Nothing Special   »   [go: up one dir, main page]

JPH028718B2 - - Google Patents

Info

Publication number
JPH028718B2
JPH028718B2 JP20778481A JP20778481A JPH028718B2 JP H028718 B2 JPH028718 B2 JP H028718B2 JP 20778481 A JP20778481 A JP 20778481A JP 20778481 A JP20778481 A JP 20778481A JP H028718 B2 JPH028718 B2 JP H028718B2
Authority
JP
Japan
Prior art keywords
tryptophan
deoxyribose
producing
resistance
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20778481A
Other languages
Japanese (ja)
Other versions
JPS58107194A (en
Inventor
Yasushi Morinaga
Yasuhiko Toride
Osamu Kurahashi
Hitoshi Ei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP20778481A priority Critical patent/JPS58107194A/en
Publication of JPS58107194A publication Critical patent/JPS58107194A/en
Publication of JPH028718B2 publication Critical patent/JPH028718B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、発酵法によるL−トリプトフアン
(以下、トリプトフアンと記す)の製造法に関す
る。 従来トリプトフアンの製造法としては、トリプ
トフアンの前駆物質であるアントラニル酸、イン
ドール或は3−インドールピルビン酸よりトリプ
トフアンを製造する方法が知られている。 これら前駆物質を使用する方法に対し、前駆物
質を使用しないで、糖類等を炭素源とし、バチル
ス属に属しトリプトフアンアナログに耐性を有す
る変異株を使用して直接発酵法によりトリプトフ
アンを生産する方法(特公昭48−18828、特公昭
53−39517)が開発されている。 そこで、本発明者らはバチルス属の微生物を用
いて更に糖類等の炭素源からトリプトフアンを直
接発酵法により安価に製造する方法を開発すべく
研究を行つた結果、バチルス属の上記のようなト
リプトフアンアナログ耐性の他に更に2−デオキ
シリボースに耐性を有する微生物の中に、従来知
られているものより更に大量のトリプトフアンを
生産する能力を有する菌株があることを見い出し
た。この発明はこの知見に基づいて更に研究の結
果完成されたものである。 本発明の方法で使用される変異株は、バチルス
属に属し、5−フルオロトリプトフアン、7−ア
ザトリプトフアン、メチルトリプトフアン、ナフ
チルアラニン、トリブタゾン等のトリプトフアン
アナログ及び2−デオキシリボースに耐性を有
し、かつトリプトフアンを生産する能力を有する
微生物であり、例えば、次のような変異株が使用
される。 バチルス・ズブチリス AJ11750 FERM−
P6267(5−F−Trpr、2DRr) バチルス・ズブチリス AJ11751 FERM−
P6268(5−F−Trpr、Leu-、2DRr) バチルス・ズブチリス AJ11752 FERM−
P6269(5−F−Trpr、IMr、2DRr) 5−F−Trpr:5−フロオロトリプトフアン耐
性 2DRr:2−デオキシリボース耐性 Leu-:L−ロイシン要求性 IMr:インドールマイシン耐性 これら本発明で使用される変異株は、バチルス
属のトリプトフアンアナログ耐性のトリプトフア
ン生産菌を親株とし、これに通常の変異誘導操
作、例えば、紫外線照射或はN−メチル−N′−
ニトロ−N−ニトロソグアニジン(以下、NGと
略す。)亜硝酸等の化学薬剤処理を施し、変異処
理した菌株を親株が生育できないような量の2−
デオキシリボースを含有する平板寒天培地で培養
し、該平板培地上に生育するコロニーを分離する
ことによつて得られる。 上記の親株としては、トリプトフアンアナログ
耐性の他にトリプトフアン生産に有用な性質を有
するトリプトフアン生産菌、例えば、L−アルギ
ニン、L−リジン、L−ロイシンもしくはL−フ
エニルアラニン要求性のトリプトフアン生産菌
(特公昭53−39517号公報)、更にはトリプトフア
ンアナログ耐性でかつインドールマイシン耐性の
トリプトフアン生産菌(特開昭56−92796号公報)
等が使用される。具体例としては次のようなトリ
プトフアンアナログ耐性のトリプトフアン生産菌
が使用される。 バチルス・ズブチリス FT−145 FERM−
P1783(5−F−Trpr) バチルス・ズブチリス FFL−5 FERM−
P1786(5−F−Trpr+Leu-) バチルス・ズブチリス AJ11483 FERM−
P5286(5−F−Trpr+IMr) その他、本発明の変異株はバチルス属の野性株
を親株とし、これに2−デオキシリボース耐性を
付与した後トリプトフアンアナログ耐性を付与す
ることによつても誘導することができる。この場
合には更にトリプトフアン生産に有用な性質、例
えば、L−フエニルアラニン、L−チロシン、L
−ロイシン、L−ヒスチジン等のアミノ酸に対す
る栄養要求性、或はフエニルアラニンアナログ耐
性等を付与することが望ましい。 以下の実験例にて、本発明の2−デオキシリボ
ース耐性トリプトフアン生産菌の2−デオキシリ
ボースに対する耐性度を示す。 実験例 第1表に示す組成の最少培地を直径16.5mmの試
験管に4.0ml宛分注し、110℃で10分間加熱した。
これに別途フイルターで過(除菌)した2−デ
オキシリボース溶液を、第2表に示す濃度となる
ように加えて調体培地調製した。 上記培地に2−デオキシリボースを含まない最
少培地で24時間培養して得られたバチルス・ズブ
チリス AJ11750 、AJ11751、及びAJ11752の
培養液を夫々各0.1ml宛接種し、30℃で48時間振
盪培養を行い、培養液の570nmの吸光度を測定
した。その結果を第2表に示す。 第1表 最少培地の組成(PH7.0) 成 分 濃 度 グルコース 5.0g/ 硫酸アンモニウム 1.0 〃 KH2PO4 8.65 〃 MgSO4・7H2O 0.2 〃 FeSO4・7H2O 10mg/ MnSO4・4H2O 10 〃 クエン酸ナトリウム 0.5g/ ※L−ロイシン 10mg/dl (※L−ロイシン要求株の場合のみ添加)
The present invention relates to a method for producing L-tryptophan (hereinafter referred to as tryptophan) by a fermentation method. As a conventional method for producing tryptophan, a method for producing tryptophan from anthranilic acid, indole, or 3-indolepyruvic acid, which is a precursor of tryptophan, is known. In contrast to methods using these precursors, tryptophan is produced by direct fermentation using a mutant strain belonging to the genus Bacillus that is resistant to tryptophan analogs and using sugars as a carbon source without using any precursors. Method (Tokuko Sho 48-18828, Tokko Sho
53-39517) has been developed. Therefore, the present inventors conducted research to develop a method to inexpensively produce tryptophan from carbon sources such as sugars by a direct fermentation method using microorganisms of the genus Bacillus. It has been found that among microorganisms that have resistance to 2-deoxyribose in addition to resistance to tophan analogs, there are strains that have the ability to produce tryptophan in larger amounts than those previously known. This invention was completed as a result of further research based on this knowledge. The mutant strain used in the method of the present invention belongs to the genus Bacillus and contains tryptophan analogs such as 5-fluorotryptophan, 7-azatryptophan, methyltryptophan, naphthylalanine, and tributazone, and 2-deoxyribose. It is a microorganism that is resistant to tryptophan and has the ability to produce tryptophan. For example, the following mutant strains are used. Bacillus subtilis AJ11750 FERM−
P6267 (5-F-Trp r , 2DR r ) Bacillus subtilis AJ11751 FERM-
P6268 (5-F-Trp r , Leu - , 2DR r ) Bacillus subtilis AJ11752 FERM-
P6269 (5-F- Trpr , IMr , 2DRr ) 5-F-Trrp: 5-fluorotryptophan resistance 2DRr : 2-deoxyribose resistance Leu - : L-leucine auxotrophy IMr : Indolmycin Resistance These mutant strains used in the present invention have a tryptophan analog-resistant tryptophan-producing bacterium of the genus Bacillus as a parent strain, and are subjected to conventional mutagenesis procedures such as ultraviolet irradiation or N-methyl-N'-
Nitro-N-nitrosoguanidine (hereinafter abbreviated as NG) is treated with chemical agents such as nitrous acid, and the mutant strain is treated with 2-N-nitrosoguanidine (hereinafter abbreviated as NG) in an amount such that the parent strain cannot grow.
It is obtained by culturing on a plate agar medium containing deoxyribose and separating colonies growing on the plate medium. The above-mentioned parent strain may include tryptophan-producing bacteria that have properties useful for tryptophan production in addition to tryptophan analog resistance, such as tryptophan-producing bacteria that require L-arginine, L-lysine, L-leucine, or L-phenylalanine. Bacteria (Japanese Patent Publication No. 53-39517), and tryptophan-producing bacteria resistant to tryptophan analogs and indolmycin (Japanese Patent Publication No. 56-92796)
etc. are used. As a specific example, the following tryptophan analog-resistant tryptophan-producing bacteria are used. Bacillus subtilis FT−145 FERM−
P1783 (5-F-Trp r ) Bacillus subtilis FFL-5 FERM-
P1786 (5-F-Trp r +Leu - ) Bacillus subtilis AJ11483 FERM-
P5286 (5-F- Trrp + IM r ) In addition, the mutant strain of the present invention is obtained by using a wild strain of the genus Bacillus as the parent strain, imparting resistance to 2-deoxyribose, and then imparting resistance to tryptophan analogs. It can also be induced. In this case, properties useful for tryptophan production may also be added, such as L-phenylalanine, L-tyrosine, L-
- It is desirable to provide auxotrophy for amino acids such as leucine and L-histidine, or resistance to phenylalanine analogues. The following experimental examples show the degree of resistance of the 2-deoxyribose-resistant tryptophan-producing bacteria of the present invention to 2-deoxyribose. Experimental Example A minimal medium having the composition shown in Table 1 was dispensed into 4.0 ml test tubes with a diameter of 16.5 mm, and heated at 110° C. for 10 minutes.
A 2-deoxyribose solution, which had been separately filtered (sterilized), was added to this to give a concentration shown in Table 2 to prepare a prepared medium. The above medium was inoculated with 0.1 ml of each culture solution of Bacillus subtilis AJ11750, AJ11751, and AJ11752 obtained by culturing for 24 hours in a minimal medium containing no 2-deoxyribose, and cultured with shaking at 30°C for 48 hours. The absorbance of the culture solution at 570 nm was measured. The results are shown in Table 2. Table 1 Composition of minimal medium (PH7.0) Component concentration Glucose 5.0g/ Ammonium sulfate 1.0 〃 KH 2 PO 4 8.65 〃 MgSO 4・7H 2 O 0.2 〃 FeSO 4・7H 2 O 10mg/ MnSO 4・4H 2 O 10 〃 Sodium citrate 0.5g/ *L-leucine 10mg/dl (*Added only for L-leucine auxotrophic strains)

【表】【table】

【表】 本発明で使用する培地は炭素源、窒素源、無機
塩類、その他必要に応じてアミノ酸、ビタミン等
の有機微量栄養素を含有する通常の栄養培地が使
用される。炭素源としてはグルコース、シユーク
ロース、マルトース−澱粉水解物、糖蜜等が使用
され、その他エタノール、酢酸、クエン酸等も単
独或は上記他の炭素源と併用して用いられる。窒
素源としては硫酸アンモニウム、塩化アンモニウ
ム、リン酸アンモニウム等のアンモニウム塩、硝
酸塩、尿素、ペプトン等有機或は無機の窒素源が
使用される。有機微量栄養素としてはアミノ酸、
ビタミン、脂肪酸、核酸、更にこれらのものを含
有するペプトン、カザミノ酸、酵母エキス、大豆
蛋白分解物等が使用され、生育にアミノ酸等を要
求する栄養要求性変異株を使用する場合には要求
される栄養素を補添することが必要である。無機
塩類としてはリン酸塩、マグネシウム塩、カルシ
ウム塩、鉄塩、マンガン塩等が使用される。 培養は通常の培養条件下で行えば良く、PHを5
ないし9、温度を20ないし40℃に制御しつつ1〜
4日間振盪培養又は通気撹拌培養することにより
培養液中に著量のトリプトフアンが蓄積される。
培養中にPHが下がる場合には、炭酸カルシウムを
別殺菌して加えるか又はアンモニア水、アンモニ
アガス等のアルカリで中和する。又、有機酸を炭
素源とする場合はPHの上昇を鉱酸又は有機酸で中
和する。 培養液からトリプトフアンを採取する方法は、
公知のトリプトフアン回収方法に従つて行えば良
く、培養液から菌体を除去した後濃縮晶析する方
法或はイオン交換クロマトグラフイー等によつて
採取される。 以下、実施例にて説明する。 実施例 1 下記第3表に示した組成のトリプトフアン生産
用培地20mlを500ml容フラスコに分注し、110℃で
10分間加熱した後、第4表に示す微生物をそれぞ
れ1/3スラント量植えつけ30℃で96時間振盪培養
した。それぞれの培養液中のトリプトフアン生成
量は第4表の如くであつた。 第3表 トリプトフアン生産用培地組成(PH7.0) 成 分 濃 度 グルコース 80g/ 塩化アンモニウム 10 〃 KH2PO4 1 〃 KCl 2 〃 MnSO4・7H2O 10ml/ FeSO4・4H2O 10 〃 カザミノ酸 4g/ MgSO4・7H2O 0.4 〃 CaCO2 40 〃 ※L−ロイシン 20mg/dl (※L−ロイシン要求株の場合のみ添加) 第4表 トリプトフアン生成量 菌 株 (mg/ml) FT−145 1.90 AJ11750 2.5 FEL−5 4.2 AJ11751 5.2 AJ11483 6.2 AJ11752 7.4
[Table] The medium used in the present invention is a conventional nutrient medium containing a carbon source, a nitrogen source, inorganic salts, and other organic micronutrients such as amino acids and vitamins as necessary. As the carbon source, glucose, sucrose, maltose-starch hydrolyzate, molasses, etc. are used, and ethanol, acetic acid, citric acid, etc. are also used alone or in combination with the other carbon sources mentioned above. As the nitrogen source, organic or inorganic nitrogen sources such as ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate, nitrates, urea, and peptone are used. Organic micronutrients include amino acids,
Vitamins, fatty acids, nucleic acids, and peptones containing these things, casamino acids, yeast extracts, soybean protein decomposition products, etc. are used, and when using auxotrophic mutant strains that require amino acids etc. for growth, It is necessary to supplement the nutrients. As the inorganic salts, phosphates, magnesium salts, calcium salts, iron salts, manganese salts, etc. are used. Cultivation can be carried out under normal culture conditions, with a pH of 5.
to 9, 1 to 9 while controlling the temperature between 20 and 40℃
A significant amount of tryptophan is accumulated in the culture solution by shaking culture or aeration stirring culture for 4 days.
If the pH decreases during culture, add calcium carbonate after sterilization or neutralize with alkali such as aqueous ammonia or ammonia gas. In addition, when an organic acid is used as a carbon source, the increase in pH is neutralized with a mineral acid or an organic acid. How to collect tryptophan from culture fluid:
This may be carried out according to a known method for recovering tryptophan, and the tryptophan can be collected by removing the bacterial cells from the culture solution and then concentrating and crystallizing it, or by ion exchange chromatography. Examples will be described below. Example 1 20 ml of a tryptophan production medium having the composition shown in Table 3 below was dispensed into a 500 ml flask and incubated at 110°C.
After heating for 10 minutes, each microorganism shown in Table 4 was inoculated in a 1/3 slant amount and cultured with shaking at 30°C for 96 hours. The amount of tryptophan produced in each culture solution was as shown in Table 4. Table 3 Composition of tryptophan production medium (PH7.0) Ingredient concentration Glucose 80g/ Ammonium chloride 10 〃 KH 2 PO 4 1 〃 KCl 2 〃 MnSO 4・7H 2 O 10ml/ FeSO 4・4H 2 O 10 〃 Casamino Acid 4g/ MgSO 4・7H 2 O 0.4 〃 CaCO 2 40 〃 *L-leucine 20mg/dl (*Added only in case of L-leucine auxotrophic strain) Table 4 Tryptophan production amount Strain (mg/ml) FT-145 1.90 AJ11750 2.5 FEL−5 4.2 AJ11751 5.2 AJ11483 6.2 AJ11752 7.4

Claims (1)

【特許請求の範囲】[Claims] 1 バチルス属に属し、トリプトフアンアナログ
及び2−デオキシリボースに耐性を有し、かつL
−トリプトフアン生産能を有する微生物を液体培
地中に好気的に培養し、培養液中にL−トリプト
フアンを生成蓄積せしめ、これを採取することを
特徴とするL−トリプトフアンの製造法。
1 Belongs to the genus Bacillus, is resistant to tryptophan analogs and 2-deoxyribose, and is
- A method for producing L-tryptophan, which comprises aerobically cultivating a microorganism capable of producing tryptophan in a liquid medium, producing and accumulating L-tryptophan in the culture solution, and collecting the L-tryptophan.
JP20778481A 1981-12-22 1981-12-22 Preparation of l-tryptophan by fermentation Granted JPS58107194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20778481A JPS58107194A (en) 1981-12-22 1981-12-22 Preparation of l-tryptophan by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20778481A JPS58107194A (en) 1981-12-22 1981-12-22 Preparation of l-tryptophan by fermentation

Publications (2)

Publication Number Publication Date
JPS58107194A JPS58107194A (en) 1983-06-25
JPH028718B2 true JPH028718B2 (en) 1990-02-26

Family

ID=16545443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20778481A Granted JPS58107194A (en) 1981-12-22 1981-12-22 Preparation of l-tryptophan by fermentation

Country Status (1)

Country Link
JP (1) JPS58107194A (en)

Also Published As

Publication number Publication date
JPS58107194A (en) 1983-06-25

Similar Documents

Publication Publication Date Title
JP3006926B2 (en) Method for producing L-threonine by fermentation method
JP3008565B2 (en) Method for producing L-glutamic acid by fermentation method
JPS6115695A (en) Preparation of l-isoleucine by fermentation method
JP2578463B2 (en) Production method of L-lysine by fermentation method
JPH05123178A (en) Production of l-phenylalanine
JPH027635B2 (en)
US4455372A (en) Method for fermentative production of L-proline
JPH028718B2 (en)
JPH029795B2 (en)
JPH027636B2 (en)
JP3100763B2 (en) Method for producing L-arginine by fermentation
JPH028719B2 (en)
JPH028720B2 (en)
JPS59192096A (en) Preparation of l-tryptophan by fermentation
JPH0412720B2 (en)
JPH0314438B2 (en)
JPS5971697A (en) Preparation of l-tyrosine by fermentation
JP2578496B2 (en) Production method of inosine by fermentation method
JPH0347840B2 (en)
JPH0822235B2 (en) Fermentation method for producing L-glutamic acid
JPH027637B2 (en)
JPS5816691A (en) Preparation of l-lysine
JPH0211238B2 (en)
JPH0456598B2 (en)
JPS59120094A (en) Preparation of l-proline by fermentation