applied to magnetic measurement technology for medical diagnosis or FA, which requires a high degree of precision, and has great industrial potential. It is something that contributes.
第1図は本発明の適用されるセラミックス超電導磁気セ
ンサの素子構造例を示す図、第2図は本センサの磁界に
対する抵抗変化の特性を示す図。
第3図は本センサの低磁界付近のヒステリシス特性を示
す図、第4図(a)及(d)はそれぞれ本発明の駆動方
式を説明するための図であり、超電導磁気センサに流す
素子電流波形を示す図、第5図は本発明の駆動方式によ
りヒステリシスが解消された特性を示す図である。
1・・・セラミックス超電導磁気センサ、2,3・・・
電流電極、4.5・・・電圧電極、6・・・定電流源、
7・・・電圧検出器。
代理人 弁理士 杉 山 毅 至(他1名)属l 図
萬2 図
夙5図
手続補正書c方式)
%式%[1
2、発明の名称
セラミックス超電導磁気センサの駆動方式3、補正をす
る者
事件との関係 特許出願人
住 所 ラ545大阪市阿倍野区長池1IIr22番2
2シ)名 称 (504)シャープ株式会社
代表者 辻 晴 椎
4、代理人
゛8FIG. 1 is a diagram showing an example of the element structure of a ceramic superconducting magnetic sensor to which the present invention is applied, and FIG. 2 is a diagram showing the characteristics of resistance change with respect to a magnetic field of the present sensor. FIG. 3 is a diagram showing the hysteresis characteristics of this sensor near a low magnetic field, and FIGS. 4(a) and (d) are diagrams for explaining the driving method of the present invention. FIG. 5, a diagram showing waveforms, is a diagram showing characteristics in which hysteresis is eliminated by the driving method of the present invention. 1... Ceramic superconducting magnetic sensor, 2, 3...
Current electrode, 4.5... Voltage electrode, 6... Constant current source,
7...Voltage detector. Agent Patent Attorney Takeshi Sugiyama (1 other person) Gen. 1 Figure 2 Figure 5 Procedural Amendment C Method) % Formula % [1 2. Title of Invention Ceramic Superconducting Magnetic Sensor Drive Method 3. Make Corrections Relationship with the case Patent applicant address 1IIr22-2 Nagaike, Abeno-ku, Osaka-shi, La 545
2) Name (504) Sharp Corporation Representative Haru Tsuji Shii 4, Agent ゛8
Claims (1)
、 その駆動電流として、電流が零の状態を含む駆動電流を
用いることを特徴とするセラミックス超電導磁気センサ
の駆動方式。 2、前記駆動電流は交番電流であることを特徴とする特
許請求の範囲第1項記載のセラミックス超電導磁気セン
サの駆動方式。 3、前記駆動電流はパルス電流であることを特徴とする
特許請求の範囲第1項記載のセラミックス超電導磁気セ
ンサの駆動方式。 4、前記駆動電流は鋸歯状電流であることを特徴とする
特許請求の範囲第1項記載のセラミックス超電導磁気セ
ンサの駆動方式。[Claims] 1. A method for driving a ceramic superconducting magnetic sensor, characterized in that, in a magnetic sensor made of a ceramic superconductor, a driving current including a state where the current is zero is used as the driving current. 2. The driving method for a ceramic superconducting magnetic sensor according to claim 1, wherein the driving current is an alternating current. 3. The driving method for a ceramic superconducting magnetic sensor according to claim 1, wherein the driving current is a pulse current. 4. The driving method for a ceramic superconducting magnetic sensor according to claim 1, wherein the driving current is a sawtooth current.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62193018A JPH0799387B2 (en) | 1987-08-01 | 1987-08-01 | Driving method of ceramics superconducting magnetic sensor |
DE88307044T DE3884514T2 (en) | 1987-07-29 | 1988-07-29 | Method and arrangement for detecting a magnetic field using the magnetoresistance properties of a superconducting material. |
AT88307044T ATE95316T1 (en) | 1987-07-29 | 1988-07-29 | METHOD AND ARRANGEMENT FOR DETECTING A MAGNETIC FIELD BY MEANS OF MAGNETORESISTANCE PROPERTIES OF A SUPERCONDUCTING MATERIAL. |
EP88307044A EP0301902B1 (en) | 1987-07-29 | 1988-07-29 | Method and device for sensing a magnetic field with use of a magneto-resistive property of a superconductive material |
US07/226,067 US5011818A (en) | 1987-07-29 | 1988-07-29 | Sensing a magnetic field with a super conductive material that exhibits magneto resistive properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62193018A JPH0799387B2 (en) | 1987-08-01 | 1987-08-01 | Driving method of ceramics superconducting magnetic sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01145589A true JPH01145589A (en) | 1989-06-07 |
JPH0799387B2 JPH0799387B2 (en) | 1995-10-25 |
Family
ID=16300809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62193018A Expired - Lifetime JPH0799387B2 (en) | 1987-07-29 | 1987-08-01 | Driving method of ceramics superconducting magnetic sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0799387B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5556706A (en) * | 1978-10-23 | 1980-04-25 | Denki Onkyo Co Ltd | Driving circuit for magnetic resistance element |
JPS5917175A (en) * | 1982-07-20 | 1984-01-28 | Aisin Seiki Co Ltd | Detecting element of magnetic field for extremely low temperature |
-
1987
- 1987-08-01 JP JP62193018A patent/JPH0799387B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5556706A (en) * | 1978-10-23 | 1980-04-25 | Denki Onkyo Co Ltd | Driving circuit for magnetic resistance element |
JPS5917175A (en) * | 1982-07-20 | 1984-01-28 | Aisin Seiki Co Ltd | Detecting element of magnetic field for extremely low temperature |
Also Published As
Publication number | Publication date |
---|---|
JPH0799387B2 (en) | 1995-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01145589A (en) | Drive method of ceramic superconductive magnetic sensor | |
US5055785A (en) | Superconductive magneto resistive apparatus for measuring weak magnetic field using superconductive magneto-resistive element | |
US5130691A (en) | Superconductive apparatus having a superconductive device in a airtight package | |
US5126668A (en) | Method of eliminating the effect of hysteresis in a superconductive magneto-resistive device | |
JPH0341332A (en) | Superconducting pressure sensor | |
JP2698642B2 (en) | Superconducting magnetoresistive element | |
US6847546B2 (en) | High-sensitivity magnetic field sensor | |
JPH01161177A (en) | Characteristic control circuit for superconducting magnetic sensor | |
JPH01175781A (en) | Magnetoresistive device system | |
JP2933681B2 (en) | Magnetic field measurement method | |
JPH0799386B2 (en) | Digital magnetic field detector | |
JP2936125B2 (en) | Magnetic bearing detection method | |
Thier et al. | Hall effect and Hall resistivity in REBa/sub 2/Cu/sub 3/O/sub 7-delta | |
JPH0672914B2 (en) | Driving method for superconducting magnetoresistive element | |
JP2000055857A (en) | Oxygen sensor element | |
JPH0799385B2 (en) | Superconducting magnetic field detector | |
JPH07113662B2 (en) | Superconducting magnetic property control method | |
JP2561117B2 (en) | Magnetic field detector | |
JPH03249571A (en) | Electromagnetic wave detecting element | |
Anderson et al. | A Nanovolt‐Level MOSFET Reversing Switch for Low Temperature Applications | |
JPH01174922A (en) | Thermometer | |
JP2752674B2 (en) | Sensor | |
JPH0296678A (en) | Apparatus for observing superconduction | |
JPH01297518A (en) | Thermometer | |
JP3005628B2 (en) | Magnetic field strength measurement method |