Nothing Special   »   [go: up one dir, main page]

JPH0799386B2 - Digital magnetic field detector - Google Patents

Digital magnetic field detector

Info

Publication number
JPH0799386B2
JPH0799386B2 JP62193017A JP19301787A JPH0799386B2 JP H0799386 B2 JPH0799386 B2 JP H0799386B2 JP 62193017 A JP62193017 A JP 62193017A JP 19301787 A JP19301787 A JP 19301787A JP H0799386 B2 JPH0799386 B2 JP H0799386B2
Authority
JP
Japan
Prior art keywords
magnetic field
superconductor
digital
superconducting
digital magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62193017A
Other languages
Japanese (ja)
Other versions
JPS6438675A (en
Inventor
照栄 片岡
修平 土本
秀雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62193017A priority Critical patent/JPH0799386B2/en
Priority to AT88307044T priority patent/ATE95316T1/en
Priority to US07/226,067 priority patent/US5011818A/en
Priority to DE88307044T priority patent/DE3884514T2/en
Priority to EP88307044A priority patent/EP0301902B1/en
Publication of JPS6438675A publication Critical patent/JPS6438675A/en
Publication of JPH0799386B2 publication Critical patent/JPH0799386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はセラミックス超電導体材料を使用したディジタ
ル磁界検出装置に関するものである。
The present invention relates to a digital magnetic field detector using a ceramics superconductor material.

<従来の技術及びその問題点> 従来より磁界を検出するために半導体のホール効果や磁
気抵抗効果を利用した磁気センサー、あるいは磁性体の
磁気抵抗効果を利用した磁気センサーが使用されてい
る。半導体のホール効果及び磁気抵抗効果を利用した素
子の磁界に対する感度は100ガウス程度、磁性体の磁気
抵抗効果を利用した素子の磁界に対する感度は1000ガウ
ス程度である。
<Prior Art and its Problems> Conventionally, a magnetic sensor utilizing the Hall effect or magnetoresistive effect of a semiconductor or a magnetic sensor utilizing the magnetoresistive effect of a magnetic material has been used to detect a magnetic field. The sensitivity of the element using the Hall effect and the magnetoresistance effect of the semiconductor to the magnetic field is about 100 gauss, and the sensitivity of the element using the magnetoresistance effect of the magnetic material to the magnetic field is about 1000 gauss.

このように、従来の磁界検出装置では磁界に対する感度
は必ずしも高くなく、数100ガウス程度であった。ま
た、半導体や磁性体を用いた磁気抵抗素子では、素子の
抵抗増加が、ある領域で磁界の2乗に比例するので、磁
界の低い値に対しては、抵抗増加は著しく低い。このた
め、数キロガウス程度までバイアス磁界を予め加えてお
き、そして信号磁界を検出しているが、この場合の検出
感度は1ガウス程度である。
As described above, in the conventional magnetic field detection device, the sensitivity to the magnetic field is not necessarily high, and is about several hundred gauss. In addition, in a magnetoresistive element using a semiconductor or a magnetic material, the increase in resistance of the element is proportional to the square of the magnetic field in a certain region, and therefore the increase in resistance is extremely low for low values of the magnetic field. For this reason, the bias magnetic field is added in advance up to about several kilogausses and the signal magnetic field is detected, but the detection sensitivity in this case is about 1 gauss.

また、これ等はすべて磁界をアナログ的に検出するもの
であるが、DATのようにディジタル磁気信号の場合、第
5図に示すように雑音が挿入されていても忠実にエラー
を検出して具合の悪い面がある。
Also, although these all detect magnetic fields in an analog manner, in the case of digital magnetic signals such as DAT, even if noise is inserted, as shown in FIG. There is a bad side.

更に、超電導体を用いたSQUID磁束センサを用いる方法
があるが、構造が複雑な上、極低温を必要とする等の問
題点があった。
Further, there is a method of using a SQUID magnetic flux sensor using a superconductor, but there are problems that the structure is complicated and cryogenic temperature is required.

本発明は上記の点に鑑みて創案されたものであり、セラ
ミックス超電導体材料の新しい現象を利用し、ディジタ
ル的な磁界信号を能率よく検出する高感度、高性能ディ
ジタル磁界検出装置を提供することを目的としたもので
ある。
The present invention has been made in view of the above points, and provides a high-sensitivity and high-performance digital magnetic field detection device that efficiently detects a digital magnetic field signal by utilizing a new phenomenon of a ceramics superconductor material. It is intended for.

また、本発明は、超電導体部分に電極を接触させただけ
の、極めて簡単な構造のディジタル磁界検出装置を容易
に提供することを目的としたものである。
Another object of the present invention is to easily provide a digital magnetic field detecting device having an extremely simple structure in which an electrode is simply brought into contact with a superconductor portion.

<問題点を解決するための手段> 上記の目的を達成するため、本発明のディジタル磁界検
出装置は、超電導体粒子が電気的に弱く結合された弱結
合を有するセラミックス超電導体に電流端子及び電圧端
子を設け、上記の超電導体の超電導の弱結合状態が破ら
れる大きさの臨界磁界よりわずかに小さいバイアス磁界
を上記の超電導体に印加し、このバイアス磁界に重畳す
るディジタルの磁界変化を抵抗変化として検出するよう
に構成している。
<Means for Solving the Problems> In order to achieve the above object, the digital magnetic field detecting device of the present invention is configured such that a superconducting particle is electrically weakly coupled to a ceramics superconductor having a weak coupling and a current terminal and a voltage. A terminal is provided, a bias magnetic field that is slightly smaller than the critical magnetic field that is large enough to break the weak superconducting state of the superconductor is applied to the superconductor, and the digital magnetic field change superposed on the bias magnetic field changes resistance. It is configured to detect as.

超電導体粒子が電気的に弱く結合された弱結合を有する
セラミックス超電導体を超電導状態を示す臨界温度以下
の温度に保ちながら超電導体に磁界をかけると、第3図
に示すように、磁界がBoガウス(例えば5ガウス)程度
までは超電導状態を維持し、超電導体は抵抗零である。
更に磁界を上げてBoガウス以上になると超電導状態が破
れ、有限の電気抵抗を示す。すなわち、B1の磁界の時に
は再現よく、R1の抵抗値を示す。このとき電気抵抗は印
加磁界に対してほぼ比例して変化することを見出してい
る。
When a magnetic field is applied to the superconductor while maintaining the temperature of the ceramic superconductor having a weak bond in which the superconductor particles are electrically weakly bonded, below the critical temperature indicating the superconducting state, as shown in FIG. The superconducting state is maintained up to about Gauss (for example, 5 Gauss), and the superconductor has zero resistance.
When the magnetic field is further increased to exceed Bo Gauss, the superconducting state is broken and the electric resistance becomes finite. That is, the resistance value of R1 is shown with good reproducibility in the magnetic field of B1. At this time, it has been found that the electric resistance changes almost in proportion to the applied magnetic field.

上記の特性は、発明者等は次のように理解している。The above characteristics are understood by the inventors as follows.

即ち、上記のような特性は、セラミックス焼結体が多く
の超電導体粒子より構成され、その粒子境界に極めて薄
い絶縁物が存在するか、あるいは粒子間の接触部分がポ
イント状になる等、いわゆる超電導体粒子が電気的に弱
く結合された超電導の弱結合の集合体とみなすことがで
き、弱磁界(臨界磁界)で超電導の弱結合状態が破れる
結果、生じるものであり、換言すれば、セラミックス超
電導体粒子同志の接触界面のトンネル現象の結果、生じ
るものであると考えている。
That is, the above-mentioned characteristics are so-called that the ceramics sintered body is composed of many superconducting particles, there is an extremely thin insulator at the particle boundary, or the contact portion between particles becomes a point shape. It can be regarded as an aggregate of superconducting weak bonds in which superconducting particles are electrically weakly coupled, and is the result of breaking the superconducting weak bond state in a weak magnetic field (critical magnetic field). In other words, ceramics It is thought that this is caused as a result of the tunnel phenomenon at the contact interface between superconducting particles.

本発明は、上記した超電導状態部分及び抵抗変化部分を
利用してディジタル的に磁界を検出するディジタル磁界
検出装置を構成するものである。
The present invention constitutes a digital magnetic field detecting device for digitally detecting a magnetic field by utilizing the above-mentioned superconducting state portion and resistance change portion.

<作用> 本発明は第4図に示す磁界と電気抵抗の関係を示す特性
図において、バイアス磁界として臨界磁界(B0)よりや
や小さい。例えば約0〜5ガウスの磁界を加え、更にデ
ィジタル信号をこのバイアス磁界に重畳することによ
り、丁度その出力は第6図に示すような出力波形になっ
て雑音が除去された高信頼性のディジタル出力が得られ
ることになる。
<Operation> In the characteristic diagram showing the relationship between the magnetic field and the electric resistance shown in FIG. 4, the present invention is slightly smaller than the critical magnetic field (B0) as the bias magnetic field. For example, by applying a magnetic field of about 0 to 5 gauss and superimposing a digital signal on this bias magnetic field, the output just becomes an output waveform as shown in FIG. 6 and a highly reliable digital signal with noise removed. The output will be obtained.

<実施例> 以下、本発明の一実施例について、図面を参照して説明
する。
<Example> An example of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例のディジタル磁界検出装置
の構成を示す斜視図である。
FIG. 1 is a perspective view showing the configuration of a digital magnetic field detecting device according to an embodiment of the present invention.

第1図において、1はセラミックス超電導素子であり、
この超電導素子1は、酸化イットリウムY2O3、炭酸バリ
ウムBaCO3、酸化銅CuOを1:2:3に秤量し、充分に分散混
合した微粒子を900℃、5時間空気中で仮焼成し、次に
再び粉砕、分散させ、ペロブスカイト型酸化物超電導体
の均一な微粒子(1μmφ以下)からなる粉体を作製
し、加圧力1ton/cm2にて例えば円状のペレットに形成
し、次に1000℃の空気中にて3時間保持し、200℃まで
5時間で降温させて、厚み1mmの円状のペレットを作製
した。この材料より薄い長方形に切り出してセラミック
ス超電導体素子1を作製した。本発明の一実施例におけ
るセラミックス超電導体1は(Y1−Ba2−Cu3)O6の組成
になっており、これを構成する超電導体粒子の境界が電
気的に弱く結合された弱結合を示し、超電導の弱結合の
破られる磁界(臨界磁界)は約5ガウスであった。
In FIG. 1, 1 is a ceramic superconducting element,
In this superconducting element 1, yttrium oxide Y 2 O 3 , barium carbonate BaCO 3 and copper oxide CuO were weighed in a ratio of 1: 2: 3, and sufficiently dispersed and mixed fine particles were calcined in air at 900 ° C. for 5 hours, Next, the powder is pulverized and dispersed again to prepare a powder composed of uniform fine particles (1 μmφ or less) of the perovskite type oxide superconductor, which is formed into, for example, a circular pellet at a pressing force of 1 ton / cm 2 , and then 1000 It was kept in the air at ℃ for 3 hours and cooled to 200 ℃ in 5 hours to prepare circular pellets with a thickness of 1 mm. A ceramic superconductor element 1 was produced by cutting out a rectangle thinner than this material. The ceramic superconductor 1 according to one embodiment of the present invention has a composition of (Y 1 —Ba 2 —Cu 3 ) O 6 , and the weakly bonded boundaries where the superconductor particles constituting the ceramics are electrically weakly bonded. The magnetic field at which the weak coupling of superconductivity was broken (critical magnetic field) was about 5 gauss.

このように薄い長方形に切り出した素子1の両端及びそ
の内側近傍に電流電極2,3及び電圧電極4,5をそれぞれ、
チタン(Ti)蒸着膜と銀ペーストによって形成し、それ
ぞれ電流端子6,7及び電圧電極8,9を接続した。
The current electrodes 2 and 3 and the voltage electrodes 4 and 5, respectively, are provided at both ends of the element 1 cut out in such a thin rectangle and in the vicinity of the inside thereof,
It was formed by a titanium (Ti) vapor deposition film and a silver paste, and the current terminals 6 and 7 were connected to the voltage electrodes 8 and 9, respectively.

上記の素子1に希土類の永久磁石10を近接設置してバイ
アス磁界としてBb=4ガウスをかける。なお、このバイ
アス磁界はフェライトなどの磁石であってもよい。
A rare earth permanent magnet 10 is installed close to the above element 1 and B b = 4 gauss is applied as a bias magnetic field. The bias magnetic field may be a magnet such as ferrite.

本実施例では、素子のラッピングと微細加工技術により
ジグザグの形状に加工して、常伝導状態での電気抵抗が
1KΩオーダになるようにしたところ、約1ガウスのディ
ジタルパルス信号磁界に対して約350Ωの値を示し、1mA
のパルス電流に対して0.35Vの出力パルス電圧を確認し
た。
In this embodiment, the element is processed into a zigzag shape by lapping and fine processing technology, and the electric resistance in the normal conduction state is increased.
When it is made to be in the order of 1 KΩ, it shows a value of about 350 Ω for a digital pulse signal magnetic field of about 1 Gauss, and 1 mA.
An output pulse voltage of 0.35V was confirmed for the pulse current of.

本発明の実施例で用いている超電導素子1の臨界温度は
90゜Kであるので、液体窒素で冷却して行ったが、ペル
チェ冷却効果素子をカスケード状に結合した装置を用い
て冷却しても良く、更に室温で超電導素子が実現できる
ものであれば、冷却せずに実用化が図れることは言うま
でもない。
The critical temperature of the superconducting element 1 used in the examples of the present invention is
Since it was 90 ° K, it was cooled by liquid nitrogen, but it may be cooled by using a device in which Peltier cooling effect elements are connected in cascade, and if a superconducting element can be realized at room temperature, It goes without saying that it can be put to practical use without cooling.

第2図は、本発明の他の実施例の構成を示す図であり、
第1図における永久磁石10に代えて電磁石11を素子1に
近設して配置し、電磁石11の励磁電流を任意に制御する
ことにより、適切なバイアス磁界の大きさに設定し得る
ようにしたものである。このような構成により、バイア
ス磁界の任意設定が可能となり、超電導体の大きさや形
状が任意に変わっても容易に本発明を適用することが出
来る。更に室温で動作する超電導素子が実現出来れば、
例えば磁気テープなどの磁気信号を音声や画像処理等の
信号処理にも有効に用いることが可能となる。
FIG. 2 is a diagram showing the configuration of another embodiment of the present invention,
In place of the permanent magnet 10 shown in FIG. 1, an electromagnet 11 is arranged close to the element 1, and the exciting current of the electromagnet 11 is arbitrarily controlled so that an appropriate magnitude of the bias magnetic field can be set. It is a thing. With such a configuration, the bias magnetic field can be arbitrarily set, and the present invention can be easily applied even if the size and shape of the superconductor are arbitrarily changed. Furthermore, if a superconducting element that operates at room temperature can be realized,
For example, it becomes possible to effectively use a magnetic signal of a magnetic tape or the like for signal processing such as voice and image processing.

なお、上記実施例においては、超電導セラミックスとし
てY−Ba−Cu−O系を例にして説明したが本発明はこれ
に限定されることなく、例えばLa−Ba−Cu−O系、Y−
Sr−Ba−Cu−O系等のIII a族元素、II a族元素、銅(C
u)元素及び酸素(O)元素を構成元素とした超電導セ
ラミックスを用いても同様に実施することが出来ること
は言うまでもない。
In the above embodiments, the Y-Ba-Cu-O system was described as an example of the superconducting ceramics, but the present invention is not limited to this, and for example, La-Ba-Cu-O system, Y- system.
Group IIIa elements such as Sr-Ba-Cu-O system, IIa group elements, copper (C
It goes without saying that the same can be done by using superconducting ceramics containing u) element and oxygen (O) element as constituent elements.

<発明の効果> 以上のように、本発明のディジタル磁界検出装置は従来
の素子特性と全く異なり、微小磁界に対して高感度に磁
界検出を行なうことが出来、しかも超電導素子の電気抵
抗が零の領域と、超電導素子の磁界に対する電気抵抗の
変化する領域を使用するため、高感度で低雑音のディジ
タル磁界検出を行なうことが出来る。しかもバイアス磁
界も大きいものを必要としない。
<Effects of the Invention> As described above, the digital magnetic field detection device of the present invention can detect magnetic fields with a high sensitivity to a minute magnetic field, which is completely different from the conventional element characteristics, and the superconducting element has zero electric resistance. Since this region and the region in which the electric resistance of the superconducting element changes with respect to the magnetic field are used, highly sensitive and low noise digital magnetic field detection can be performed. Moreover, a large bias magnetic field is not required.

また本発明は、超電導素子に電極端子を形成するだけの
極めて単純な構造であるから、短い製造工程で大量生産
することが出来る。
Further, since the present invention has an extremely simple structure in which the electrode terminals are formed on the superconducting element, it can be mass-produced in a short manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のディジタル磁界検出装置の
構成を示す斜視図、第2図は本発明の他の実施例のディ
ジタル磁界検出装置の構成を示す斜視図、第3図は本発
明の動作を説明するための磁界と抵抗の関係を示す特性
図、第4図は本発明の一実施例の磁界と電気抵抗の関係
を示す特性図、第5図は従来のディジタル磁気信号の波
形を示す図、第6図は本発明に係るディジタル磁気信号
処理後の波形を示す図である。 1……超電導素子、2,3……電流電極、4,5……電圧電
極、6,7……電流端子、8,9……電圧端子、10……バイア
ス磁界、11……電磁バイアス磁界。
FIG. 1 is a perspective view showing the configuration of a digital magnetic field detecting apparatus according to an embodiment of the present invention, FIG. 2 is a perspective view showing the configuration of a digital magnetic field detecting apparatus according to another embodiment of the present invention, and FIG. FIG. 4 is a characteristic diagram showing the relationship between the magnetic field and resistance for explaining the operation of the invention, FIG. 4 is a characteristic diagram showing the relationship between the magnetic field and electrical resistance of one embodiment of the present invention, and FIG. 5 is a conventional digital magnetic signal. FIG. 6 is a diagram showing a waveform, and FIG. 6 is a diagram showing a waveform after digital magnetic signal processing according to the present invention. 1 ... Superconducting element, 2,3 ... Current electrode, 4,5 ... Voltage electrode, 6,7 ... Current terminal, 8,9 ... Voltage terminal, 10 ... Bias magnetic field, 11 ... Electromagnetic bias magnetic field .

フロントページの続き (56)参考文献 特開 昭59−17175(JP,A) 特開 昭61−290377(JP,A) C.W.Chu,et al.:Phy s.Rev.Lett.Vol.58 N o.4,26 January 1987 P P.405−407 「磁電変換素子の構造と応用」P.132, P.246 コロナ社 昭和49年9月15日発 行Continuation of front page (56) References JP-A-59-17175 (JP, A) JP-A-61-290377 (JP, A) C.I. W. Chu, et al. : Phy s. Rev. Lett. Vol. 58 No. 4,26 January 1987 P.P. 405-407 “Structure and Application of Magnetoelectric Converter” P. 132, p. 246 Corona Publishing Company September 15, 1974

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】超電導体粒子が電気的に弱く結合された弱
結合を有するセラミックス超電導体に電流端子及び電圧
端子を設け、 上記超電導体の超電導の弱結合状態が破られる大きさの
臨界磁界よりわずかに小さいバイアス磁界を上記超電導
体に印加し、 該バイアス磁界に重畳するディジタルの磁界変化を抵抗
変化として検出することを特徴とするディジタル磁界検
出装置。
1. A ceramic superconductor having weak coupling, in which superconductor particles are electrically weakly coupled, is provided with a current terminal and a voltage terminal, and the superconducting weak coupling state of the superconductor is broken from a critical magnetic field. A digital magnetic field detecting device characterized in that a slightly small bias magnetic field is applied to the superconductor and a digital magnetic field change superposed on the bias magnetic field is detected as a resistance change.
【請求項2】前記バイアス磁界を電磁石により印加し、
該電磁石の励磁電流によりバイアス磁界の大きさを制御
することを特徴とする特許請求の範囲第1項記載のディ
ジタル磁界検出装置。
2. The bias magnetic field is applied by an electromagnet,
The digital magnetic field detection device according to claim 1, wherein the magnitude of the bias magnetic field is controlled by the exciting current of the electromagnet.
JP62193017A 1987-07-29 1987-08-01 Digital magnetic field detector Expired - Lifetime JPH0799386B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62193017A JPH0799386B2 (en) 1987-08-01 1987-08-01 Digital magnetic field detector
AT88307044T ATE95316T1 (en) 1987-07-29 1988-07-29 METHOD AND ARRANGEMENT FOR DETECTING A MAGNETIC FIELD BY MEANS OF MAGNETORESISTANCE PROPERTIES OF A SUPERCONDUCTING MATERIAL.
US07/226,067 US5011818A (en) 1987-07-29 1988-07-29 Sensing a magnetic field with a super conductive material that exhibits magneto resistive properties
DE88307044T DE3884514T2 (en) 1987-07-29 1988-07-29 Method and arrangement for detecting a magnetic field using the magnetoresistance properties of a superconducting material.
EP88307044A EP0301902B1 (en) 1987-07-29 1988-07-29 Method and device for sensing a magnetic field with use of a magneto-resistive property of a superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62193017A JPH0799386B2 (en) 1987-08-01 1987-08-01 Digital magnetic field detector

Publications (2)

Publication Number Publication Date
JPS6438675A JPS6438675A (en) 1989-02-08
JPH0799386B2 true JPH0799386B2 (en) 1995-10-25

Family

ID=16300796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62193017A Expired - Lifetime JPH0799386B2 (en) 1987-07-29 1987-08-01 Digital magnetic field detector

Country Status (1)

Country Link
JP (1) JPH0799386B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857533B2 (en) * 2004-07-12 2012-01-18 ソニー株式会社 Front assembly of video display device and video display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917175A (en) * 1982-07-20 1984-01-28 Aisin Seiki Co Ltd Detecting element of magnetic field for extremely low temperature
JPS61290377A (en) * 1985-06-18 1986-12-20 Canon Electronics Inc Magnetoresistance effect type sensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
「磁電変換素子の構造と応用」P.132,P.246コロナ社昭和49年9月15日発行
C.W.Chu,etal.:Phys.Rev.Lett.Vol.58No.4,26January1987PP.405−407

Also Published As

Publication number Publication date
JPS6438675A (en) 1989-02-08

Similar Documents

Publication Publication Date Title
Ekin et al. Double-step behavior of critical current vs. magnetic field in Y-, Bi-and Tl-based bulk high-Tc superconductors
US5461308A (en) Magnetoresistive current sensor having high sensitivity
Ando et al. Normal-state Hall effect and the insulating resistivity of high-T c cuprates at low temperatures
EP0301902B1 (en) Method and device for sensing a magnetic field with use of a magneto-resistive property of a superconductive material
EP0665601B1 (en) Article comprising improved magnetoresistive material
Nojima et al. Galvanomagnetic effect of an Y–Ba–Cu–O ceramic superconductor and its application to magnetic sensors
EP0763748B1 (en) Magnetoresistive element having large low field magnetoresistance
JPH0799386B2 (en) Digital magnetic field detector
Liu et al. A new high-Tc superconducting Tl-Pb-Ca-Sr-Cu-O system
JP3206582B2 (en) Spin polarization element
JPH07113663B2 (en) Characteristic control circuit for superconducting magnetic sensor
JPH0799387B2 (en) Driving method of ceramics superconducting magnetic sensor
JPH0799385B2 (en) Superconducting magnetic field detector
JPH05196715A (en) Superconductive magnetism sensor
JP2933681B2 (en) Magnetic field measurement method
Paterno et al. DC critical currents in superconducting ceramic samples of Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7
Honig et al. Resistivity, magnetoresistance, and hall effect studies in VOx (0.82⩽ x⩽ 1.0)
JPH0671100B2 (en) Superconducting magnetoresistive device
JPH07113662B2 (en) Superconducting magnetic property control method
Takeoka et al. Memory characteristics of ring-shaped ceramic superconductors
JPH06103340B2 (en) Magnetic sensor
JP2936125B2 (en) Magnetic bearing detection method
Nojima et al. Fundamental characteristics of a magnetoresistive sensor using Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7-x/ceramic superconducting films
Shimamoto Experiments on flux jumps in superconducting tapes
HASUNUMA et al. Memory characteristics of a ceramic superconducting ring