JPH09173792A - Treatment of fermented liquid - Google Patents
Treatment of fermented liquidInfo
- Publication number
- JPH09173792A JPH09173792A JP8279284A JP27928496A JPH09173792A JP H09173792 A JPH09173792 A JP H09173792A JP 8279284 A JP8279284 A JP 8279284A JP 27928496 A JP27928496 A JP 27928496A JP H09173792 A JPH09173792 A JP H09173792A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- treatment
- fermentation broth
- heat treatment
- permeation rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、膜閉塞物質を前処理
し、膜除菌時の透過速度を著しく向上させ、処理時間の
短縮、設備を極小化する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pretreating a membrane-occluding substance to remarkably improve the permeation rate at the time of sterilizing a membrane, shortening the treatment time, and minimizing the equipment.
【0002】[0002]
【従来の技術】近年、遺伝子組変え微生物による発酵生
産技術が進歩しており、遺伝子操作の容易なエシャリヒ
ア・コリ(Escherichia coli)(以下、E. coliと略
す。)がこの目的のためにしばしば利用されている。発
酵終了時、目的生産物が菌体外にある場合は殺菌後、膜
分離または遠心分離による除菌を行ない、得られた菌体
除去液を次の処理工程に供するのが通常である。また、
目的生産物が菌体内に存在する場合、凍結、ホモジナイ
ザー、ミル等を用いて菌体を破砕してから膜分離または
遠心分離による菌体、菌体破砕物の除去を実施する。菌
体分離に用いる膜としては精密濾過膜(以下、MFと略
す。)、限外濾過膜(以下、UFと略す。)等が一般的
である。膜分離の方が完全に菌体を除去でき、遠心分離
に比べて清澄な除菌液を取得できることから、ブレビバ
クテリウム(Brevibacterium)属またはコリネバクテリ
ウム(Corynebacterium)属に属する微生物を培養して
得られた発酵液の菌体分離に膜が使用されている。しか
しながら、E. coliを培養して得られた発酵液(以下、
E. coli発酵液と略す。)を通常の方法で膜濾過すると
菌体の破砕の有無によらず膜透過速度が非常に低くなっ
てしまい、菌体分離に膜を使用することが実用的でない
ことが判明した。2. Description of the Related Art In recent years, fermentative production technology using genetically modified microorganisms has advanced, and Escherichia coli (hereinafter abbreviated as E. coli), which is easy to genetically manipulate, is often used for this purpose. It's being used. At the end of the fermentation, if the desired product is outside the cells, it is usually sterilized and then sterilized by membrane separation or centrifugation, and the obtained cell-free solution is subjected to the next treatment step. Also,
When the desired product is present in the cells, the cells are disrupted by freezing, using a homogenizer, a mill or the like, and then the cells or the disrupted cells are removed by membrane separation or centrifugation. A microfiltration membrane (hereinafter abbreviated as MF), an ultrafiltration membrane (hereinafter abbreviated as UF), and the like are generally used as the membrane used for cell separation. Membrane separation can completely remove the cells and a clearer sterilized liquid can be obtained compared to centrifugation. Therefore, culturing a microorganism belonging to the genus Brevibacterium or the genus Corynebacterium A membrane is used to separate the cells of the obtained fermentation broth. However, a fermentation broth obtained by culturing E. coli (hereinafter,
Abbreviated as E. coli fermentation broth. It was found that it is not practical to use a membrane for cell separation, because the membrane permeation rate becomes extremely low regardless of the presence or absence of cell crushing when (2) is subjected to membrane filtration by an ordinary method.
【0003】一方、発酵液の膜透過速度の向上法、膜濾
過の際の発酵液の前処理法については幾つかの方法が知
られている。例えば、日本特許公開公報特開昭57-91196
号には、イノシンまたはグアノシン発酵液をpH5.5〜9.0
で90〜110℃に加熱処理することにより、限外濾過膜で
菌体および高分子物質を分離する際の膜透過速度が向上
することが記載されている。また、日本特許公開公報特
開昭60-78588号には、アミノ酸発酵液を50〜100℃で加
熱処理することにより、限外濾過膜透過速度が向上する
ことが記載されている。また、日本特許公開公報特開昭
59-14795号には、ケインモラセスを発酵原料とするアミ
ノ酸発酵液をpH2〜5に調整することにより、限外濾過処
理操作における不純物の阻止率を向上できることが記載
されている。On the other hand, several methods are known for improving the permeation rate of the fermentation broth and pretreatment of the fermentation broth during membrane filtration. For example, Japanese Patent Laid-Open Publication No. Sho 57-91196
No. 5, inosine or guanosine fermentation broth at pH 5.5-9.0.
It is described that the heat treatment at 90 to 110 ° C. at 90 ° C. improves the membrane permeation rate when separating bacterial cells and polymer substances with an ultrafiltration membrane. In addition, Japanese Patent Laid-Open Publication No. 60-78588 describes that heat treatment of an amino acid fermentation liquid at 50 to 100 ° C. improves the ultrafiltration membrane permeation rate. In addition, Japanese Patent Publication
59-14795 describes that the rejection rate of impurities in the ultrafiltration treatment operation can be improved by adjusting the pH of the amino acid fermentation liquor using cane molasses as a fermentation raw material to pH 2-5.
【0004】しかしながら、すでに述べたようにE. col
i発酵液から膜を用いて菌体を分離する際には、その膜
透過速度が非常に小さくなってしまい、実用的ではな
い。また、上記の特許公報で開示された方法を適用して
も、膜濾過時の透過速度向上には、有効ではなく、依
然、低透過速度であるため、膜濾過設備が過剰になるこ
とが問題となっている。However, as already mentioned, E. col
i When separating bacterial cells from the fermentation broth using a membrane, the membrane permeation rate becomes extremely low, which is not practical. Further, even if the method disclosed in the above patent publication is applied, it is not effective in improving the permeation rate during membrane filtration, and since the permeation rate is still low, there is a problem that the membrane filtration equipment becomes excessive. Has become.
【0005】[0005]
【発明が解決しようとする課題】従って、エシェリヒア
属に属する微生物を培養して得ることができる発酵液を
膜濾過する際における実用的な膜透過速度の向上法の開
発が望まれている。Therefore, it is desired to develop a practical method for improving the membrane permeation rate in membrane filtration of a fermentation broth obtained by culturing a microorganism belonging to the genus Escherichia.
【0006】[0006]
【課題を解決するための手段】本発明者らは、膜濾過を
実施する前の前処理として、エシェリヒア属に属する微
生物を培養して得ることができる発酵液を特定のpH範
囲に調整後、高温で加熱すると、発酵液中の菌体自身ま
たはその菌体に由来する不純物が凝集または分解し、膜
濾過を実施する際のケーキ抵抗の低減または濃度分極形
成防止につながることを見いだし、膜除菌時の透過速度
向上を達成した。すなわち、本発明は、エシェリヒア属
に属する微生物を培養して得ることができる発酵液を膜
濾過し、菌体を分離する方法において、発酵液をpH1〜
4.5、110〜200℃で加熱処理後、膜濾過することを特徴
とする、発酵液の処理方法である。Means for Solving the Problems As a pretreatment before carrying out membrane filtration, the present inventors have prepared a fermentation solution obtained by culturing a microorganism belonging to the genus Escherichia after adjusting it to a specific pH range, It was found that when heated at a high temperature, the cells themselves or impurities derived from the cells in the fermentation broth aggregate or decompose, leading to a reduction in cake resistance during membrane filtration or prevention of concentration polarization formation. Achieved an improvement in the permeation rate during bacteria. That is, the present invention is a method for membrane filtration of a fermentation broth obtainable by culturing a microorganism belonging to the genus Escherichia, in a method for separating bacterial cells, the fermentation broth having a pH of 1 to
It is a method for treating a fermented liquor, characterized by performing membrane filtration after heat treatment at 4.5 to 110 to 200 ° C.
【0007】[0007]
【発明の実施の形態】本発明に用いられるエシェリヒア
属に属する微生物は、野生株または変異株のいずれでも
よいし、細胞融合もしくは遺伝子操作などの遺伝学的手
法により誘導される組み換え株等も用いることができ
る。これらの微生物の目的生産物は、本発明に用いられ
る膜を透過し、低pHでの加熱でも分解しない物質であれ
ば良い。目的産物としては、例えば、リジン、グルタミ
ン酸、イソロイシン、バリン、ロイシン、フェニルアラ
ニン等のアミノ酸、イノシン、グアノシン等の核酸、乳
酸、リンゴ酸等の有機酸、ビタミン等の物質を挙げるこ
とができる。BEST MODE FOR CARRYING OUT THE INVENTION The microorganism belonging to the genus Escherichia used in the present invention may be either a wild strain or a mutant strain, and a recombinant strain derived by a genetic technique such as cell fusion or genetic manipulation is also used. be able to. The target product of these microorganisms may be any substance that permeates the membrane used in the present invention and does not decompose even when heated at low pH. Examples of the desired product include amino acids such as lysine, glutamic acid, isoleucine, valine, leucine, and phenylalanine, nucleic acids such as inosine and guanosine, organic acids such as lactic acid and malic acid, and substances such as vitamins.
【0008】本発明に用いられる発酵液は、上記微生物
を適当な培地で培養増殖せしめることにより、得ること
ができる。そのような培地には格別の制限はなく、通常
の炭素源、窒素源、無機イオン、更に必要に応じ有機栄
養源を含む通常の培地でよい。培養は、特許国際出願公
開WO95/16042、欧州特許出願公開685,555号、日本特許
公開公報特開平08-047397号等に記載の方法で、上記微
生物の生育に適した条件下、実施すればよい。The fermentation broth used in the present invention can be obtained by culturing and growing the above-mentioned microorganism in an appropriate medium. There is no particular limitation on such a medium, and an ordinary medium containing an ordinary carbon source, a nitrogen source, an inorganic ion, and optionally an organic nutrient source may be used. The culturing may be carried out by a method described in WO 95/16042, EP Patent Application Publication 685,555, Japanese Patent Publication JP-A-08-047397, etc., under conditions suitable for the growth of the above-mentioned microorganism.
【0009】炭素源としては、上記微生物が利用可能で
あればいずれも使用でき、具体的には、グルコース、フ
ルクトース、シュークロース、マルトース、トレハロー
ス、アミロース等の糖類、フマール酸、クエン酸、酢
酸、プロピオン酸等の有機酸類及びこれらの塩類などを
使用することができる。As the carbon source, any of the above microorganisms can be used as long as it is available. Specifically, sugars such as glucose, fructose, sucrose, maltose, trehalose, amylose, fumaric acid, citric acid, acetic acid, Organic acids such as propionic acid and salts thereof can be used.
【0010】窒素源としては上記微生物の利用可能であ
ればいずれも使用でき、具体的には、硫酸アンモニウ
ム、塩化アンモニウム等の無機塩のアンモニウム塩、フ
マル酸アンモニウム、クエン酸アンモニウム等の有機酸
のアンモニウム塩、硝酸ナトリウム、硝酸カリウム等の
硝酸塩、ペプトン、酵母エキス、肉エキス、コーンステ
ィープリカー等の有機窒素化合物、あるいはこれらの混
合物を使用することができる。As the nitrogen source, any of the above microorganisms can be used as long as it can be used. Specifically, ammonium salts of inorganic salts such as ammonium sulfate and ammonium chloride, ammonium salts of organic acids such as ammonium fumarate and ammonium citrate. It is possible to use salts, nitrates such as sodium nitrate and potassium nitrate, peptone, yeast extract, meat extract, organic nitrogen compounds such as corn steep liquor, or a mixture thereof.
【0011】他に無機塩、微量金属塩、ビタミン類等、
通常の培養に用いられる栄養源を適宜、混合して用いる
ことができる。In addition, inorganic salts, trace metal salts, vitamins, etc.
Nutrient sources used for ordinary cultivation can be appropriately mixed and used.
【0012】エシェリヒア属に属する微生物を培養して
得ることができる発酵液の加熱処理は、pH1〜4.5、好ま
しくは、pH2〜4のpH範囲で、110〜200℃、好ましくは、
110〜150℃、特に好ましくは110〜130℃で行われる。加
熱時間は、特に制限はないが、目的生産物が変成しない
程度が好ましく、通常10分以内で良い。発酵液のpH調整
には、塩酸、硫酸、燐酸等の鉱酸を用いることができ
る。また、発酵液の加熱処理の前または後に高分子凝集
剤を添加することにより、効果的に膜濾速を向上するこ
とができる。高分子凝集剤としては、ポリエチレンイミ
ン、ポリアクリル酸ソーダ等を挙げることができる。高
分子凝集剤の添加量は、発酵液に対し0.0005〜0.5重量%
が適当であり、0.001〜0.05重量%がより好ましい。The heat treatment of the fermentation broth obtained by culturing the microorganism belonging to the genus Escherichia is pH 1 to 4.5, preferably pH 2 to 4 at 110 to 200 ° C., preferably
It is carried out at 110 to 150 ° C, particularly preferably 110 to 130 ° C. The heating time is not particularly limited, but is preferably such that the target product is not denatured, and usually 10 minutes or less. Mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid can be used to adjust the pH of the fermentation broth. In addition, the membrane filtration speed can be effectively improved by adding the polymer flocculant before or after the heat treatment of the fermentation liquid. Examples of the polymer flocculant include polyethyleneimine and sodium polyacrylate. The amount of polymer flocculant added is 0.0005 to 0.5% by weight relative to the fermentation broth.
Is suitable, and 0.001 to 0.05% by weight is more preferable.
【0013】次に、このように加熱処理された発酵液
が、膜濾過される。本発明には、MF、UFのいずれの
膜も使用することが可能である。膜装置としては平膜、
ホローファイバー、管状膜、スパイラル等のいずれの形
式でも用いることができる。また、膜材質はポリスルフ
ォン、ポリオレフィン、ポリビニリデンジフルオライ
ド、テフロン等の有機膜でも良いし、セラミック等の無
機材質の膜でも良い。UFの場合には、分画分子量1,00
0〜500,000程度の膜が適当であり、MFの場合には細孔
径0.05〜1μm程度の膜が適当である。Next, the fermented liquor thus heat-treated is subjected to membrane filtration. Both MF and UF membranes can be used in the present invention. As a membrane device, a flat membrane,
It can be used in any form such as hollow fiber, tubular membrane and spiral. The film material may be an organic film such as polysulfone, polyolefin, polyvinylidene difluoride, or Teflon, or an inorganic film such as ceramic. In the case of UF, molecular weight cutoff of 1,00
A membrane with a pore size of 0 to 500,000 is suitable, and in the case of MF, a membrane with a pore size of 0.05 to 1 μm is suitable.
【0014】膜濾過に際して、加熱処理された発酵液の
pHを特に調整する必要はないが、濾過に使用する膜の材
質にあわせて、適切なpHに調整しても良い。また、発酵
液は膜処理の際には特に加熱する必要はないが、より高
い透過流束を得る目的や腐敗防止のため50〜60℃程度に
加熱・保温して膜濾過に用いることもできる。During the membrane filtration, the heat-treated fermentation liquor
It is not necessary to adjust the pH, but it may be adjusted to an appropriate pH according to the material of the membrane used for filtration. Further, the fermentation liquid does not need to be particularly heated during the membrane treatment, but it can be used for membrane filtration by heating and maintaining the temperature at about 50 to 60 ° C. for the purpose of obtaining a higher permeation flux and preventing spoilage. .
【0015】このようにして、エシェリヒア属に属する
微生物を培養して得ることができる発酵液から菌体が分
離され、目的生産物を含有する清澄な透過液を得ること
ができる。In this way, the cells are separated from the fermentation broth obtained by culturing the microorganism belonging to the genus Escherichia, and a clear permeate containing the desired product can be obtained.
【0016】[0016]
【実施例】以下に本発明の方法を実施例に基づいて詳細
に説明する。EXAMPLES The method of the present invention will be described in detail below with reference to examples.
【0017】実施例1 特許国際出願公開WO95/16042の実施例に記載の方法に従
い、E. coli B-399株にフ゜ラスミト゛RSFD80を導入したB-399/
RSFD80株を用い、L−リジンを生産した。培養は以下の
生産培地を用い、培養時間48時間、温度37゜Cの条件下、
撹拌114〜116rpmで行った。 (L−リジン生産培地の調製法) A:(NH4)2SO4 16g/L KH2PO4 1g/L MgSO4・7H2O 1g/L FeSO4・7H2O 0.01g/L MnSO4・5H20 0.01g/L Yeast Ext.(Difco) 2g/L L−メチオニン 0.5g/L KOHでpH7.0に調整し、115゜Cで10分オートクレーブ(16/20容) B:20% Glucose(115゜Cで10分オートクレーブ)(4/20容) C:日本薬局方CaCO3(180゜Cで2日間乾熱滅菌) (30g/L) A:Bを4:1で混合し、1Lに対してCを30g加えて溶
解し、抗生物質(ストレプトマイシン 100μg/ml、カナ
マイシン5μg/ml)を加える。Example 1 According to the method described in the example of WO95 / 16042, the B-399 / B-399 / E. Coli B-399 strain into which plasmid RSFD80 was introduced.
L-lysine was produced using RSFD80 strain. Culture using the following production medium, culture time 48 hours, temperature of 37 ° C.,
Agitation was performed at 114-116 rpm. (L- lysine production medium preparation) A: (NH 4) 2 SO 4 16g / L KH 2 PO 4 1g / L MgSO 4 · 7H 2 O 1g / L FeSO 4 · 7H 2 O 0.01g / L MnSO4 · 5H20 0.01g / L Yeast Ext. (Difco) 2g / L L-methionine 0.5g / L Adjusted to pH 7.0 with KOH, autoclave (16/20 volume) for 10 minutes at 115 ° C B: 20% Glucose (115 10 ° C autoclave) (4/20 volume) C: Japanese Pharmacopoeia CaCO 3 (180 ° C for 2 days dry heat sterilization) (30g / L) A: B mixed at 4: 1 to 1L Then, 30 g of C is added and dissolved, and an antibiotic (streptomycin 100 μg / ml, kanamycin 5 μg / ml) is added.
【0018】培養終了時のL−リジンの生産量は9.2g/L
(L−リジン塩酸塩換算)であった。このリジン発酵液
(pH6.5)300mlずつに98%硫酸を添加し、それぞれpH4.
0、2.0に調整後、120℃で加熱処理した。加熱にはオー
トクレーブを使用し、120℃に到達後10分間その温度で
保持した。また、コントロールとして同じリジン発酵液
300mlを加熱処理することなく膜濾過実験に使用した。The amount of L-lysine produced at the end of the culture was 9.2 g / L.
(Calculated as L-lysine hydrochloride). 98% sulfuric acid was added to 300 ml of this lysine fermentation liquid (pH 6.5), and each pH was adjusted to 4.
After adjusting to 0 and 2.0, heat treatment was performed at 120 ° C. An autoclave was used for heating, and the temperature was maintained for 10 minutes after reaching 120 ° C. Also, the same lysine fermentation liquid as a control
300 ml was used for membrane filtration experiments without heat treatment.
【0019】膜濾過実験は、米国Millipore社製Minitan
moduleに同社製PTTK膜プレート2枚(UF膜、分画分
子量30,000)を設置して、加熱処理後の発酵液を50℃に
保持したまま1000ml/分の速度でUF除菌設備に給液し
平均圧力0.9kg-f/cm2で実施した。透過時間30分経過ま
での透過速度の経時変化として図1に示す結果が得られ
た。この図より明らかなように本発明の方法に従い、pH
2または4で120℃加熱することにより透過速度を無処理
の場合に比べ3倍近くまで向上することができた。The membrane filtration experiment was carried out by Minitan manufactured by Millipore, Inc.
Two PTTK membrane plates manufactured by the same company (UF membrane, molecular weight cut off 30,000) are installed in the module, and the fermented solution after heat treatment is supplied to the UF sterilization facility at a rate of 1000 ml / min while being kept at 50 ° C. It was carried out at an average pressure of 0.9 kg-f / cm 2 . The results shown in FIG. 1 were obtained as the change with time of the permeation rate until the permeation time of 30 minutes. As is clear from this figure, according to the method of the present invention, pH
By heating at 120 ° C. in 2 or 4, the permeation rate could be improved to nearly 3 times that in the case of no treatment.
【0020】比較例1 実施例1で得られたE. coli発酵液を実施例1と同様の
方法でpH4.0、70℃とpH5.5、90℃とpH6.5、110℃の3種
の条件下、それぞれ10分間加熱処理した。実施例1と同
じ膜濾過装置、濾過条件で処理後の発酵液を膜濾過した
場合の透過速度の経時変化を図2に示す。この図より明
らかなようにpH4.0、70℃で加熱処理した場合や同じくp
H5.5、90℃またはpH6.5、110℃で加熱処理をした場合で
は、いずれも30分後の透過速度は約20L/m2・hour(kg
-f/cm2)であり、無処理の場合とほぼ同程度である。従
って、E. coli発酵液においては、従来の発酵液処理法
は、ほとんど膜透過速度の向上効果のないことがわか
る。Comparative Example 1 The E. coli fermentation broth obtained in Example 1 was treated in the same manner as in Example 1 with pH 4.0, 70 ° C. and pH 5.5, 90 ° C. and pH 6.5, 110 ° C. Heat treatment was performed for 10 minutes under each condition. FIG. 2 shows the change with time in the permeation rate when the fermented liquid after the treatment was subjected to membrane filtration under the same membrane filtration apparatus and filtration conditions as in Example 1. As is clear from this figure, when heat treatment was performed at pH 4.0 and 70 ° C,
In the case of heat treatment at H5.5, 90 ℃ or pH6.5, 110 ℃, the permeation rate after 30 minutes is about 20 L / m 2 · hour (kg
-f / cm 2 ), which is almost the same as in the case of no treatment. Therefore, in the E. coli fermented liquor, the conventional fermented liquor treatment method has almost no effect of improving the membrane permeation rate.
【0021】実施例2 エシェリヒア属に属し、β−2−チエニルアラニン耐性
を有し、L−ロイシンを生産する能力を持つ、特許公報
特公昭62-34397号に記載の菌株(FERM−P 527
4)に、公開特許公報特開平8−70879の実施例1
の方法に従って、N−メチル−N’−ニトロ−N−ニト
ロソグアニジンによる変異処理を施した後、4−アザロ
イシンに耐性を有する菌株を釣菌分離し、L−ロイシン
生産能力の向上した菌株を得た。Example 2 A strain (FERM-P 527) belonging to the genus Escherichia, having a resistance to β-2-thienylalanine, and having an ability to produce L-leucine (FERM-P 527).
4), Example 1 of Japanese Patent Application Laid-Open No. 8-70879.
According to the method of 1., after performing a mutation treatment with N-methyl-N'-nitro-N-nitrosoguanidine, a strain having resistance to 4-azaleucine is isolated, and a strain having an improved L-leucine-producing ability is obtained. It was
【0022】このようにして得られた菌株をグルコース
5g/dL、(NH4)2SO4 2.5g/dL、KH2PO40.2 g/dL、MgSO4・7H
2O 0.1g/dL、酵母エキス 0.05g/dL、サイアミン塩酸塩
1mg/L、FeSO4・7H2O 1mg/dL、MnSO4・4H2O 1mg/dL、炭酸
カルシウム 2.5g/dLの組成を持つ、pH 7.0の水溶液培地
を用い、31℃で72時間攪拌培養した。培養終了時のL−
ロイシンの生産量は3.1g/Lであった。The strain thus obtained was treated with glucose.
5 g / dL, (NH 4 ) 2 SO 4 2.5 g / dL, KH 2 PO 4 0.2 g / dL, MgSO 4・ 7H
2 O 0.1g / dL, yeast extract 0.05g / dL, thiamin hydrochloride
1mg / L, FeSO 4 · 7H 2 O 1mg / dL, MnSO 4 · 4H 2 O 1mg / dL, with a composition of calcium carbonate 2.5 g / dL, with an aqueous solution of medium pH 7.0, 72 hours stirring culture at 31 ° C. did. L- at the end of culture
The amount of leucine produced was 3.1 g / L.
【0023】培養終了後、硫酸を用いて発酵液のpHを4.
0に調整しオートクレーブにより120℃で10分間加熱処理
を行った。比較のため同じpH調整後の発酵液を60℃で30
分間加熱処理した液についても膜透過実験を実施した。After completion of the culture, the pH of the fermentation broth was adjusted to 4. with sulfuric acid.
The temperature was adjusted to 0 and heat treatment was performed at 120 ° C for 10 minutes by an autoclave. For comparison, the fermentation broth after the same pH adjustment was performed at 60 ° C for 30
A membrane permeation experiment was also performed on the liquid that had been heat-treated for a minute.
【0024】膜透過実験はMinitan moduleに同Millipor
e社製VVLPプレート2枚(MF膜、細孔径 0.1mm)を設置
して実施した。循環流量 約700ml/分で膜装置に給液し
平均圧力 0.9kg/cm2で操作した。透過液は原液に戻しな
がら運転し、透過時間80分までの透過流束の経時変化
として図3に示す結果が得られた。この図より明らかな
ように、L−ロイシン発酵液の場合にも、本発明の方法
である120℃の加熱処理により、従来の加熱処理に比
べ、膜透過流束を顕著に向上させることができた。The membrane permeation experiment was carried out by the same Millipor in the Minitan module.
Two VVLP plates (MF membrane, pore size 0.1 mm) manufactured by e company were installed and implemented. Liquid was supplied to the membrane device at a circulating flow rate of about 700 ml / min and operated at an average pressure of 0.9 kg / cm 2 . The permeated liquid was operated while returning it to the stock solution, and the results shown in FIG. 3 were obtained as the change with time of the permeation flux up to the permeation time of 80 minutes. As is clear from this figure, even in the case of the L-leucine fermentation broth, the membrane permeation flux can be significantly improved by the heat treatment at 120 ° C., which is the method of the present invention, as compared with the conventional heat treatment. It was
【0025】実施例3 欧州特許公開488424号もしくは日本特許公開公報特開平
05-076352号の実施例に記載されているエシェリヒア・
コリAJ12604株をL−フェニルアラニン生産用培地(グ
ルコース20g、リン酸水素2ナトリウム29.4g、リン酸2
水素カリウム6g、塩化ナトリウム1g、塩化アンモニウム
2g、クエン酸ナトリウム10g、グルタミン酸ナトリウム
0.4g、硫酸マグネシウム7水和物3g、塩化カルシウム0.
23g、サイアミン塩酸塩2mgを水1Lに含む)を用いて、37
℃で24時間培養し、L−フェニルアラニンを生産した。
培養終了時のL−フェニルアラニンの蓄積量は3.7g/Lで
あった。Example 3 European Patent Publication No. 488424 or Japanese Patent Publication No.
Escherichia described in the example of 05-076352
E. coli AJ12604 strain was used as a medium for producing L-phenylalanine (glucose 20 g, disodium hydrogen phosphate 29.4 g, phosphoric acid 2
6g potassium hydrogen, 1g sodium chloride, ammonium chloride
2g, sodium citrate 10g, sodium glutamate
0.4 g, magnesium sulfate heptahydrate 3 g, calcium chloride 0.
23 g, thiamin hydrochloride 2 mg in 1 L of water)
After culturing at 24 ° C. for 24 hours, L-phenylalanine was produced.
The amount of L-phenylalanine accumulated at the end of the culture was 3.7 g / L.
【0026】このフェニルアラニン発酵液(pH6.5)150
0mlに98%硫酸を添加し、pH4.0に調整後、120℃で10分
間加熱処理した。加熱にはCS機を使用し、加熱器から
冷却器までの滞留時間が10分間になるよう処理した。ま
た、コントロールとして同じフェニルアラニン発酵液15
00mlに98%硫酸を添加し、pH4.0に調整後、60℃で30分
間の殺菌処理をしたのみで膜濾過実験に使用した。This phenylalanine fermentation liquid (pH 6.5) 150
98% sulfuric acid was added to 0 ml to adjust the pH to 4.0, and then the mixture was heated at 120 ° C. for 10 minutes. A CS machine was used for heating, and treatment was performed so that the residence time from the heater to the cooler was 10 minutes. Also, as a control, the same phenylalanine fermentation liquid 15
After 98% sulfuric acid was added to 00 ml to adjust the pH to 4.0, it was sterilized at 60 ° C. for 30 minutes and used for the membrane filtration experiment.
【0027】膜濾過実験は、東洋濾紙(株)製 MODEL UHP
-150を用い、東洋濾紙(製)PTFE膜T100A142C(孔径1.0μ
m)を使用して実施した。膜濾過実験は、120℃加熱処理
後の発酵液および120℃処理していない発酵液を60℃に
保持し、それぞれに凝集剤ポリアクリル酸ナトリウム
(商品名「パナカヤク」:日本化薬(株)製)を30ppm(v
/v)添加して濾過装置に圧力0.7kg-f/cm2で給液した。透
過時間に対する透過速度の経時変化として図4に示す結
果が得られた。この図より明らかなように本発明の方法
に従い、pH4.0で120℃加熱することにより、透過速度を
従来の加熱処理の場合に比べ20倍以上に向上することが
できた。The membrane filtration experiment was conducted by Toyo Roshi Kaisha, Ltd. MODEL UHP
-150, Toyo Roshi Kaisha (manufactured) PTFE membrane T100A142C (pore size 1.0μ
m) was used. In the membrane filtration experiment, the fermented broth after heat treatment at 120 ℃ and the fermented broth not treated at 120 ℃ were kept at 60 ℃, and coagulant sodium polyacrylate
(Product name “Panakayak”: manufactured by Nippon Kayaku Co., Ltd.) at 30 ppm (v
/ v) and added to the filtration device at a pressure of 0.7 kg-f / cm 2 . The results shown in FIG. 4 were obtained as the change with time of the permeation rate with respect to the permeation time. As is clear from this figure, according to the method of the present invention, by heating at pH 4.0 at 120 ° C., the permeation rate could be improved 20 times or more as compared with the case of the conventional heat treatment.
【0028】[0028]
【発明の効果】本文で明らかになったように、本発明の
方法を用いれば、本発明の処理をしない場合または従来
の方法で処理した場合に比べ、発酵液の膜透過流束を1.
5〜20倍程度と大幅に向上することができる。これによ
り、実用的な膜透過流速を得ることができ、過大な付帯
設備を要することなく容易に発酵液の膜透過流束を向上
することが可能となり、膜濾過設備の効率を高めること
ができる。EFFECTS OF THE INVENTION As is clear from the text, when the method of the present invention is used, the membrane permeation flux of the fermentation broth is 1.
It can be greatly improved by 5 to 20 times. As a result, it is possible to obtain a practical membrane permeation flow rate, and it is possible to easily improve the membrane permeation flux of the fermentation broth without requiring excessive auxiliary equipment, and it is possible to improve the efficiency of the membrane filtration equipment. .
【図1】 E. coliを培養して得られたリジン発酵液の
膜除菌時の透過速度の経時変化を表した図である。FIG. 1 is a view showing a change with time in permeation rate of a lysine fermentation broth obtained by culturing E. coli during membrane eradication.
【図2】 E. coliを培養して得られたリジン発酵液の
膜除菌時の透過速度の経時変化を表した図である。FIG. 2 is a view showing a change with time in permeation rate of a lysine fermentation broth obtained by culturing E. coli during membrane eradication.
【図3】 E. coliを培養して得られたロイシン発酵液
の膜除菌時の透過速度の経時変化を表した図である。FIG. 3 is a view showing a change with time in permeation rate of a leucine fermentation broth obtained by culturing E. coli during membrane eradication.
【図4】 E. coliを培養して得られたフェニルアラニ
ン発酵液の膜除菌時の透過速度の経時変化を表した図で
ある。FIG. 4 is a view showing a change with time in permeation rate of a phenylalanine fermentation broth obtained by culturing E. coli during membrane eradication.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:19) ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C12R 1:19)
Claims (2)
微生物を培養して得られる発酵液を膜濾過し、菌体を分
離する方法において、発酵液をpH1〜4.5、110
〜200℃で加熱処理後、膜濾過することを特徴とす
る、発酵液の処理方法。1. A method for separating bacterial cells by membrane filtration of a fermentation broth obtained by culturing a microorganism belonging to the genus Escherichia, wherein the fermentation broth has a pH of 1 to 4.5, 110.
A method for treating a fermented liquor, which comprises performing membrane filtration after heat treatment at ˜200 ° C.
密濾過膜であることを特徴とする請求項1に記載の発酵
液の処理方法。2. The method for treating a fermented liquor according to claim 1, wherein the membrane used for membrane filtration is an ultrafiltration membrane or a microfiltration membrane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8279284A JPH09173792A (en) | 1995-10-23 | 1996-10-22 | Treatment of fermented liquid |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-273814 | 1995-10-23 | ||
JP27381495 | 1995-10-23 | ||
JP8279284A JPH09173792A (en) | 1995-10-23 | 1996-10-22 | Treatment of fermented liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09173792A true JPH09173792A (en) | 1997-07-08 |
Family
ID=26550784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8279284A Pending JPH09173792A (en) | 1995-10-23 | 1996-10-22 | Treatment of fermented liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09173792A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009088049A1 (en) | 2008-01-10 | 2009-07-16 | Ajinomoto Co., Inc. | Method for production of desired substance by fermentation process |
WO2010084995A2 (en) | 2009-01-23 | 2010-07-29 | Ajinomoto Co.,Inc. | A method for producing an l-amino acid |
WO2011016301A1 (en) | 2009-08-03 | 2011-02-10 | 味の素株式会社 | Process for production of l-lysine using bacterium belonging to genus vibrio |
WO2011024555A1 (en) | 2009-08-28 | 2011-03-03 | 味の素株式会社 | Process for production of l-amino acid |
WO2011055710A1 (en) | 2009-11-06 | 2011-05-12 | 味の素株式会社 | Method for producing l-amino acid |
EP2345667A2 (en) | 2010-01-15 | 2011-07-20 | Ajinomoto Co., Inc. | A method for producing an L-amino acid using a bacterium of the enterobacteriaceae family |
WO2011096554A1 (en) | 2010-02-08 | 2011-08-11 | 味の素株式会社 | MANUFACTURING METHOD FOR MUTANT rpsA GENE AND L-AMINO ACID |
WO2012077739A1 (en) | 2010-12-10 | 2012-06-14 | 味の素株式会社 | Method for producing l-amino acid |
WO2012137689A1 (en) | 2011-04-01 | 2012-10-11 | 味の素株式会社 | Method for producing l-cysteine |
WO2012144472A1 (en) | 2011-04-18 | 2012-10-26 | 味の素株式会社 | Process for producing l-cysteine |
WO2013069634A1 (en) | 2011-11-11 | 2013-05-16 | 味の素株式会社 | Method for producing target substance by fermentation |
WO2014185430A1 (en) | 2013-05-13 | 2014-11-20 | 味の素株式会社 | Method for manufacturing l-amino acid |
JP2015517323A (en) * | 2012-05-23 | 2015-06-22 | ランザテク・ニュージーランド・リミテッド | Fermentation and simulated moving bed processes |
EP3165608A1 (en) | 2015-10-30 | 2017-05-10 | Ajinomoto Co., Inc. | Method for producing l-amino acid of glutamate family |
EP3385389A1 (en) | 2017-04-03 | 2018-10-10 | Ajinomoto Co., Inc. | Method for producing l-amino acid from fructose |
WO2019208676A1 (en) * | 2018-04-27 | 2019-10-31 | 株式会社カネカ | Method for producing coenzyme q10 |
WO2022092018A1 (en) | 2020-10-28 | 2022-05-05 | 味の素株式会社 | Method of producing l-amino acid |
WO2023013655A1 (en) | 2021-08-02 | 2023-02-09 | 味の素株式会社 | Method for improving flavor of food |
WO2023195475A1 (en) | 2022-04-04 | 2023-10-12 | 味の素株式会社 | Method for controlling parasitic plants |
EP4345166A2 (en) | 2022-09-30 | 2024-04-03 | Ajinomoto Co., Inc. | Method for producing l-amino acid |
-
1996
- 1996-10-22 JP JP8279284A patent/JPH09173792A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2749652A2 (en) | 2008-01-10 | 2014-07-02 | Ajinomoto Co., Inc. | A method for producing a target substance by fermentation |
WO2009088049A1 (en) | 2008-01-10 | 2009-07-16 | Ajinomoto Co., Inc. | Method for production of desired substance by fermentation process |
WO2010084995A2 (en) | 2009-01-23 | 2010-07-29 | Ajinomoto Co.,Inc. | A method for producing an l-amino acid |
WO2011016301A1 (en) | 2009-08-03 | 2011-02-10 | 味の素株式会社 | Process for production of l-lysine using bacterium belonging to genus vibrio |
WO2011024555A1 (en) | 2009-08-28 | 2011-03-03 | 味の素株式会社 | Process for production of l-amino acid |
WO2011055710A1 (en) | 2009-11-06 | 2011-05-12 | 味の素株式会社 | Method for producing l-amino acid |
EP2345667A2 (en) | 2010-01-15 | 2011-07-20 | Ajinomoto Co., Inc. | A method for producing an L-amino acid using a bacterium of the enterobacteriaceae family |
WO2011096554A1 (en) | 2010-02-08 | 2011-08-11 | 味の素株式会社 | MANUFACTURING METHOD FOR MUTANT rpsA GENE AND L-AMINO ACID |
WO2012077739A1 (en) | 2010-12-10 | 2012-06-14 | 味の素株式会社 | Method for producing l-amino acid |
WO2012137689A1 (en) | 2011-04-01 | 2012-10-11 | 味の素株式会社 | Method for producing l-cysteine |
WO2012144472A1 (en) | 2011-04-18 | 2012-10-26 | 味の素株式会社 | Process for producing l-cysteine |
WO2013069634A1 (en) | 2011-11-11 | 2013-05-16 | 味の素株式会社 | Method for producing target substance by fermentation |
JP2015517323A (en) * | 2012-05-23 | 2015-06-22 | ランザテク・ニュージーランド・リミテッド | Fermentation and simulated moving bed processes |
WO2014185430A1 (en) | 2013-05-13 | 2014-11-20 | 味の素株式会社 | Method for manufacturing l-amino acid |
EP3165608A1 (en) | 2015-10-30 | 2017-05-10 | Ajinomoto Co., Inc. | Method for producing l-amino acid of glutamate family |
EP3385389A1 (en) | 2017-04-03 | 2018-10-10 | Ajinomoto Co., Inc. | Method for producing l-amino acid from fructose |
WO2019208676A1 (en) * | 2018-04-27 | 2019-10-31 | 株式会社カネカ | Method for producing coenzyme q10 |
CN112041454A (en) * | 2018-04-27 | 2020-12-04 | 株式会社钟化 | Method for producing coenzyme Q10 |
JPWO2019208676A1 (en) * | 2018-04-27 | 2021-05-13 | 株式会社カネカ | Method for producing coenzyme Q10 |
WO2022092018A1 (en) | 2020-10-28 | 2022-05-05 | 味の素株式会社 | Method of producing l-amino acid |
WO2023013655A1 (en) | 2021-08-02 | 2023-02-09 | 味の素株式会社 | Method for improving flavor of food |
WO2023195475A1 (en) | 2022-04-04 | 2023-10-12 | 味の素株式会社 | Method for controlling parasitic plants |
EP4345166A2 (en) | 2022-09-30 | 2024-04-03 | Ajinomoto Co., Inc. | Method for producing l-amino acid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09173792A (en) | Treatment of fermented liquid | |
JP3861341B2 (en) | Membrane sterilization method of fermentation broth | |
FI96122C (en) | Process for producing ethanol and collecting glycerol as a by-product | |
Kumar et al. | Production and purification of glutamic acid: A critical review towards process intensification | |
US4411991A (en) | Process for fermentative production of amino acids | |
US6319382B1 (en) | Fermentative production and isolation of lactic acid | |
CN108841758B (en) | Corynebacterium glutamicum mutant strain and application thereof in L-leucine production | |
EP2435578A1 (en) | Biotechnological production of chondroitin | |
JP2005027533A (en) | Method for producing organic acid | |
JP3245881B2 (en) | Simultaneous fermentation of basic and acidic amino acids | |
EP0770676A2 (en) | Method for treating fermentation broth | |
JP2005270025A (en) | Method for refining organic acid | |
CA2811319C (en) | Production method for chemicals by continuous fermentation | |
EP0768374B1 (en) | Method of removing cells from fermentation broth | |
EP3922727A1 (en) | Method for separating biomass from a solution comprising biomass and at least one aroma compound | |
AU706876B2 (en) | Method for producing L-glutamic acid by continuous fermentation | |
KR100452172B1 (en) | How to remove cells from a fermentation broth through a membrane | |
CN1155580A (en) | Method of removing cells from fermentation broth through membrank | |
JPS6135840B2 (en) | ||
FI110758B (en) | Process for producing water-soluble salts of carboxylic and amino acids | |
RU2241036C2 (en) | Method for preparing gamma-aminobutyric acid (gaba) | |
JPS6324896A (en) | Production of l-glutamic acid by fermentation | |
JPH037590A (en) | Production of l-alanine | |
JPH052313B2 (en) | ||
JPH028718B2 (en) |