JPH0933336A - 非線形要素を有する系についての振動解析方法及び車両用駆動系についての捩り振動解析方法並びに多段クラッチディスクについての捩り角・トルク特性決定方法並びに多段クラッチディスク - Google Patents
非線形要素を有する系についての振動解析方法及び車両用駆動系についての捩り振動解析方法並びに多段クラッチディスクについての捩り角・トルク特性決定方法並びに多段クラッチディスクInfo
- Publication number
- JPH0933336A JPH0933336A JP18041795A JP18041795A JPH0933336A JP H0933336 A JPH0933336 A JP H0933336A JP 18041795 A JP18041795 A JP 18041795A JP 18041795 A JP18041795 A JP 18041795A JP H0933336 A JPH0933336 A JP H0933336A
- Authority
- JP
- Japan
- Prior art keywords
- clutch
- subsystem
- drive system
- vibration analysis
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Mechanical Operated Clutches (AREA)
Abstract
あって、系をいくつかの分系に分けて部分構造合成法を
適用し、それぞれの分系内部は線型として必要な振動モ
ードだけを抽出し、クラッチディスクの多段特性や歯車
のバックラッシなどの非線型要素は分系を結合して全体
系を構成するときに考慮して、系全体として自由度を大
幅に減少させ、計算時間を短縮できるようにする。 【解決手段】 1以上の非線形要素を有する系について
の振動解析を行なうに際して、非線形要素を境界にし
て、この系を複数の分系に分割してから、各分系につい
て、運動方程式をたてたのち、上記の各分系についての
運動方程式を連立させて、非線形要素の特性を入力し
て、解を求めることにより、系全体の振動解析を行な
う。
Description
系の設計等に用いて好適の、非線形要素を有する系につ
いての振動解析方法及び車両用駆動系についての捩り振
動解析方法並びに多段クラッチディスクについての捩り
角・トルク特性決定方法並びに多段クラッチディスクに
関する。
は、商品性の面から重要なテーマであり、振動系の捩り
振動に対して、その共振周波数を実用車速域外に逃がす
ように、クラッチディスクのバネ定数を変更すること
や、逃がせない場合にはクラッチディスクのヒステリシ
ス最適化などにより共振時の振幅を許容レベル以下に抑
制すること等が試みられている。
ための設計諸元を予測し実験で確認するのが効果的な方
法であるが、トラックの駆動系のバリエーションは、図
2(a)〜(d)に示すように多く、なかでも図2
(b)に示すような後2軸駆動、図2(c),図2
(d)に示すような総輪駆動のような複雑な系では、ク
ラッチディスクの多段捩り特性などを含めた非線型応答
解析を行なう場合、自由度が多いために、非常に多くの
計算時間を必要とする。
による場合には膨大なコンピュータのCPU演算時間が
かかり、また、現象の解析という面からもモデルが大き
すぎて解析しにくく、効率が悪い。そこで、実用的な範
囲内でモデルを単純化しようとすると、トラック特有の
バリエーションをモデル上に取り込めないという課題が
ある。
とになり、後2軸車としてモデル化できないという課題
がある。本発明は、このような課題に鑑み創案されたも
ので、系をいくつかの分系に分けて部分構造合成法を適
用し、それぞれの分系内部は線型として必要な振動モー
ドだけを抽出し、クラッチディスクの多段特性や歯車の
バックラッシなどの非線型要素は分系を結合して全体系
を構成するときに考慮して、系全体として自由度を大幅
に減少させ、計算時間を短縮できるようにした、非線形
要素を有する系についての振動解析方法及び車両用駆動
系についての捩り振動解析方法並びに多段クラッチディ
スクについての捩り角・トルク特性決定方法を提供する
ことを目的とする。
間を短縮できるようにした、多段クラッチディスクを提
供することを目的とする。
形要素を有する系についての振動解析方法は、1以上の
非線形要素を有する系についての振動解析を行なうに際
して、該非線形要素を境界にして、該系を複数の分系に
分割してから、各分系について、運動方程式をたてたの
ち、上記の各分系についての運動方程式を連立させて、
該非線形要素の特性を入力して、解を求めることによ
り、該系全体の振動解析を行なうことを特徴としている
(請求項1)。
いての振動解析方法は、請求項1記載の方法について、
右辺又は左辺の一方に、線形要素がくるとともに、右辺
又は左辺の他方に、該非線形要素がくるように、該非線
形要素の特性を入力して、上記の各分系についての運動
方程式を連立させて、解を求めることにより、該系全体
の振動解析を行なうことを特徴としている(請求項
2)。
ついての振動解析方法は、請求項1記載の方法につい
て、各分系について、運動方程式をたてる際に、求める
振動の次数に応じて演算される誤差情報を加味すること
を特徴としている(請求項3)。また、本発明の非線形
要素を有する系についての振動解析方法は、請求項2又
は請求項3記載の方法について、各分系について、運動
方程式を解く際に求める振動の次数に応じて数値積分の
サイズを選択しながら解を求めることを特徴としている
(請求項4)。
捩り振動解析方法は、非線形要素としてのクラッチディ
スクを有する車両用駆動系についての捩り振動解析を行
なうに際して、クラッチを境界にして、該駆動系を、該
クラッチから該駆動系の末端要素に至る第1の分系と、
エンジンから該クラッチに至る第2の分系とに分割して
から、該第1の分系については、該駆動系の固有振動の
モーダル座標とGuyanの静縮約で求めた境界自由度
とで表した運動方程式をたてるとともに、該第2の分系
については、該エンジン,該クラッチディスク,外力と
してのトルク変動を考慮した運動方程式をたてたのち、
上記の第1の分系及び第2の分系についての運動方程式
を連立させて、該クラッチディスクの特性を入力して、
解を求めることにより、該駆動系全体についての捩り振
動解析を行なうことを特徴としている(請求項5)。
り振動解析方法は、請求項5記載の方法について、右辺
又は左辺の一方に、線形要素がくるとともに、右辺又は
左辺の他方に、該クラッチディスクのトルク情報がくる
ように、上記の第1の分系及び第2の分系についての運
動方程式を連立させて、該クラッチディスクの特性を入
力して、解を求めることにより、該駆動系全体について
の捩り振動解析を行なうことを特徴としている(請求項
6)。
捩り振動解析方法は、請求項5記載の方法において、該
第1の分系について、
分系内部の剛性マトリックスと置換して、拘束モーダル
手法にモード補償を組み合わせた運動方程式をたてるこ
とを特徴としている(請求項7)。そして、本発明の多
段クラッチディスクについての捩り角・トルク特性決定
方法は、車両用駆動系に設けられる非線形要素としての
多段クラッチディスクについての低速・軽負荷時及び高
速・高負荷時の捩り角・トルク特性を求めるに際して、
共振回転数が実用車速域以下となるように、該捩り角・
トルク特性における該低速・軽負荷時領域を規定するバ
ネ定数を決定するとともに、部分構造合成法を用いた捩
り振動解析法、即ち、クラッチを境界にして、該駆動系
を、該クラッチから該駆動系の末端要素に至る第1の分
系と、エンジンから該クラッチに至る第2の分系とに分
割してから、該第1の分系については、該駆動系の固有
振動のモーダル座標とGuyanの静縮約で求めた境界
自由度とで表した運動方程式をたてるとともに、該第2
の分系については、該エンジン,該多段クラッチディス
ク,外力としてのトルク変動を考慮した運動方程式をた
てたのち、上記の第1の分系及び第2の分系についての
運動方程式を連立させて、該多段クラッチディスクの特
性を入力して、解を求めることにより、該駆動系全体に
ついての捩り振動解析を行なう捩り振動解析法を用い
て、該低速・軽負荷時領域の上限捩り角を決定し、更
に、共振回転数が実用車速域以下となるように、該捩り
角・トルク特性における該高速・高負荷時領域を規定す
るバネ定数を決定するとともに、上記の部分構造合成法
を用いた捩り振動解析法を用いて、該高速・高負荷時領
域の上限捩り角を決定することを特徴としている(請求
項8)。
いての捩り角・トルク特性決定方法は、車両用駆動系に
設けられる非線形要素としての多段クラッチディスクに
ついての低速・軽負荷時及び高速・高負荷時の捩り角・
トルク特性を求めるに際して、共振回転数が実用車速域
以下となるように、該捩り角・トルク特性における該低
速・軽負荷時領域を規定するバネ定数を決定するととも
に、部分構造合成法を用いた第1の捩り振動解析法、即
ち、クラッチを境界にして、該駆動系を、該クラッチか
ら該駆動系の末端要素に至る第1の分系と、エンジンか
ら該クラッチに至る第2の分系とに分割してから、該第
1の分系については、該駆動系の固有振動のモーダル座
標とGuyanの静縮約で求めた境界自由度とで表した
運動方程式をたてるとともに、該第2の分系について
は、該エンジン,該多段クラッチディスク,外力として
のトルク変動を考慮した運動方程式をたてたのち、上記
の第1の分系及び第2の分系についての運動方程式を連
立させて、該多段クラッチディスクの特性を入力して、
解を求めることにより、該駆動系全体についての捩り振
動解析を行なう第1の捩り振動解析法を用いて、該低速
・軽負荷時領域の上限捩り角を決定し、更に、共振回転
数が実用車速域以下となるように、該捩り角・トルク特
性における該高速・高負荷時領域を規定するバネ定数を
決定するとともに、部分構造合成法を用いた第2の捩り
振動解析法、即ち、該クラッチを境界にして、該駆動系
を、該クラッチから該駆動系の末端要素に至る第1の分
系と、エンジンから該クラッチに至る第2の分系とに分
割してから、該第1の分系については、該駆動系の固有
振動のモーダル座標とGuyanの静縮約で求めた境界
自由度とで表した運動方程式を、
分系内部の剛性マトリックスと置換して、拘束モーダル
手法にモード補償を組み合わせてたてるとともに、該第
2の分系については、該エンジン,該多段クラッチディ
スク,外力としてのトルク変動を考慮した運動方程式を
たてたのち、上記の第1の分系及び第2の分系について
の運動方程式を連立させて、該多段クラッチディスクの
特性を入力して、解を求めることにより、該駆動系全体
についての捩り振動解析を行なう第2の捩り振動解析法
を用いて、該高速・高負荷時領域の上限捩り角を決定す
ることを特徴としている(請求項9)。
は、車両用駆動系に設けられる多段クラッチディスクに
おいて、その捩り角・トルク特性における高速・高負荷
時領域の上限捩り角が、高速・高負荷時のエンジン平均
軸トルクの1.7倍近傍に対応する値に設定されるとと
もに、該捩り角・トルク特性における該高速・高負荷時
領域の下限捩り角が、該高速・高負荷時のエンジン平均
軸トルクの0.5倍近傍に対応する値に設定されている
ことを特徴としている(請求項10)。
は、車両用駆動系に設けられる多段クラッチディスクに
おいて、その捩り角・トルク特性における高速・高負荷
時領域の上限捩り角が、高速・高負荷時のエンジン平均
軸トルクの1.7倍近傍に対応する値に設定され、該捩
り角・トルク特性における該高速・高負荷時領域の下限
捩り角及び低速・軽負荷時領域の上限捩り角が、それぞ
れ該高速・高負荷時のエンジン平均軸トルクの0.5倍
近傍に対応する値に設定され、且つ、該捩り角・トルク
特性における該低速・軽負荷時領域の下限捩り角が、該
高速・高負荷時のエンジン平均軸トルクの0.3倍近傍
に対応する値に設定されていることを特徴としている
(請求項11)。
の形態について説明する。図1〜18は本発明の実施の
形態を示すもので、図1は6×4トラックにおける駆動
系のシミュレーションモデルを示す模式図、図2(a)
〜(d)は駆動系の各モデルを示す模式図、図3はシミ
ュレーション結果を示す模式図、図4(a)〜(c)は
クラッチ装置のヒステリシス特性を示す模式的グラフ、
図5(a)〜(c)はシミュレーションにおける駆動系
の応答特性を示すグラフ、図6〜8はシミュレーション
における駆動系の周波数応答特性を示すグラフ、図9は
シミュレーション結果に対する駆動系の周波数応答実験
特性を示すグラフ、図10はシミュレーションにおける
駆動系の周波数応答特性を示すグラフ、図11は駆動系
の騒音レベル特性を示すグラフ、図12,13は本実施
形態のクラッチ装置のヒステリシス特性を示すグラフ、
図14はシミュレーションにおけるCPU演算時間特性
を説明するための図、図15は本発明の実施形態として
の従来手法との比較におけるCPU時間演算特性を説明
するための図、図16はクラッチ装置の一例を示す縦断
面図、図17はクラッチ装置の一例をその正面構成を部
分的に破断して示す部分破断正面図、図18はクラッチ
装置の一例におけるヒステリシス特性を示すグラフであ
る。
いてシミュレーションを行ない、設計を行なうべき6×
4大型トラックのV型8気筒4サイクルディーゼルエン
ジン等に付設される乾式単板クラッチは、例えば、次の
ように構成されている。すなわち、図16,17に示す
ように、スプラインハブ101が主軸(図示せず)への
スプライン嵌合を可能に設けられており、スプラインハ
ブ101の環状つば部には扇状切欠きが設けられるとと
もに、扇形の窓が設けられている。
3が、スプラインハブ101における環状つば部の両端
面のそれぞれに対向するように設けられており、駆動ク
ラッチプレート102,103にも扇状切欠きが設けら
れるとともに、扇形の窓が設けられ、ピン107を介し
て連結されている。そして、サブプレート104a,1
04bが、駆動クラッチプレート102,103の内側
に設けられており、ピン106により結合されるととも
に、スプラインハブ101の外周に遊嵌され、外周側に
扇状窓と扇形切欠きとが形成されている。
01に遊嵌され、駆動クラッチプレート102に係止さ
れるようになっている。ピン107は駆動クラッチプレ
ート102,103を結合し、サブプレート104a,
104bの扇形切欠きに係合するように配設されてい
る。また、サブプレート104a,104bの扇形切欠
きは、ピン107に対し、反時計回転向きにθ2、時計
回転向きにθ2′の回転許容幅をそなえるように形成さ
れ、配設されている。
ハブ101の扇形切欠きは、ピン106に対し、反時計
回転向きにθ1、時計回転向きにθ1′の回転許容幅を
そなえるように形成され、配設されている。そして、非
金属製のフリクションワッシャ108a,108bが、
スプラインハブ1の鍔状部分とサブプレート104a,
104bとの間に介装され、フリクションワッシャ10
8a,108bとスプラインハブ101との間の摩擦係
数は小さくなるように構成されている。
09aが、サブプレート104aと駆動クラッチプレー
ト102との間に介装され、フリクションワッシャ10
9bが、サブプレート104bと駆動クラッチプレート
103との間に介装されている。ここで、フリクション
ワッシャ109aと駆動クラッチプレート102との
間、および、フリクションワッシャ109bと駆動クラ
ッチプレート103との間の摩擦係数は大きく構成され
ている。
リクションワッシャ109bとサブプレート104bと
の間に介装されており、サブプレート104bに回り止
めされるようになっている。そして、フリクションプレ
ート110が、ウエーブスプリング111とフリクショ
ンワッシャ108bとの間に設けられ、サブプレート1
04bに回り止めされている。
り、スプリングシート116,117で1段目ばね11
2を受け、スプリングシート116は図示の位置でスプ
ラインハブ101に設けた扇窓の縁とサブプレート10
4a,104bに設けられた扇窓の縁とに接している。
スプリングシート116,117の底部はスプラインハ
ブ101の鍔状部に設けた扇窓の開方向向き突起に接し
ている。
レート104a,104bと図示しない嵌合部を持ちス
プラインハブ101の中心からの距離が一定に保たれて
いる。1段目ばね112と同様の構造がスプラインハブ
101の中心に対して対称に設けられている。
2,103、サブプレート104a,104bを貫通し
ている。スプリングシート118は、サブプレート10
4a,104bと図示しない嵌合部をそなえており、中
心からの距離が一定に保たれるように構成されている。
2段目外ばね114はスプリングシート118の外径に
よってその内径を案内され、サブプレート104a,1
04bに設けられた扇窓にはまっている。
18に両端を支承されている。2段目ばね113が、1
段目ばね112と同心にその外側に設けられ、サブプレ
ート104a,104bに設けられた扇窓125に挿入
されている。扇窓126は、扇窓125に対し直角の位
置に設けられた駆動クラッチプレート102,103お
よびサブプレート104a,104bを貫通している。
鍔状部分に設けられてピン106が当接し、121はス
プラインハブ101の鍔に設けられた扇形切欠きのピン
107の部分の反時計回転方向の切欠き縁、120はス
プラインハブ101の鍔に設けられた扇形切欠きのピン
106の当接する部分の時計方向の切欠き縁、122は
サブプレート104a,104bに設けられた扇形切欠
きの反時計回転方向の切欠き縁、123はスプラインハ
ブ101の鍔に設けられた扇形切欠きのピン107の部
分の時計回転方向の切欠き縁である。
ート102,103が図示しないプレッシャプレート
で、はづみ車のクラッチ面に押しつけられると、はずみ
車の回転が伝えられ、駆動クラッチプレート102,1
03が反時計回りに回る。駆動クラッチプレート103
は駆動クラッチプレート102と一体にピン107で止
められているので、両者は共に回転する。
チプレート103との間にあるサブプレート104a,
104b、フリクションワッシャ108a,108b、
フリクションワッシャ109a,109b、フリクショ
ンプレート110、スプラインハブ101の鍔状部は、
ウエーブスプリング111によって面圧が与えられてい
るので、相互に摩擦によってトルクが伝えられるが、フ
リクションワッシャ108a,108bとスプラインハ
ブ101との摩擦が小さいので、この部分で滑り、サブ
プレート104a,104b、フリクションワッシャ1
08a,108b、フリクションワッシャ109a,1
09b、ウエーブスプリング111、フリクションプレ
ート110は、駆動クラッチプレート102,103と
一体になって回る。
向きに回ると1段目ばね112をスプラインハブ101
との間で圧縮するので、スプラインハブ101にトルク
が伝えられる。このとき、1段目ばね112のたわみに
よりトルク変動が、緩和される。また、前記のとおり滑
っているフリクションワッシャ108a,108bによ
ってもトルクが伝えられ、この作用により図18に示す
ような1段目のヒステリシスの特性が得られる。
のスプラインハブ101に対する反時計向きへの回転が
θ1に達すると、ピン106がスプラインハブ101の
扇形切欠きの切欠き縁119に当接し、サブプレート1
04a,104bはスプラインハブ101と一体にな
る。駆動クラッチプレート102は更に回転すると、次
に摩擦係数の大きいフリクションワッシャ109a,1
09bとそれぞれ駆動クラッチプレート102,103
の間で滑り、駆動クラッチプレート102,103およ
びブッシュ105が一体で回転する。
ね114、2段目内ばね115をスプラインハブ101
との間で圧縮するので、スプラインハブ101にトルク
が伝えられる。一方、フリクションワッシャ109a,
109bの滑り面でもトルクが伝えられる。
にθ2だけ回転すると、共に回転しているピン107が
サブプレート104a,104bの切欠き縁122に当
接するので、回転はサブプレート104a,104bと
ピン106とを介してスプラインハブ101に直結して
伝えられ相対回転はなくなって、大きいトルクが伝達さ
れることになる。
bはスプラインハブ101の鍔状部と一体となって固定
され、駆動クラッチプレート102,103、スプリン
グシート116,117、ピン107のみが一体となっ
て回転する。そのとき、フリクションワッシャ109
a,109b部分で第2段のヒステリシスを発生する。
シス特性を適度に設定することが、クラッチディスクに
関する騒音を低減するために必要であり、さらに、必要
に応じて第3段および第4段のヒステリシスを設ける
が、これらは次のような手段により設定される。すなわ
ち、V型8気筒4サイクルディーゼルエンジンおよび乾
式単板クラッチを搭載する6×4大型トラックについて
クラッチ装置等の設計を行なうべく、次のような解析が
行なわれる。
である拘束モーダル法と、モード補償法とを用いてい
る。モード補償法は、拘束モーダル法にモード補償を組
み合わせる手法であり、例えば図1に示すシミュレーシ
ョンモデルにおいて部分構造合成法BBAの演算が展開
される。
の分系に分け、クラッチ以降車体までを分系1、クラッ
チからエンジンまでを分系2とする。分系1は、クラッ
チ(クラッチハブ)2、トランスミッション3,4、プ
ロペラシャフト5,6、プロペラシャフト7、スルーシ
ャフト8、プロペラシャフト9、プロペラシャフト9,
10、ディファレンシャル11、ホィール12、車体1
3、ディファレンシャル14、ホィール15および車体
16をそなえるものとして構成されている。
チ(クラッチハブ)2をそなえるものとして構成されて
いる。ここで、分系1の運動方程式を、境界内部の従属
自由度Xfと、境界上の独立自由度Xbとに分けて記述
すると、
由度、bは境界自由度、Xは変位、Xツードットは加速
度、Kは剛性バネ係数、「0」は内部力、Tcはクラッ
チディスクのトルクである。上式にGuyanの静縮約
を適用すると、 〔Xf′〕=−〔Kff-1 Kfb〕Xb ・・・(2) となり、質量Mを除いた式が得られる。
由度Xfは次式によってモーダル座標ξに変換される。 〔Xf′′〕= 〔φ〕ξ ・・・(4) 拘束モード法によれば、境界内部の自由度は、次式、 〔Xf〕=〔Xf′〕+〔Xf′′〕=〔φ−Kff-1 Kfb〕〔ξXb〕t ・・・(5) によって表現されるので、次式が得られる。
から〔T〕t を乗じて(1)式を座標変換すると、
明する。
を、ΔTE はトルク変動を表す。フライホイールの回転
変動が実測値とほぼ同じ値になるようにトルク変動の振
幅を与え、トルク変動の周波数は簡単化のため、爆発1
次成分のみの演算となっている。また、平均軸トルクは
実測値が用いられる。
する。まず、クラッチディスクの多段特性を入力し、非
線型過渡応答を計算するために、次のように展開する。
(7),(8)式から、
用するトルク、TCは分系2側で作用するトルクであ
る。クラッチディスクの多段特性は次の(11)式で与
えられる。
物理座標系へ変換する。
ピングを用いて演算が行なわれている。
には、 ζr=(α/ωr+βωr)/2 ・・・(14) の関係がある(参考文献;長松、大熊:部分構造合成
法、培風館、1991)ので、ζrに実測値を与えて、
α,βを逆算して算出されている。また、ωrは対象と
なる振動の角振動数である。
合わせる場合は、
〔T〕の右上成分を、−Kff-1・Kfbから−Kr・
Kfbに置き換えればよい。ここで、右辺第1項〔Kf
f〕は内部の剛性マトリックスを、右辺第2項〔Mf
f〕は内部の質量マトリックスを示しており、右辺第3
項の〔φi〕は列ベクトルを、右辺第3項の〈φi〉は
行ベクトルを表している。
おり、ωcはある一定の固有角振動数のパラメータであ
り、対象とする振動の角振動数を与えれば良い。(6)
式以下の定式化は拘束モーダル法と同様に進行する。と
ころで、部分構造合成法BBAの適用について説明する
と、まず、高速・高負荷走行時の捩り4次振動を対象と
して演算を行なう(参考文献;自動車ハンドブック(基
礎・理論編)、自技会、1990)。
ッシなどの非線型要素を考慮する必要がなく、計算上扱
いやすいためである。そして、クラッチディスクの実作
動域を想定し、線型近似で固有振動を求める(参考文
献;K.Suzuki,Y.Tozawa:Influence of Powertrain Tors
ional Rigidityon NVH of 6×4 Trucks,SAE Paper 9224
82 )。
れるが、対象は捩り4次振動のみとする。ここで、部分
構造合成法BBAによる固有振動解析について、部分構
造合成法BBAを用いない従来手法と比較する。従来手
法としては、汎用コードNASTRAN(参考文献;NA
STRAN User's Manual )を用いた場合についての固有振
動数と振動モードの比較を行なっている。その比較の結
果は、図3に示すように得られる。
おける同一数字の各要素に対応しており、それぞれの数
字の位置において対応要素の変位が示されており、同変
位を実線および破線で結び、振動特性を表している。こ
こで、図中のは〔φ〕=(φ1〜φ4)、は〔φ〕
=(φ4)、は〔φ〕=(φ4+補償)、は従来の
NASTRANによる場合をそれぞれ示しているが、
〔φ〕=(φ1〜φ4)は、(4)式の拘束モード
〔φ〕から1〜4次振動を選択する場合を意味してい
る。
示しており、振動モードは重なった特性になっている。
なお、,,の場合の固有振動数特性は、32.0
Hzの振動における特性であり、32.0Hzは500
rpm程度のアイドル回転数に対応している。一方、
の破線の特性は、29.6Hzの振動に対する特性を示
している。
合、捩り4次振動は、固有振動数、振動モードとも従来
手法と有効桁で3〜4桁一致する。また、〔φ〕=(φ
4)の場合でも、補償を行なえば(この場合を〔φ〕=
(φ4+補償)と記す。)、固有振動数、振動モードと
も従来手法と有効桁で3〜4桁一致する。
効桁)はほぼ同じと考えて良いものと考察される。
(4)式の拘束モード〔φ〕から必要自由度φm〜φn
を選択する場合、モードφm〜φnが全体系((10)
式)のどの振動に対応するのか見出すのは難しいが、本
実施形態では振動数の順に対応している。
線型応答解析について説明すると、まず、各分系のモー
ダルパラメータを計算し、それを汎用コードACSL
(参考文献;ACSL User's Guide/Reference Manual)で
読み込んで、時間応答を求めるシステムとして解析が行
なわれる。供試クラッチディスクは、1段型(図4
(a))、4段型(図4(b))、3段型(図4
(c))の3種類とし、それぞれ、クラッチA,B,C
と呼ぶ。
チCのヒステリシスH2c,H3cとは、クラッチBの
ヒステリシスH2b〜H4bの2倍である。なお、図4
(a)〜(c)では、横軸にクラッチディスクの捩り角
θをとり、縦軸に伝達トルクTcをとって、クラッチデ
ィスクのヒステリシス特性を示しており、θ1〜θ4に
より区分されるバネ定数k1〜k4に対応した特性が示
されている。
で計算される捩り4次の固有角振動数ω0を求め、ω0
の前後の周波数を加振周波数ωとして時間応答を従来手
法と比較する。最初にクラッチAを供試したのは、1自
由度系で理論解(参考文献;CYRIL M.HARRIS;SHOCK AND
VIBRATION HANDBOOK,THIRD EDITION,McGRAW-HILL BOOK
COMPANY)があり、理論検討を行ないやすいためであ
る。
慮していないので、固有振動数と加振周波数とが一致す
る場合には応答は時間とともに振幅が増大する発散状態
となる(図 5(b))。ここで、図5(a)〜(c)は
横軸に時間(秒)を、縦軸に回転変動をとって、ω/ω
0=0.98の場合、ω/ω0=1の場合、ω/ω0=
1.02の場合のそれぞれにおける、回転変動の経時変
化を示している。
+補償)の場合には、いずれの加振周波数でも従来手法
と有効桁2〜3桁が一致するが、図5は〔φ〕=(φ1
〜φ4)の場合の応答を示している。一方、〔φ〕=
(φ4)では固有振動数が29.6Hzと従来手法32
Hzに対して10%以上低周波数側にずれる(図3参
照)ので、それに対応して、ω/ω0=0.98〜1.
02での応答値も従来手法と有効桁1桁目から差がで
る。
=(φ1〜φ4)または〔φ〕=(φ4+補償)を用い
ることとした。次にクラッチBを供試し、比較する。
〔φ〕=(φ1〜φ4)の場合は、クラッチAの場合と
同様に、従来手法と有効桁3桁が一致する(図6参
照)。
回転数、ΔN0はアイドル時のフライホイールの回転変
動(実測値)、ΔNpはデフピニオンの回転変動であ
る。また、計算と実験との比較が図7に示されている。
この図7からもわかるように、計算では実験で得た減衰
比に対して、さらにクラッチディスクのヒステリシスを
も重ねて与えているが、共振回転速度、共振時の振幅と
もほぼ対応する。
捩り4次振動について説明する。クラッチCは、クラッ
チBに対し実作動域のヒステリシスを2倍としたもので
ある。ヒステリシス増加により共振時の振幅において約
25%の低下が予測され(図8)、実験で効果が確認さ
れた(図9)。
域は実用車速域外であり、フィーリングは良好である。
次に、低速・軽負荷走行時の捩り4次振動を解析した結
果を説明する。軽負荷の場合については、高負荷の場合
と同様に歯車のバックラッシは無視した。
用の段を追加したものである。低速・軽負荷時のクラッ
チCに対するクラッチBの捩り振動低減効果の予測を図
10に、実車での確認結果を図11に示している。図1
1は共振域での騒音レベルであり、クラッチBにより大
幅に低減していることが分かる。
の場合の結果である。ところで、解析に必要なコンピュ
ータにおける計算時間を比較すると、図14に示すよう
になり、次のように考察される。すなわち、部分構造合
成法BBAを用いた場合のCPU時間を従来手法と比較
した結果、従来手法に対して〔φ〕=(φ1〜φ4)の
場合に12%、〔φ〕=(φ4+補償)の場合には48
%低減され、大幅な計算時間の短縮が図られる。
積分刻み幅で計算したが、高次振動が除去されているの
で、刻み幅をより大きくできる可能性もあり、その場合
にはさらに短縮できる。実際、図15に示すうよに高次
振動除去による刻み幅拡大により、計算時間は従来手法
に比べ、1/10以下に減少する。なお、図15の横軸
NSTは積分サイズのパラメータであり、積分サイズは
0.005/NSTである。また、図15の縦軸はCP
U時間比である。
て、運動方程式を解く際に求める振動の次数に応じて数
値積分のサイズを選択しながら解を求めるようにすれ
ば、演算時間の更なる短縮化が可能となるのである。上
述のように、駆動系捩り振動に対し、クラッチディスク
の多段特性などの非線型性を考慮し、必要な振動のみを
抽出して振動解析を行なう、いわゆる部分構造合成法B
BAが実用化される。
ば、高速・高負荷、および低速・軽負荷走行時を対象と
して、従来手法、および実験値との比較などを行なう
と、次のようになる。 従来手法とほぼ同じ計算精度で、計算時間を概ね1/
2まで短縮することができる。
振動・騒音低減効果を予測し、実車で確認された。 このように、部分構造合成法BBAによるトラックの駆
動系捩り振動解析が行なわれるが、その解析手法を用い
て行なう図12に示すようなクラッチディスクの多段捩
り特性の設計は、後述の(1)〜(5)の各手順に沿い
行なわれる。
性の設計については、駆動系捩り振動に起因する振動・
騒音を発生させないために、図12に示すアイドル騒音
領域R1、低速・軽負荷領域R2、高速・高負荷領域R
3、ストッパ領域R4のそれぞれに対し、共振回転速度
が実用車速域以下となるように、バネ定数k1〜k4を
設定し、各領域を決定する捩り角θ1〜θ4を設定す
る。
騒音を発生させないためには、バネ定数k1〜k4を低
下させることが必要であるが、低バネ定数化すると、各
領域R1〜R4で負荷されるトルクをクリヤするため、
捩り角θを大きくする必要がある。捩り角θを大きくす
ることは、クラッチハブに、より大きな穴をあけること
であり、θの拡大はクラッチハブの強度から制限を受け
る。
に大きくならないようにしながら、バネ定数k1〜k4
をできるだけ低くなるようにバランスさせた構造とする
ことが必要である。従来は、経験と実験とからクラッチ
ディスクの捩り特性を決めており、捩り特性の決定基準
もないため、新車開発のたびごとに、またエンジン出力
が大きくなるごとに、クラッチディスクの捩り特性の見
直しが必要となるが、いずれの場合も、経験と実験で決
めるため、開発効率をあげることができない。
性の中で、最もトルク変動幅の大きい高速・高負荷走行
領域R3の作動角θ2〜θ3の範囲を、エンジンの平均
軸トルクTE0を用いて定め、コンピュータ・シミュレ
ーションでθ1〜θ4を設定することができる。これに
より、高速・高負荷時の捩り振動の共振を確実に実用車
速域以下とすることができるようになる。
く、振動・騒音の発生が防止される。各設定は、次の各
手順に沿い行なわれる。
て、共振がアイドル回転数以下となるようにバネ定数k
1を決める。 次に、コンピュータシミュレーションにより、クラッチ
ディスクの実作動域θ1′〜θ1を決める。ここで、θ
1′は初段の負側における作動域限界、θ1は初段の正
側における作動域限界である。
負荷領域の下限値としての、平均軸トルクTE0の0.
3倍のトルクに対応する捩り角θ値に設定される。そし
て、初段、2段目、3段目と捩り特性を決めていくが、
ストッパトルクの確保ができないとき、クラッチハブが
強度不足になるときは、ヒステリシスH1を大きくして
実作動域を狭め、より狭い作動域θ1′〜θ1内に納め
る。
しすぎると、アイドル騒音が悪化するので、注意する。
以上のサイクルで、バネ定数k1、ヒステリシスH1、
初段の作動域θ1′〜θ1を決める。 (2)2段目:低速・軽負荷時について、捩り4次の共
振回転数が実用車速以下となるようにバネ定数k2を決
定する。
める。決め方は、前述の手法により、クラッチディスク
の実作動域を見て、低速・軽負荷時の捩り4次共振時に
作動域がθ2を超えないように、θ2を設定する。 (3)3段目:高速・高負荷時について、捩り4次の共
振回転数が実用車速域以下となるようにバネ定数k3を
決定する。
解析手法により決めるが、クラッチディスクの実作動域
を見て、高速・高負荷時の捩り4次共振時に作動域がθ
3を超えないようにθ3を設定する。すなわち、高速・
高負荷時の上限捩り角θ3は図13に示すように、平均
軸トルクTE0から、平均軸トルクTE0の0.7倍分
だけ大きいトルクに対応するとともに、バネ定数k3の
傾きに対応したθ位置の値に設定される。
するトルクが比較的小さいクラッチB(図4(b)参
照)における回転変動比のピークと、最終段に移行する
トルクが比較的大きいクラッチC(図4(c)参照)に
おける回転変動比のピークとを比較すると、クラッチB
による場合の方が低い回転数側にあり、最終段に移行す
るトルクが大きくなるほどピークが高い回転数側へ移行
していく特性を利用している。
0.8倍分だけ大きいトルクに対応するように最終段に
移行する捩り角θを設定した場合には、回転変動比の特
性は1点鎖線に示す状態となり、回転変動比のピーク
が、回転速度比1.0の位置に達する。したがって、こ
のような設定状態においては、共振のピークがアイドル
回転数に達する状況になり好ましくない。
る、平均軸トルクTE0から、平均軸トルクTE0の
0.7倍分だけ大きいトルクに対応する値を、最終段に
移行する捩り角θの設定しうる上限値とするようになっ
ている。一方、高速・高負荷時の下限捩り角θ2は図1
3に示すように、平均軸トルクTE0から、平均軸トル
クTE0の0.5倍分だけ小さいトルク近傍に対応する
とともに、バネ定数k3の傾きに対応した捩り角θ位置
の値に設定される。
いバネ定数k2を含めて2段階(θ1〜θ2,θ2〜θ
3)に分割されたクラッチBと、1段階(θ1〜θ2)
のクラッチCとでは、捩り角θ2の値を大きくすること
により、クラッチディスクCの特性がクラッチBの特性
に近付いていく。ところで、低速・軽負荷時におけるク
ラッチBとクラッチCとの回転変動比特性は、図10に
示すようになる。
捩り角θを平均軸トルクTE0の0.6倍のトルクに対
応させるように設定した場合の回転変動比特性であり、
点線の特性は、捩り角θを平均軸トルクTE0の0.5
倍のトルクに対応させるように設定した場合の回転変動
比特性である。これらの特性により示されるように、捩
り角θを平均軸トルクTE0の0.5倍のトルクに対応
させるように設定した場合の回転変動比特性から、クラ
ッチCの状態へ移行させると、ピークが発生してくるた
め、平均軸トルクTE0の0.6倍近傍のトルクに対応
する捩り角θ値を、低速・軽負荷領域の捩り角θの上限
とされ、0.5倍以下の値に捩り角θ2が設定される。
・軽負荷領域下限における捩り角θ1の値を、平均軸ト
ルクTE0の0.3倍に設定した場合の特性であり、図
13に示すように、この平均軸トルクTE0の0.3倍
の値を捩り角θ1の下限として設定が行なわれる。とこ
ろで、捩り角θ3がクラッチハブの強度内であればOK
で、このまま次に進めば良いが、強度不足の場合には、
捩り角θ3を狭めてヒステリシスの最適化(一般にヒス
テリシスを増大させる。)により、クラッチディスクの
実作動域を狭め、高速・高負荷時の捩り4次共振時に作
動域がθ3を超えないように、捩り角θ3を設定しなお
す。
かどうかの検討を行なう。捩り特性で、θ=θ3の時の
トルクがTsに達しないとき、2段目と3段目との間
に、バネ定数k2よりも少し高いバネ定数k3′の領域
を設ける。したがって、 θ1′〜 θ1の範囲では、
バネ定数はk1 θ1 〜新θ2の範囲では、バネ定数はk2 新θ2 〜 θ2の範囲では、バネ定数はk2′ θ2 〜 θ3の範囲では、バネ定数はk3 となり、クラッチディスクの特性が決定される。
騒音対策用として、θ1′を決める。そして、クラッチ
ハブの強度上からθ4′を決め、新2段目、新3段目、
新4段目を決める。 (6)ストッパトルクの設計基準については、次のよう
に設定する。
上。 負側:エンジン最大トルク以上。 上述のようなバネ定数k1〜k4および各作動領域を決
定する作動角θ1〜θ4のコンピュータシミュレーショ
ンによる設定により、駆動系捩り振動に起因する振動・
騒音をバランス良く解消することができ、新車開発時の
開発効率向上が図られる。
素を有する系についての振動解析方法(請求項1)によ
れば、1以上の非線形要素を有する系についての振動解
析を行なうに際して、該非線形要素を境界にして、該系
を複数の分系に分割してから、各分系について、運動方
程式をたてたのち、上記の各分系についての運動方程式
を連立させて、該非線形要素の特性を入力して、解を求
めることにより、該系全体の振動解析を行なうという簡
素な構成で、非線型要素を有する系の振動解析を短時間
のCPU演算により行なえるようになり、実験や経験等
により設計を行なうことなく、確実な計算に基づいた設
計を行なえるようになる利点がある。
いての振動解析方法(請求項2)では、請求項1記載の
方法について、右辺又は左辺の一方に、線形要素がくる
とともに、右辺又は左辺の他方に、該非線形要素がくる
ように、該非線形要素の特性を入力して、上記の各分系
についての運動方程式を連立させて、解を求めることに
より、該系全体の振動解析を行なうという簡素な構成
で、非線型要素を有する系の振動解析における非線型要
素の特性を容易に入力できるようになり、系の振動解析
を短時間のCPU演算により行なえるようになり、実験
や経験等により設計を行なうことなく、確実な計算に基
づいた設計を行なえるようになる利点がある。
ついての振動解析方法(請求項3)では、請求項1記載
の方法について、各分系について、運動方程式をたてる
際に、求める振動の次数に応じて演算される誤差情報を
加味するという簡素な構成で、非線型要素を有する系の
振動解析における誤差情報を容易に加味できるようにな
り、系の振動解析を短時間のCPU演算により行なえる
ようになって、実験や経験等により設計を行なうことな
く、確実な計算に基づいた設計を行なえるようになる利
点がある。
いての振動解析方法(請求項4)では、請求項2又は請
求項3記載の方法について、各分系について、運動方程
式を解く際に求める振動の次数に応じて数値積分のサイ
ズを選択しながら解を求めるので、演算時間の更なる短
縮化が可能となる。そして、本発明の車両用駆動系につ
いての捩り振動解析方法(請求項5)によれば、非線形
要素としてのクラッチディスクを有する車両用駆動系に
ついての捩り振動解析を行なうに際して、クラッチを境
界にして、該駆動系を、該クラッチから該駆動系の末端
要素に至る第1の分系と、エンジンから該クラッチに至
る第2の分系とに分割してから、該第1の分系について
は、該駆動系の固有振動のモーダル座標とGuyanの
静縮約で求めた境界自由度とで表した運動方程式をたて
るとともに、該第2の分系については、該エンジン,該
クラッチディスク,外力としてのトルク変動を考慮した
運動方程式をたてたのち、上記の第1の分系及び第2の
分系についての運動方程式を連立させて、該クラッチデ
ィスクの特性を入力して、解を求めることにより、該駆
動系全体についての捩り振動解析を行なうという簡素な
構成で、非線型要素を有する駆動系全体の捩り振動解析
を短時間のCPU演算により行なえるようになって、実
験や経験等により設計を行なうことなく、確実な計算に
基づいた設計を行なえるようになる利点がある。
り振動解析方法(請求項6)では、請求項5記載の方法
について、右辺又は左辺の一方に、線形要素がくるとと
もに、右辺又は左辺の他方に、該クラッチディスクのト
ルク情報がくるように、上記の第1の分系及び第2の分
系についての運動方程式を連立させて、該クラッチディ
スクの特性を入力して、解を求めることにより、該駆動
系全体についての捩り振動解析を行なうという簡素な構
成で、非線型要素を有する駆動系全体の捩り振動解析
を、クラッチディスクのトルク情報を加味して短時間の
CPU演算により行なえるようになって、実験や経験等
により設計を行なうことなく、確実な計算に基づいた設
計を行なえるようになる利点がある。
捩り振動解析方法(請求項7)では、請求項5記載の方
法において、該第1の分系について、
分系内部の剛性マトリックスと置換して、拘束モーダル
手法にモード補償を組み合わせた運動方程式をたてると
いう簡素な構成で、非線型要素を有する駆動系全体の捩
り振動解析を、拘束モーダル手法にモード補償を組み合
わせた状態で短時間のCPU演算により行なえるように
なって、実験や経験等により設計を行なうことなく、確
実な計算に基づいた設計を行なえるようになる利点があ
る。
ついての捩り角・トルク特性決定方法(請求項8)によ
れば、車両用駆動系に設けられる非線形要素としての多
段クラッチディスクについての低速・軽負荷時及び高速
・高負荷時の捩り角・トルク特性を求めるに際して、共
振回転数が実用車速域以下となるように、該捩り角・ト
ルク特性における該低速・軽負荷時領域を規定するバネ
定数を決定するとともに、部分構造合成法を用いた捩り
振動解析法、即ち、クラッチを境界にして、該駆動系
を、該クラッチから該駆動系の末端要素に至る第1の分
系と、エンジンから該クラッチに至る第2の分系とに分
割してから、該第1の分系については、該駆動系の固有
振動のモーダル座標とGuyanの静縮約で求めた境界
自由度とで表した運動方程式をたてるとともに、該第2
の分系については、該エンジン,該多段クラッチディス
ク,外力としてのトルク変動を考慮した運動方程式をた
てたのち、上記の第1の分系及び第2の分系についての
運動方程式を連立させて、該多段クラッチディスクの特
性を入力して、解を求めることにより、該駆動系全体に
ついての捩り振動解析を行なう捩り振動解析法を用い
て、該低速・軽負荷時領域の上限捩り角を決定し、更
に、共振回転数が実用車速域以下となるように、該捩り
角・トルク特性における該高速・高負荷時領域を規定す
るバネ定数を決定するとともに、上記の部分構造合成法
を用いた捩り振動解析法を用いて、該高速・高負荷時領
域の上限捩り角を決定するという簡素な構成で、車両用
駆動系に設けられる非線形要素としての多段クラッチデ
ィスクについて、そのクラッチディスクをそなえた駆動
系全体の捩り振動解析を、短時間のCPU演算により行
なえるようになって、実験や経験等により設計を行なう
ことなく、確実な計算に基づいた設計を行なえるように
なる利点がある。
いての捩り角・トルク特性決定方法(請求項9)によれ
ば、車両用駆動系に設けられる非線形要素としての多段
クラッチディスクについての低速・軽負荷時及び高速・
高負荷時の捩り角・トルク特性を求めるに際して、共振
回転数が実用車速域以下となるように、該捩り角・トル
ク特性における該低速・軽負荷時領域を規定するバネ定
数を決定するとともに、部分構造合成法を用いた第1の
捩り振動解析法、即ち、クラッチを境界にして、該駆動
系を、該クラッチから該駆動系の末端要素に至る第1の
分系と、エンジンから該クラッチに至る第2の分系とに
分割してから、該第1の分系については、該駆動系の固
有振動のモーダル座標とGuyanの静縮約で求めた境
界自由度とで表した運動方程式をたてるとともに、該第
2の分系については、該エンジン,該多段クラッチディ
スク,外力としてのトルク変動を考慮した運動方程式を
たてたのち、上記の第1の分系及び第2の分系について
の運動方程式を連立させて、該多段クラッチディスクの
特性を入力して、解を求めることにより、該駆動系全体
についての捩り振動解析を行なう第1の捩り振動解析法
を用いて、該低速・軽負荷時領域の上限捩り角を決定
し、更に、共振回転数が実用車速域以下となるように、
該捩り角・トルク特性における該高速・高負荷時領域を
規定するバネ定数を決定するとともに、部分構造合成法
を用いた第2の捩り振動解析法、即ち、該クラッチを境
界にして、該駆動系を、該クラッチから該駆動系の末端
要素に至る第1の分系と、エンジンから該クラッチに至
る第2の分系とに分割してから、該第1の分系について
は、該駆動系の固有振動のモーダル座標とGuyanの
静縮約で求めた境界自由度とで表した運動方程式を、
分系内部の剛性マトリックスと置換して、拘束モーダル
手法にモード補償を組み合わせてたてるとともに、該第
2の分系については、該エンジン,該多段クラッチディ
スク,外力としてのトルク変動を考慮した運動方程式を
たてたのち、上記の第1の分系及び第2の分系について
の運動方程式を連立させて、該多段クラッチディスクの
特性を入力して、解を求めることにより、該駆動系全体
についての捩り振動解析を行なう第2の捩り振動解析法
を用いて、該高速・高負荷時領域の上限捩り角を決定す
るという簡素な構成で、車両用駆動系に設けられる非線
形要素としての多段クラッチディスクについて、そのク
ラッチディスクの特性を確実に設計すべく、駆動系全体
の捩り振動解析を、短時間のCPU演算により行なえる
ようになって、実験や経験等により設計を行なうことな
く、確実な計算に基づいた設計を行なえるようになる利
点がある。
(請求項10)によれば、車両用駆動系に設けられる多
段クラッチディスクにおいて、その捩り角・トルク特性
における高速・高負荷時領域の上限捩り角が、高速・高
負荷時のエンジン平均軸トルクの1.7倍近傍に対応す
る値に設定されるとともに、該捩り角・トルク特性にお
ける該高速・高負荷時領域の下限捩り角が、該高速・高
負荷時のエンジン平均軸トルクの0.5倍近傍に対応す
る値に設定されているという簡素な構成で、車両用駆動
系に設けられる非線形要素としての多段クラッチディス
クについて、そのクラッチディスクの高速・高負荷時領
域における特性を確実にまた容易に設計し、確実な低騒
音化をはかる事が出来るようになり、駆動系全体の捩り
振動解析を、短時間のCPU演算により行なえるように
なって、クラッチディスクを実験や経験等により設計す
ることなく、確実な計算に基づいた設計を行なえるよう
になる利点がある。
(請求項11)によれば、車両用駆動系に設けられる多
段クラッチディスクにおいて、その捩り角・トルク特性
における高速・高負荷時領域の上限捩り角が、高速・高
負荷時のエンジン平均軸トルクの1.7倍近傍に対応す
る値に設定され、該捩り角・トルク特性における該高速
・高負荷時領域の下限捩り角及び低速・軽負荷時領域の
上限捩り角が、それぞれ該高速・高負荷時のエンジン平
均軸トルクの0.5倍近傍に対応する値に設定され、且
つ、該捩り角・トルク特性における該低速・軽負荷時領
域の下限捩り角が、該高速・高負荷時のエンジン平均軸
トルクの0.3倍近傍に対応する値に設定されていると
いう簡素な構成で、車両用駆動系に設けられる非線形要
素としての多段クラッチディスクについて、そのクラッ
チディスクの高速・高負荷時領域および低速・軽負荷時
領域における特性を確実にまた容易に設計し、確実な低
騒音化をはかる事が出来るようになり、駆動系全体の捩
り振動解析を、短時間のCPU演算により行なえるよう
になって、クラッチディスクを実験や経験等により設計
することなく、確実な計算に基づいた設計を行なえるよ
うになる利点がある。
ける駆動系のシミュレーションモデルを示す模式図であ
る。
動系の各モデルを示す模式図である。
ける駆動系のシミュレーション結果を示す模式図であ
る。
ラッチ装置のヒステリシス特性を示す模式的グラフであ
る。
ミュレーションにおける駆動系の応答特性を示すグラフ
である。
おける駆動系の周波数応答特性を示すグラフである。
おける駆動系の周波数応答特性を示すグラフである。
おける駆動系の周波数応答特性を示すグラフである。
果に対する駆動系の周波数応答実験特性を示すグラフで
ある。
における駆動系の周波数応答特性を示すグラフである。
ル特性を示すグラフである。
ステリシス特性を示すグラフである。
ステリシス特性を示すグラフである。
におけるCPU演算時間特性を説明するための図であ
る。
におけるCPU時間演算特性を説明するための図であ
る。
例を示す縦断面図である。
例をその正面構成を部分的に破断して示す部分破断正面
図である。
例におけるヒステリシス特性を示すグラフである。
Claims (11)
- 【請求項1】 1以上の非線形要素を有する系について
の振動解析を行なうに際して、 該非線形要素を境界にして、該系を複数の分系に分割し
てから、 各分系について、運動方程式をたてたのち、 上記の各分系についての運動方程式を連立させて、該非
線形要素の特性を入力して、解を求めることにより、該
系全体の振動解析を行なうことを特徴とする、非線形要
素を有する系についての振動解析方法。 - 【請求項2】 右辺又は左辺の一方に、線形要素がくる
とともに、右辺又は左辺の他方に、該非線形要素がくる
ように、該非線形要素の特性を入力して、上記の各分系
についての運動方程式を連立させて、解を求めることに
より、該系全体の振動解析を行なうことを特徴とする、
請求項1記載の非線形要素を有する系についての振動解
析方法。 - 【請求項3】 各分系について、運動方程式をたてる際
に、求める振動の次数に応じて演算される誤差情報を加
味することを特徴とする、請求項1記載の非線形要素を
有する系についての振動解析方法。 - 【請求項4】 各分系について、運動方程式を解く際に
求める振動の次数に応じて数値積分のサイズを選択しな
がら解を求めることを特徴とする、請求項2又は請求項
3に記載の非線形要素を有する系についての振動解析方
法。 - 【請求項5】 非線形要素としてのクラッチディスクを
有する車両用駆動系についての捩り振動解析を行なうに
際して、 クラッチを境界にして、該駆動系を、該クラッチから該
駆動系の末端要素に至る第1の分系と、エンジンから該
クラッチに至る第2の分系とに分割してから、 該第1の分系については、該駆動系の固有振動のモーダ
ル座標とGuyanの静縮約で求めた境界自由度とで表
した運動方程式をたてるとともに、 該第2の分系については、該エンジン,該クラッチディ
スク,外力としてのトルク変動を考慮した運動方程式を
たてたのち、 上記の第1の分系及び第2の分系についての運動方程式
を連立させて、該クラッチディスクの特性を入力して、
解を求めることにより、該駆動系全体についての捩り振
動解析を行なうことを特徴とする、車両用駆動系につい
ての捩り振動解析方法。 - 【請求項6】 右辺又は左辺の一方に、線形要素がくる
とともに、右辺又は左辺の他方に、該クラッチディスク
のトルク情報がくるように、上記の第1の分系及び第2
の分系についての運動方程式を連立させて、該クラッチ
ディスクの特性を入力して、解を求めることにより、該
駆動系全体についての捩り振動解析を行なうことを特徴
とする、請求項5記載の車両用駆動系についての捩り振
動解析方法。 - 【請求項7】 該第1の分系について、 【数1】 で示される誤差情報〔Kr〕を、該第1の分系内部の剛
性マトリックスと置換して、拘束モーダル手法にモード
補償を組み合わせた運動方程式をたてることを特徴とす
る、請求項5記載の車両用駆動系についての捩り振動解
析方法。 - 【請求項8】 車両用駆動系に設けられる非線形要素と
しての多段クラッチディスクについての低速・軽負荷時
及び高速・高負荷時の捩り角・トルク特性を求めるに際
して、 共振回転数が実用車速域以下となるように、該捩り角・
トルク特性における該低速・軽負荷時領域を規定するバ
ネ定数を決定するとともに、部分構造合成法を用いた捩
り振動解析法、即ち、クラッチを境界にして、該駆動系
を、該クラッチから該駆動系の末端要素に至る第1の分
系と、エンジンから該クラッチに至る第2の分系とに分
割してから、該第1の分系については、該駆動系の固有
振動のモーダル座標とGuyanの静縮約で求めた境界
自由度とで表した運動方程式をたてるとともに、該第2
の分系については、該エンジン,該多段クラッチディス
ク,外力としてのトルク変動を考慮した運動方程式をた
てたのち、上記の第1の分系及び第2の分系についての
運動方程式を連立させて、該多段クラッチディスクの特
性を入力して、解を求めることにより、該駆動系全体に
ついての捩り振動解析を行なう捩り振動解析法を用い
て、該低速・軽負荷時領域の上限捩り角を決定し、 更に、共振回転数が実用車速域以下となるように、該捩
り角・トルク特性における該高速・高負荷時領域を規定
するバネ定数を決定するとともに、上記の部分構造合成
法を用いた捩り振動解析法を用いて、該高速・高負荷時
領域の上限捩り角を決定することを特徴とする、多段ク
ラッチディスクについての捩り角・トルク特性決定方
法。 - 【請求項9】 車両用駆動系に設けられる非線形要素と
しての多段クラッチディスクについての低速・軽負荷時
及び高速・高負荷時の捩り角・トルク特性を求めるに際
して、 共振回転数が実用車速域以下となるように、該捩り角・
トルク特性における該低速・軽負荷時領域を規定するバ
ネ定数を決定するとともに、部分構造合成法を用いた第
1の捩り振動解析法、即ち、クラッチを境界にして、該
駆動系を、該クラッチから該駆動系の末端要素に至る第
1の分系と、エンジンから該クラッチに至る第2の分系
とに分割してから、該第1の分系については、該駆動系
の固有振動のモーダル座標とGuyanの静縮約で求め
た境界自由度とで表した運動方程式をたてるとともに、
該第2の分系については、該エンジン,該多段クラッチ
ディスク,外力としてのトルク変動を考慮した運動方程
式をたてたのち、上記の第1の分系及び第2の分系につ
いての運動方程式を連立させて、該多段クラッチディス
クの特性を入力して、解を求めることにより、該駆動系
全体についての捩り振動解析を行なう第1の捩り振動解
析法を用いて、該低速・軽負荷時領域の上限捩り角を決
定し、 更に、共振回転数が実用車速域以下となるように、該捩
り角・トルク特性における該高速・高負荷時領域を規定
するバネ定数を決定するとともに、部分構造合成法を用
いた第2の捩り振動解析法、即ち、該クラッチを境界に
して、該駆動系を、該クラッチから該駆動系の末端要素
に至る第1の分系と、エンジンから該クラッチに至る第
2の分系とに分割してから、該第1の分系については、
該駆動系の固有振動のモーダル座標とGuyanの静縮
約で求めた境界自由度とで表した運動方程式を、 【数2】 で示される誤差情報〔Kr〕を、該第1の分系内部の剛
性マトリックスと置換して、拘束モーダル手法にモード
補償を組み合わせてたてるとともに、該第2の分系につ
いては、該エンジン,該多段クラッチディスク,外力と
してのトルク変動を考慮した運動方程式をたてたのち、
上記の第1の分系及び第2の分系についての運動方程式
を連立させて、該多段クラッチディスクの特性を入力し
て、解を求めることにより、該駆動系全体についての捩
り振動解析を行なう第2の捩り振動解析法を用いて、該
高速・高負荷時領域の上限捩り角を決定することを特徴
とする、多段クラッチディスクについての捩り角・トル
ク特性決定方法。 - 【請求項10】 車両用駆動系に設けられる多段クラッ
チディスクにおいて、その捩り角・トルク特性における
高速・高負荷時領域の上限捩り角が、高速・高負荷時の
エンジン平均軸トルクの1.7倍近傍に対応する値に設
定されるとともに、該捩り角・トルク特性における該高
速・高負荷時領域の下限捩り角が、該高速・高負荷時の
エンジン平均軸トルクの0.5倍近傍に対応する値に設
定されていることを特徴とする、多段クラッチディス
ク。 - 【請求項11】 車両用駆動系に設けられる多段クラッ
チディスクにおいて、その捩り角・トルク特性における
高速・高負荷時領域の上限捩り角が、高速・高負荷時の
エンジン平均軸トルクの1.7倍近傍に対応する値に設
定され、該捩り角・トルク特性における該高速・高負荷
時領域の下限捩り角及び低速・軽負荷時領域の上限捩り
角が、それぞれ該高速・高負荷時のエンジン平均軸トル
クの0.5倍近傍に対応する値に設定され、且つ、該捩
り角・トルク特性における該低速・軽負荷時領域の下限
捩り角が、該高速・高負荷時のエンジン平均軸トルクの
0.3倍近傍に対応する値に設定されていることを特徴
とする、多段クラッチディスク。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18041795A JP3358398B2 (ja) | 1995-07-17 | 1995-07-17 | 車両用駆動系についての捩り振動解析方法及び多段クラッチディスクについての捩り角・トルク特性決定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18041795A JP3358398B2 (ja) | 1995-07-17 | 1995-07-17 | 車両用駆動系についての捩り振動解析方法及び多段クラッチディスクについての捩り角・トルク特性決定方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0933336A true JPH0933336A (ja) | 1997-02-07 |
JP3358398B2 JP3358398B2 (ja) | 2002-12-16 |
Family
ID=16082901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18041795A Expired - Fee Related JP3358398B2 (ja) | 1995-07-17 | 1995-07-17 | 車両用駆動系についての捩り振動解析方法及び多段クラッチディスクについての捩り角・トルク特性決定方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3358398B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005113934A (ja) * | 2003-10-02 | 2005-04-28 | Honda Motor Co Ltd | ねじり振動解析方法及びそのプログラム |
JP2015007537A (ja) * | 2013-06-24 | 2015-01-15 | 住友ゴム工業株式会社 | 高分子材料のエネルギーロスの計算方法 |
-
1995
- 1995-07-17 JP JP18041795A patent/JP3358398B2/ja not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005113934A (ja) * | 2003-10-02 | 2005-04-28 | Honda Motor Co Ltd | ねじり振動解析方法及びそのプログラム |
JP4520718B2 (ja) * | 2003-10-02 | 2010-08-11 | 本田技研工業株式会社 | ねじり振動解析方法及びそのプログラム |
JP2015007537A (ja) * | 2013-06-24 | 2015-01-15 | 住友ゴム工業株式会社 | 高分子材料のエネルギーロスの計算方法 |
Also Published As
Publication number | Publication date |
---|---|
JP3358398B2 (ja) | 2002-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Crowther et al. | Torsional finite elements and nonlinear numerical modelling in vehicle powertrain dynamics | |
Singh et al. | Analysis of automotive neutral grear rattle | |
Wang et al. | Gear rattle modelling and analysis for automotive manual transmissions | |
Centea et al. | The influence of the interface coefficient of friction upon the propensity to judder in automotive clutches | |
Couderc et al. | Vehicle driveline dynamic behaviour: experimentation and simulation | |
Gomez et al. | Torsional vibrations in heavy-truck powertrains with flywheel attached centrifugal pendulum vibration absorbers | |
EP1097834A2 (en) | Vehicle drive train torsional vibration control apparatus | |
CN110502763B (zh) | 用于降低传动系扭振的匹配设计方法 | |
Li et al. | Transmission torque converter arc spring damper dynamic characteristics for driveline torsional vibration evaluation | |
Wei et al. | Modeling and analysis of friction clutches with three stages stiffness and damping for reducing gear rattles of unloaded gears at transmission | |
Chen et al. | Research on damping performance of dual mass flywheel based on vehicle transmission system modeling and multi-condition simulation | |
JPH0933336A (ja) | 非線形要素を有する系についての振動解析方法及び車両用駆動系についての捩り振動解析方法並びに多段クラッチディスクについての捩り角・トルク特性決定方法並びに多段クラッチディスク | |
Liu et al. | Stability investigation of velocity-modulated gear system using a new computational algorithm | |
Rabeih | Torsional vibration analysis of automotive drivelines | |
Klarin et al. | Numerical investigation in a gear drive of an engine balancing unit with respect to noise, friction and durability | |
JP4520718B2 (ja) | ねじり振動解析方法及びそのプログラム | |
KR101840400B1 (ko) | 스로틀 완전 개방 조건 하 수동변속기 내 다단계 클러치 댐퍼를 갖는 회전체 시스템에서 야기되는 기어래틀 현상 분석 방법 | |
Liang et al. | Optimization on nonlinear dynamics of gear rattle in automotive transmission system | |
Bellomo et al. | Innovative vehicle powertrain systems engineering: beating the noisy offenders in vehicle transmissions | |
KR101861122B1 (ko) | 다단계 클러치 댐퍼 체결조건 하, 쓰로틀 완전개방 및 쓰로틀 폐쇄/관성 운전 조건하에서의 회전체 시스템 내 야기되는 진동충격 분석방법 | |
Delprete et al. | Numerical analysis of gear rattle | |
Tsangarides et al. | Interactive computer simulation of drivetrain dynamics | |
Hage et al. | Improving low frequency torsional vibrations NVH performance through analysis and test | |
Yoon et al. | Analysis of vibro-impacts in a torsional system under both wide open throttle and coast conditions with focus on the multi-staged clutch damper | |
Yang et al. | Quantifying the effect of initialization errors for enabling accurate online drivetrain simulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020910 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081011 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091011 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |