Nothing Special   »   [go: up one dir, main page]

JPH09176856A - Sheet type vacuum treating apparatus - Google Patents

Sheet type vacuum treating apparatus

Info

Publication number
JPH09176856A
JPH09176856A JP7350585A JP35058595A JPH09176856A JP H09176856 A JPH09176856 A JP H09176856A JP 7350585 A JP7350585 A JP 7350585A JP 35058595 A JP35058595 A JP 35058595A JP H09176856 A JPH09176856 A JP H09176856A
Authority
JP
Japan
Prior art keywords
chamber
vacuum processing
wafer
substrate
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7350585A
Other languages
Japanese (ja)
Other versions
JP3606979B2 (en
Inventor
Shoji Nagasawa
昭治 長沢
Makoto Kikuchi
誠 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP35058595A priority Critical patent/JP3606979B2/en
Publication of JPH09176856A publication Critical patent/JPH09176856A/en
Application granted granted Critical
Publication of JP3606979B2 publication Critical patent/JP3606979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sheet type vacuum treating apparatus with which various composite processes are made possible without degrading the quality of substrates to be vacuum treated. SOLUTION: A charging chamber 57, first transporting chamber, second transporting chamber and taking-out chamber are respectively provided with isolation chambers 73a having transporting means consisting of a pair of substrate supporting members 96a, 96b which are driven in a perpendicular direction via openings 101a, 101b and are capable of supporting the substrates 22, a pair of transporting members 97a, 97b which are driven in a horizontal direction and are capable of transferring and receiving the substrates 22 to and from these substrate transporting members 96a, 96b and junction members 98 which junction the transfer and receipt of the substrates 22 between a pair of the transporting members 97a and 97b, and a pair of lock valves 99a, 99b for opening and closing the openings 101a, 101b. As a result, the spacings between respective satellites and the inside and outside of the sheet type vacuum treating apparatus are vacuum insulated at all times. The various composite processes are thus made possible without degrading the quality of the substrates to be subjected to the vacuum treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、枚葉式真空処理装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single wafer type vacuum processing apparatus.

【0002】[0002]

【従来の技術及びその問題点】従来の真空処理装置に
は、トレイを使用して各真空処理室に基板を搬送するイ
ンライン方式や、共通搬送室の円周上に真空処理室を設
けた枚葉式がある。公知のように、インライン方式は図
12にその全体を1で示すように、仕込室2、スパッタ
室3、4および取出室5がゲートバルブ7b、7c、7
dを介して配設されており、これら各真空処理室2、
3、4、5はそれぞれ真空ポンプ6a、6b、6c、6
dにより独立排気可能となっている。そこで、未処理の
基板8がゲートバルブ7aを介して仕込室2に仕込まれ
ると、基板8は仕込室2内のキャリア9に搭載される。
そしてゲートバルブ7b、7cの開閉により、このキャ
リア9がスパッタ室3、4に順次、搬送されてそれぞれ
の所定のスパッタ処理が行なわれる。その後、成膜され
た基板8はゲートバルブ7dを介して取出室5へと搬送
され、さらにゲートバルブ7eを介して外部に取り出さ
れる。なお、図に示したインライン方式の真空処理装置
1は仕込室2と取出室5との間に2つのスパッタ室3、
4を設けているが、実際は基板8の処理態様に従って、
スパッタ室3、4の他に、例えば基板8の加熱および冷
却を行う加熱室および冷却室、CVD法による成膜室、
エッチング室などの各種真空処理室が設けられることも
ある。
2. Description of the Related Art Conventional vacuum processing apparatuses include an in-line system for transferring a substrate to each vacuum processing chamber using a tray, or a sheet having a vacuum processing chamber on the circumference of a common transfer chamber. There is a leaf ceremony. As is well known, in the in-line system, the charging chamber 2, the sputtering chambers 3 and 4 and the extraction chamber 5 are provided with gate valves 7b, 7c and 7 as shown by 1 in FIG.
and the vacuum processing chambers 2,
3, 4 and 5 are vacuum pumps 6a, 6b, 6c and 6 respectively.
Independent exhaust is possible by d. Then, when the unprocessed substrate 8 is loaded into the loading chamber 2 via the gate valve 7a, the substrate 8 is loaded on the carrier 9 in the loading chamber 2.
Then, by opening and closing the gate valves 7b and 7c, the carrier 9 is sequentially transported to the sputtering chambers 3 and 4 and each predetermined sputtering process is performed. After that, the substrate 8 on which the film has been formed is transferred to the take-out chamber 5 via the gate valve 7d and taken out to the outside via the gate valve 7e. The in-line type vacuum processing apparatus 1 shown in the figure has two sputtering chambers 3 between a charging chamber 2 and an extraction chamber 5.
4 is provided, but actually, according to the processing mode of the substrate 8,
In addition to the sputtering chambers 3 and 4, for example, a heating chamber and a cooling chamber for heating and cooling the substrate 8, a deposition chamber by a CVD method,
Various vacuum processing chambers such as an etching chamber may be provided.

【0003】図13は従来の枚葉式真空処理14の配置
平面図を示し、ほぼ円筒形状の本体15の外周縁部には
45度間隔で仕込室16、加熱室17、スパッタ室18
a、18b、18c、18d、冷却室19および取出室
20が配設されている。この枚葉式真空処理装置14は
成膜されるべき基板(例えばハードディスク)を1枚づ
つ仕込室16へ仕込み、加熱室17、スパッタ室18a
〜18dおよび冷却室19の各真空処理室で真空処理
し、取出室20から成膜済の基板を外部に取り出す装置
である。これら真空処理室および本体15は各々独立し
て真空排気可能となっている。
FIG. 13 is a plan view showing the arrangement of a conventional single-wafer type vacuum processing apparatus 14, in which a charging chamber 16, a heating chamber 17, and a sputtering chamber 18 are arranged at 45 ° intervals on the outer peripheral edge of a substantially cylindrical main body 15.
a, 18b, 18c, 18d, a cooling chamber 19 and an extraction chamber 20 are provided. The single-wafer type vacuum processing apparatus 14 prepares a substrate (for example, a hard disk) to be formed into a preparation chamber 16 one by one, and a heating chamber 17 and a sputtering chamber 18a.
˜18d and the cooling chamber 19 are vacuum-treated in each vacuum processing chamber, and the film-formed substrate is taken out from the taking-out chamber 20 to the outside. The vacuum processing chamber and the main body 15 can be independently evacuated.

【0004】この枚葉式真空処理装置14の詳細につい
て説明すると、本体15の内部における基板22の搬送
は公知のように図14に示す基板搬送機構23によって
行われる。円板状の回転テーブル24の底部には、本体
15の一部に固定される支持板25を貫通する軸部24
aが真空シールに挿通しており、この下端部は回転テー
ブル24を所定距離だけ昇降させる昇降駆動部26に固
定されている。回転テーブル24の軸部24aにはギヤ
30が一体的かつ同心的に固定されており、このギヤ3
0と、支持板25上に配設される回転駆動部27の駆動
軸31との間にタイミングベルト29が巻装されてい
る。図示しない制御装置によりこの回転駆動部27は駆
動され、回転テーブル24が所定角度づつで所定のタイ
ミングで回転駆動(インデックシング−indexing)され
るようになっている。これにより基板搬送機構23は、
枚葉式真空処理装置14の真空処理工程に基づいて駆動
されるようになっている。なお、回転テーブル24は本
体15内部の所定の真空度に保たれた搬送空間(図1
4参照)内で上記回転駆動部27および昇降駆動部26
により回転駆動および昇降駆動され、さらに回転テーブ
ル24の軸部24aは本体15の底壁15aに対してシ
ール部材を介して支持されており、金属ベローズ28を
伸縮させて昇降駆動される。
The details of the single-wafer type vacuum processing apparatus 14 will be described. The substrate 22 is carried inside the main body 15 by a substrate carrying mechanism 23 shown in FIG. The bottom of the disk-shaped rotary table 24 has a shaft portion 24 penetrating a support plate 25 fixed to a part of the main body 15.
a is inserted through the vacuum seal, and its lower end is fixed to an elevating / lowering drive unit 26 that elevates and lowers the rotary table 24 by a predetermined distance. A gear 30 is integrally and concentrically fixed to the shaft portion 24a of the rotary table 24.
The timing belt 29 is wound between 0 and the drive shaft 31 of the rotary drive unit 27 arranged on the support plate 25. The rotary drive unit 27 is driven by a control device (not shown), and the rotary table 24 is rotationally driven (indexing-indexing) at predetermined timings at predetermined angles. As a result, the substrate transfer mechanism 23
The single-wafer processing apparatus 14 is driven based on the vacuum processing process. The rotary table 24 has a transfer space S (FIG.
4), the rotation drive unit 27 and the elevating drive unit 26
The shaft 24a of the rotary table 24 is supported by the bottom wall 15a of the main body 15 via a seal member, and is vertically moved by expanding and contracting the metal bellows 28.

【0005】また図14に示すように、回転テーブル2
4の外周縁部には45度間隔で8個の基板ホルダ32が
この底板32aを介して配設されている。底板32aに
は図15に示すようにシール部材33が装着されてお
り、また底板32aと回転テーブル24との間は複数の
ばね34により弾性支持されている。図示せずとも、ば
ね34の下端部にはそれぞれ台座が固定されており、こ
の台座を介して回転テーブル24に固定されているもの
とする。なお、基板22はその下端部を基板ホルダ32
の上端部に形成された円弧状の溝32bもしくは爪に係
合させることにより保持されるようになっている。
Further, as shown in FIG. 14, the rotary table 2
Eight substrate holders 32 are arranged on the outer peripheral edge of the substrate 4 at intervals of 45 degrees via the bottom plate 32a. A seal member 33 is attached to the bottom plate 32a as shown in FIG. 15, and a plurality of springs 34 elastically support between the bottom plate 32a and the rotary table 24. Although not shown, pedestals are fixed to the lower ends of the springs 34, respectively, and are fixed to the rotary table 24 via the pedestals. The substrate 22 has a lower end portion which is a substrate holder 32.
It is held by engaging with an arcuate groove 32b or a claw formed at the upper end of the.

【0006】上述した基板搬送機構23により、図13
を参照して、外部から仕込室16を介して枚葉式真空処
理装置14に1枚づつ仕込まれた基板22は、それぞれ
基板ホルダ32に保持される。回転テーブル24は基板
搬送機構23の昇降駆動部26の駆動により所定距離だ
け下降し、次いで回転駆動部27の駆動により時計方向
(図中矢印)に所定角度(45度)だけ回転し、そして
昇降駆動部26の駆動により再び所定距離だけ上昇す
る。この一連の駆動により、仕込室16に位置していた
基板ホルダ32は次工程の真空処理室である加熱室17
に位置するので、これに保持される基板22は、共に仕
込室16から加熱室17に供給される。なお、このとき
仕込室16には次の基板ホルダ32が供給され、これに
新たな基板22が保持されるようになっている。図中一
点鎖線Pは基板ホルダ32の描く軌跡を示している。
[0006] By the substrate transfer mechanism 23 described above, FIG.
With reference to FIG. 3, the substrates 22 that are individually loaded into the single-wafer processing apparatus 14 from the outside via the loading chamber 16 are held by the substrate holders 32. The rotary table 24 is lowered by a predetermined distance by driving the elevating / lowering drive unit 26 of the substrate transfer mechanism 23, and then is rotated by a predetermined angle (45 degrees) in the clockwise direction (arrow in the figure) by the drive of the rotary drive unit 27, and then is moved up and down. By driving the drive unit 26, it again rises by a predetermined distance. By this series of driving, the substrate holder 32 located in the preparation chamber 16 is moved to the heating chamber 17 which is the vacuum processing chamber in the next process.
Therefore, the substrate 22 held by this is supplied from the preparation chamber 16 to the heating chamber 17 together. At this time, the next substrate holder 32 is supplied to the preparation chamber 16 and a new substrate 22 is held therein. In the figure, the alternate long and short dash line P indicates the trajectory drawn by the substrate holder 32.

【0007】加熱室17において所定時間、加熱処理さ
れた基板22はその後、所定のタイミングで基板搬送機
構23の駆動によりスパッタ室18a〜18dに供給さ
れる。これは回転テーブル24が回転駆動部27の駆動
により所定角度回転された後、昇降駆動部26の駆動に
より上昇し、また回転テーブル24上の基板22および
基板ホルダ32は、スパッタ室18a〜18dの真空槽
内部、すなわち真空処理室へと供給され、所定のスパッ
タ処理が行われる。このスパッタ処理が終了すると、基
板搬送機構23により基板22は順次、冷却室19にお
いて冷却された後、取出室20から外部へと排出され
る。
The substrate 22 which has been heated in the heating chamber 17 for a predetermined time is then supplied to the sputtering chambers 18a to 18d by driving the substrate transfer mechanism 23 at a predetermined timing. This is because the rotary table 24 is rotated by a predetermined angle by the drive of the rotary drive unit 27, and then is raised by the drive of the elevating / lowering drive unit 26, and the substrate 22 and the substrate holder 32 on the rotary table 24 are placed in the sputtering chambers 18a-18d. It is supplied to the inside of the vacuum chamber, that is, the vacuum processing chamber, and a predetermined sputtering process is performed. When the sputtering process is completed, the substrates 22 are sequentially cooled by the substrate transport mechanism 23 in the cooling chamber 19 and then discharged from the ejection chamber 20 to the outside.

【0008】しかしながら、以上のように説明した従来
の真空処理装置で、例えばウルトラクリーンテクノロジ
(以下、単にUCTと略する)を使用した成膜や特殊な
ガスを流すプラズマCVDを同一の装置で行うことは、
以下の理由で問題がある。すなわち、図12のインライ
ン方式による枚葉式真空処理装置1ではキャリア9を使
用するため、同じキャリア9にプラズマCVDによる膜
やUCTによる成膜が積層され、キャリア9からの放出
ガスが発生したり、膜剥離がおこる恐れがある。また図
13の枚葉式真空処理装置14では、加熱室17、スパ
ッタ室18a〜18d、冷却室19の各真空処理室にお
ける真空処理の前後で、これら真空処理室すべてが共通
の雰囲気となり、UCTとプラズマCVDとを両立させ
ることができない。
However, in the conventional vacuum processing apparatus described above, for example, film formation using ultra clean technology (hereinafter, simply abbreviated as UCT) or plasma CVD in which a special gas is flown is performed in the same apparatus. The thing is
There is a problem for the following reasons. That is, since the carrier 9 is used in the single-wafer processing apparatus 1 according to the in-line method of FIG. 12, a film formed by plasma CVD or a film formed by UCT is laminated on the same carrier 9, and the gas released from the carrier 9 is generated. The film may peel off. Further, in the single-wafer type vacuum processing apparatus 14 of FIG. 13, before and after vacuum processing in the vacuum processing chambers of the heating chamber 17, the sputtering chambers 18a to 18d, and the cooling chamber 19, all of these vacuum processing chambers have a common atmosphere, and the UCT And plasma CVD cannot be compatible with each other.

【0009】すなわち、UCTによる成膜とは、H2
(水)分子の残留ガス分圧が10-9Torr以下の状態での
成膜(この場合はスパッタ)のことであるが、UCTと
プラズマCVDとを両立させる場合、UCT成膜室とこ
の前処理側および後処理側の真空処理室とを相隔離する
必要がある。その主な理由として、前処理側においては
仕込室で粗引きが行われるが、そのガスの回り込みの防
止、そして前処理として基板の加熱処理が挙げられる
が、この基板からの放出ガスの持ち込みを防止しなけれ
ばならず、また後処理側においては、これがプラズマC
VDによる保護膜成膜の場合、CH(炭化水素)系また
はその他のガスを使用するが、そのガスの回り込みを防
止しなければならない。特に、基板を搬送するキャリア
9または基板ホルダ32にもプラズマCVD膜が付着
し、これがUCT成膜室に至るとこれからの放出ガスも
考えられる。すなわち、前処理側の真空処理室または後
処理側の真空処理室に起因するUCT成膜室の雰囲気の
破壊を防止しなければならない。
That is, film formation by UCT means H 2 O
Film formation (sputtering in this case) in the state where the residual gas partial pressure of (water) molecules is 10 -9 Torr or less, but when UCT and plasma CVD are made compatible, the UCT film formation chamber and the front It is necessary to separate the vacuum processing chambers on the processing side and the post-processing side from each other. The main reason for this is that roughing is performed in the charging chamber on the pretreatment side, but prevention of gas wraparound and heat treatment of the substrate as pretreatment are mentioned. Must be prevented and on the post-treatment side this is the plasma C
When forming a protective film by VD, a CH (hydrocarbon) -based gas or another gas is used, but it is necessary to prevent the gas from flowing around. In particular, when the plasma CVD film adheres to the carrier 9 or the substrate holder 32 that conveys the substrate and reaches the UCT film forming chamber, the gas released from this may be considered. That is, it is necessary to prevent the destruction of the atmosphere of the UCT film forming chamber due to the vacuum processing chamber on the pretreatment side or the vacuum processing chamber on the posttreatment side.

【0010】[0010]

【発明が解決しようとする問題点】本発明は上述の問題
に鑑みてなされ、種々の複合プロセスを可能にする枚葉
式真空処理装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a single-wafer type vacuum processing apparatus which enables various composite processes.

【0011】[0011]

【問題点を解決するための手段】以上の目的は、回転テ
ーブルの外周縁部に等角度間隔に配設された複数の基板
ホルダと、該各基板ホルダの直上方に配設された複数の
真空処理室と、前記回転テーブルを回転駆動する第1駆
動機構と、前記回転テーブルを昇降駆動する第2駆動機
構とから成る枚葉式真空処理機械を複数備え、真空処理
工程の順序で、第1の前記枚葉式真空処理機械は前記複
数の真空処理室のうち少なくとも1つの真空処理室を仕
込室とし、又更に他の少なくとも1つの真空処理室を搬
送室とし、第2の前記枚葉式真空処理機械は前記複数の
真空処理室のうち少なくとも1つの真空処理室を第1搬
送室とし、又他の少なくとも1つの真空処理室は第2搬
送室とし、同様に、第3の前記枚葉式真空処理機械は前
記複数の真空処理室のうち少なくとも1つの真空処理室
を第1搬送室とし、又他の少なくとも1つの真空処理室
を第2搬送室とし、以下、同様に第4、第5、・・・、
第n番目の前記枚葉式真空処理機械を構成し、かつ該第
n番目の枚葉式真空処理機械の前記第2搬送室は取出室
とし、前記第1、第2駆動機構により前記回転テーブル
を所定角度ずつ回転させ、かつ前記回転テーブルを所定
距離上昇させて前記各真空処理室を真空絶縁して所定の
真空処理を行わせるようにし、前記第1の枚葉式真空処
理機械の前記各真空処理室で第1の真空処理を行った基
板を前記搬送室及び前記第2の枚葉式真空処理機械の前
記第1搬送室を介して前記第2の枚葉式真空処理機械の
前記第1搬送室、前記各真空処理室に前記第1、第2駆
動機構の駆動により順次前記基板ホルダで支持し、かつ
真空絶縁して第2の真空処理を行わせ、該第2の真空処
理を行った前記基板を前記第2の搬送室及び前記第3の
枚葉式真空処理機械の前記第1搬送室を介して前記第3
の枚葉式真空処理機械の前記第1搬送室、前記各真空処
理室に前記第1、第2駆動機構の駆動により順次、前記
基板ホルダで支持し、かつ真空絶縁して第3の真空処理
を行わせ、前記第2搬送室及び前記第4の枚葉式真空処
理機械の前記第1搬送室を介して、以下同様に、第4、
第5、・・・、第n番目の真空処理を行わせた後、前記
取出室より外方に前記第1乃至第n番目の真空処理済の
前記基板を取り出すようにし、かつ前記第1の枚葉式真
空処理機械の前記搬送室内と前記第2の枚葉式真空処理
機械の前記第1搬送室との間に共通の第1隔離室を設
け、該第1隔離室内部に前記第1の枚葉式真空処理機械
の前記搬送室から前記第2の枚葉式真空処理機械の前記
第1搬送室へ基板を搬送する第1搬送手段と、前記第1
の枚葉式真空処理機械内と前記第2の枚葉式真空処理機
械内とを相互に真空絶縁する一対の第1ロックバルブを
設け、該第1ロックバルブは前記第1隔離室の壁部に形
成された一対の第1開口を開閉するための第1弁板を備
え、かつ前記第1隔離室と前記第1の枚葉式真空処理機
械の前記搬送室、及び前記第1隔離室と前記第2の枚葉
式真空処理機械の前記第1搬送室を交互に真空絶縁可能
とし、前記第2の枚葉式真空処理機械の前記第2搬送室
と前記第3の枚葉式真空処理機械の前記第1搬送室との
間に共通の第2隔離室を設け、該第2隔離室内部に前記
第2の枚葉式真空処理機械の前記第2搬送室から前記第
3の枚葉式真空処理機械の前記第1搬送室へ基板を搬送
する第2搬送手段と、前記第2の枚葉式真空処理機械内
と前記第3の枚葉式真空処理機械内とを相互に真空絶縁
する一対の第2ロックバルブを設け、該第2ロックバル
ブは前記第2隔離室の壁部に形成された一対の第2開口
を開閉するための第2弁板を備え、かつ前記第2隔離室
と前記第2の枚葉式真空処理機械の前記第2搬送室、及
び前記第2隔離室と前記第3の枚葉式真空処理機械の前
記第1搬送室を交互に真空絶縁可能とし、前記第3の枚
葉式真空処理機械の前記第2搬送室と前記第4の枚葉式
真空処理機械の前記第1搬送室との間に共通の第3隔離
室を設け、該第3隔離室内部に前記第3の枚葉式真空処
理機械の前記第2搬送室から前記第4の枚葉式真空処理
機械の前記第1搬送室へ基板を搬送する第3搬送手段
と、前記第3の枚葉式真空処理機械内と前記第4の枚葉
式真空処理機械内とを相互に真空絶縁する一対の第3ロ
ックバルブを設け、該第3ロックバルブは前記第3隔離
室の壁部に形成された一対の第3開口を開閉するための
第3弁板を備え、かつ前記第3隔離室と前記第3の枚葉
式真空処理機械の前記第2搬送室、及び前記第3隔離室
と前記第4の枚葉式真空処理機械の前記第1搬送室を交
互に真空絶縁可能とし、以下、同様に第4、第5、・・
・、第(n−1)隔離室を構成し、常に各前記枚葉式真
空処理機械内を相真空絶縁するようにしたことを特徴と
する枚葉式真空処理装置、によって達成される。
SUMMARY OF THE INVENTION The above object is to provide a plurality of substrate holders arranged on the outer peripheral edge of the turntable at equal angular intervals, and a plurality of substrate holders arranged immediately above the respective substrate holders. A plurality of single-wafer type vacuum processing machines each comprising a vacuum processing chamber, a first drive mechanism for rotationally driving the rotary table, and a second drive mechanism for vertically moving the rotary table are provided. In the single-wafer-type vacuum processing machine according to the first aspect, at least one vacuum processing chamber of the plurality of vacuum processing chambers is used as a charging chamber, and at least one other vacuum processing chamber is used as a transfer chamber, and the second single-wafer processing is performed. Type vacuum processing machine, at least one vacuum processing chamber of the plurality of vacuum processing chambers serves as a first transfer chamber, and at least one other vacuum processing chamber serves as a second transfer chamber. The leaf type vacuum processing machine has the above-mentioned plurality of vacuum processings. At least one vacuum processing chamber to the first transfer chamber, and the other of the at least one vacuum processing chamber and the second transfer chamber, and the same as the fourth of the fifth, ...,
The n-th single-wafer processing machine constitutes the n-th single-wafer vacuum processing machine, and the second transfer chamber of the n-th single-wafer processing machine is an extraction chamber, and the rotary table is driven by the first and second drive mechanisms. By a predetermined angle, and the rotary table is raised by a predetermined distance to vacuum-insulate the respective vacuum processing chambers to perform a predetermined vacuum processing. Each of the first single-wafer processing machines The substrate, which has been subjected to the first vacuum processing in the vacuum processing chamber, is transferred through the transfer chamber and the first transfer chamber of the second single-wafer processing machine to the second single-wafer processing machine. One substrate transfer chamber and each of the vacuum processing chambers are sequentially supported by the substrate holder by the driving of the first and second drive mechanisms, and vacuum insulation is performed to perform a second vacuum processing, and the second vacuum processing is performed. The performed substrate is transferred to the second transfer chamber and the third single-wafer processing vacuum machine. Wherein through the first transfer chamber 3
In the single-wafer-type vacuum processing machine, the first transfer chamber and the respective vacuum processing chambers are sequentially supported by the substrate holder by being driven by the first and second driving mechanisms, and are vacuum-insulated to perform a third vacuum processing. Through the second transfer chamber and the first transfer chamber of the fourth single-wafer type vacuum processing machine, and similarly in the following,
After the fifth, nth vacuum processing is performed, the first to nth vacuum-processed substrates are taken out of the unloading chamber, and the first vacuum processing is performed. A common first isolation chamber is provided between the transfer chamber of the single-wafer vacuum processing machine and the first transfer chamber of the second single-wafer vacuum processing machine, and the first isolation chamber is provided inside the first isolation chamber. First transfer means for transferring a substrate from the transfer chamber of the single-wafer type vacuum processing machine to the first transfer chamber of the second single-wafer type vacuum processing machine;
A pair of first lock valves for mutually vacuum-insulating the inside of the single wafer processing vacuum machine and the inside of the second single wafer processing machine, and the first lock valve is a wall portion of the first isolation chamber. A first valve plate for opening and closing a pair of first openings formed in the first opening, the first isolation chamber, the transfer chamber of the first single-wafer processing machine, and the first isolation chamber. The first transfer chambers of the second single-wafer vacuum processing machine can be alternately vacuum-insulated, and the second transfer chambers and the third single-wafer vacuum processing of the second single-wafer vacuum processing machine A common second isolation chamber is provided between the first transport chamber of the machine and the second transport chamber of the second single-wafer type vacuum processing machine from the second transport chamber to the third wafer. Transfer means for transferring a substrate to the first transfer chamber of the vacuum processing machine, inside the second single-wafer vacuum processing machine and the third single wafer A pair of second lock valves for vacuum-insulating the inside of the vacuum processing machine from each other are provided, and the second lock valves are for opening and closing a pair of second openings formed in the wall of the second isolation chamber. A second transfer chamber of the second isolation chamber and the second single-wafer vacuum processing machine; and a second isolation chamber and the first of the third single-wafer vacuum processing machine. The transfer chambers can be alternately vacuum-insulated, and a common first chamber can be provided between the second transfer chamber of the third single-wafer processing machine and the first transfer chamber of the fourth single-wafer processing machine. 3 isolation chambers are provided, and substrates are transferred into the third isolation chamber from the second transfer chamber of the third single-wafer processing machine to the first transfer chamber of the fourth single-wafer vacuum processing machine. The third transfer means, the third single-wafer processing vacuum machine, and the fourth single-wafer processing vacuum machine are mutually vacuum-insulated. A pair of third lock valves, the third lock valve having a third valve plate for opening and closing a pair of third openings formed in the wall of the third isolation chamber, and the third isolation valve. A chamber and the second transfer chamber of the third single-wafer processing machine, and the third isolation chamber and the first transfer chamber of the fourth single-wafer processing machine can be alternately vacuum insulated. Hereinafter, similarly, the fourth, fifth, ...
The single-wafer type vacuum processing apparatus is characterized in that the (n-1) th isolation chamber is configured so that the inside of each of the single-wafer type vacuum processing machines is always vacuum-insulated.

【0012】また以上の目的は、回転テーブルの外周縁
部に等角度間隔に配設された複数の基板ホルダと、該各
基板ホルダの直上方に配設された複数の真空処理室と、
前記回転テーブルを回転駆動する第1駆動機構と、前記
回転テーブルを昇降駆動する第2駆動機構とから成る枚
葉式真空処理機械を複数備え、真空処理工程の順序で、
第1の前記枚葉式真空処理機械は前記複数の真空処理室
のうち少なくとも1つの真空処理室を仕込室とし、又更
に他の少なくとも1つの真空処理室を搬送室とし、第2
の前記枚葉式真空処理機械は前記複数の真空処理室のう
ち少なくとも1つの真空処理室を第1搬送室とし、又他
の少なくとも1つの真空処理室は第2搬送室とし、同様
に、第3の前記枚葉式真空処理機械は前記複数の真空処
理室のうち少なくとも1つの真空処理室を第1搬送室と
し、又他の少なくとも1つの真空処理室を第2搬送室と
し、以下、同様に第4、第5、・・・、第n番目の前記
枚葉式真空処理機械を構成し、かつ該第n番目の枚葉式
真空処理機械の前記第2搬送室は取出室とし、前記第
1、第2駆動機構により前記回転テーブルを所定角度ず
つ回転させ、かつ前記回転テーブルを所定距離上昇させ
て前記各真空処理室を真空絶縁して所定の真空処理を行
わせるようにし、前記第1の枚葉式真空処理機械の前記
各真空処理室で第1の真空処理を行った基板を前記搬送
室及び前記第2の枚葉式真空処理機械の前記第1搬送室
を介して前記第2の枚葉式真空処理機械の前記第1搬送
室、前記各真空処理室に前記第1、第2駆動機構の駆動
により順次前記基板ホルダで支持し、かつ真空絶縁して
第2の真空処理を行わせ、該第2の真空処理を行った前
記基板を前記第2の搬送室及び前記第3の枚葉式真空処
理機械の前記第1搬送室を介して前記第3の枚葉式真空
処理機械の前記第1搬送室、前記各真空処理室に前記第
1、第2駆動機構の駆動により順次、前記基板ホルダで
支持し、かつ真空絶縁して第3の真空処理を行わせ、前
記第2搬送室及び前記第4の枚葉式真空処理機械の前記
第1搬送室を介して、以下同様に、第4、第5、・・
・、第n番目の真空処理を行わせた後、前記取出室より
外方に前記第1乃至第n番目の真空処理済の前記基板を
取り出すようにし、かつ前記仕込室及び/又は前記取出
室と前記枚葉式真空処理機械の外部に連通可能な基板供
給室との間に共通の隔離室を設け、該隔離室内部に前記
仕込室及び/又は前記取出室と前記基板供給室との間で
前記基板を搬送する搬送手段と、前記仕込室及び/又は
前記取出室内と前記基板供給室内とを相互に真空絶縁す
る一対のロックバルブを設け、該ロックバルブは前記隔
離室の壁部に形成された一対の開口を開閉するための弁
板を備え、かつ前記隔離室と前記仕込室及び/又は前記
取出室、及び前記隔離室と前記基板供給室とを交互に真
空絶縁可能とし、常に各前記枚葉式真空処理機械の内外
とを相真空絶縁するようにしたことを特徴とする枚葉式
真空処理装置、によって達成される。
Further, the above object is to provide a plurality of substrate holders arranged at equal angular intervals on the outer peripheral edge of the rotary table, and a plurality of vacuum processing chambers provided immediately above the respective substrate holders.
A plurality of single-wafer type vacuum processing machines each comprising a first drive mechanism for rotationally driving the rotary table and a second drive mechanism for vertically driving the rotary table are provided, and in the order of vacuum processing steps,
In the first single-wafer processing machine, at least one vacuum processing chamber of the plurality of vacuum processing chambers serves as a loading chamber, and at least another vacuum processing chamber serves as a transfer chamber, and
In the single-wafer processing machine, the at least one vacuum processing chamber of the plurality of vacuum processing chambers serves as a first transfer chamber, and the other at least one vacuum processing chamber serves as a second transfer chamber. In the single-wafer processing machine of No. 3, at least one vacuum processing chamber among the plurality of vacuum processing chambers is a first transfer chamber, and at least another vacuum processing chamber is a second transfer chamber, and so on. The fourth, fifth, ..., The n-th single-wafer processing vacuum machine is constituted, and the second transfer chamber of the n-th single-wafer processing machine is an extraction chamber, The first and second drive mechanisms rotate the rotary table by a predetermined angle and raise the rotary table by a predetermined distance to vacuum-insulate each vacuum processing chamber to perform a predetermined vacuum processing. No. 1 in each vacuum processing chamber of the single-wafer processing machine The substrate that has undergone vacuum processing is transferred through the transfer chamber and the first transfer chamber of the second single-wafer vacuum processing machine to the first transfer chamber of the second single-wafer vacuum processing machine, and each of the vacuums. The substrate is sequentially supported by the substrate holder in the processing chamber by the driving of the first and second driving mechanisms, and vacuum insulation is performed to perform the second vacuum processing, and the substrate subjected to the second vacuum processing is transferred to the first substrate. The first transfer chamber of the third single-wafer vacuum processing machine and the first transfer chamber of the third single-wafer vacuum processing machine via the second transfer chamber and the first transfer chamber of the third single-wafer processing vacuum machine. , Sequentially supported by the substrate holder and vacuum-insulated by the driving of the second drive mechanism to perform the third vacuum processing, and the second transfer chamber and the fourth single-wafer processing vacuum machine 4th, 5th, ...
.. After performing the n-th vacuum processing, the first to n-th vacuum-processed substrates are taken out from the taking-out chamber, and the charging chamber and / or the taking-out chamber And a substrate supply chamber that can communicate with the outside of the single-wafer type vacuum processing machine, and a common isolation chamber is provided between the loading chamber and / or the unloading chamber and the substrate supply chamber. And a pair of lock valves for vacuum-insulating the substrate feeding chamber and / or the take-out chamber and the substrate supply chamber from each other, the lock valve being formed on a wall portion of the isolation chamber. A valve plate for opening and closing a pair of the opened openings, and the isolation chamber and the charging chamber and / or the extraction chamber, and the isolation chamber and the substrate supply chamber can be alternately vacuum-insulated and always Phase vacuum insulation between the inside and outside of the single wafer processing vacuum processing machine Single-wafer vacuum processing apparatus is characterized in that as is accomplished by.

【0013】[0013]

【作用】請求項1の発明のよれば、真空処理工程の順序
で、第1の枚葉式真空処理機械の仕込室に1枚づつ仕込
まれた未処理の基板は基板ホルダに保持され、第1駆動
機構および第2駆動機構の駆動により回転テーブルが所
定角度の回転および所定距離の昇降作用を行うことによ
り各真空処理室を真空絶縁し、各真空処理室において第
1の真空処理が行われる。この第1の真空処理が終了す
ると、回転テーブルの駆動により搬送室および第2の枚
葉式真空処理機械の第1搬送室を介して、基板を1枚づ
つ第1の枚葉式真空処理機械から第2の枚葉式真空処理
機械へと搬送するのであるが、基板は第1の枚葉式真空
処理機械の搬送室と第2の枚葉式真空処理機械の第1搬
送室との間に設けられる第1隔離室の一対の第1開口を
介して搬送される。この第1開口は第1隔離室内部に配
設される一対の第1ロックバルブにより、第1の枚葉式
真空処理機械内と第2の枚葉式真空処理機械内とを相互
に真空絶縁可能である。第1の枚葉式真空処理機械の搬
送室から第1隔離室内に基板を搬送するときはこの搬送
室側の第1開口を開弁し、第1搬送手段により基板が第
1隔離室内に搬送された後、再び第1開口を閉弁する。
そして、第1隔離室から第2の枚葉式真空処理機械の第
1搬送室に基板を搬送するときはこの第1搬送室側の第
1開口を開弁し、同じく第1搬送手段により基板が第1
搬送室内に搬送された後、再びこの第1開口を閉弁す
る。これにより、第1の枚葉式真空処理機械内と第2の
枚葉式真空処理機械内とは常に相真空絶縁でき、かつ基
板のみを搬送することができるので、第1および第2の
枚葉式真空処理機械内部の雰囲気が相互に影響を及ぼさ
れることはない。
According to the invention of claim 1, in the order of the vacuum processing steps, the unprocessed substrates, which are loaded one by one in the loading chamber of the first single wafer processing machine, are held by the substrate holder. The rotary table is rotated by a predetermined angle and moved up and down by a predetermined distance by driving the first drive mechanism and the second drive mechanism to vacuum-insulate each vacuum processing chamber, and the first vacuum processing is performed in each vacuum processing chamber. . When the first vacuum processing is completed, the first single-wafer processing machine is driven one by one through the transfer chamber and the first transfer chamber of the second single-wafer processing machine by driving the rotary table. From the first single-wafer vacuum processing machine to the second single-wafer vacuum processing machine, the substrate is transferred between the first single-wafer vacuum processing machine transfer chamber and the second single-wafer vacuum processing machine first transfer chamber. Is conveyed through the pair of first openings of the first isolation chamber provided in the. The first opening is vacuum-insulated between the first single-wafer processing machine and the second single-wafer processing machine by a pair of first lock valves arranged in the first isolation chamber. It is possible. When the substrate is transferred from the transfer chamber of the first single-wafer processing machine into the first isolation chamber, the first opening on the transfer chamber side is opened, and the substrate is transferred into the first isolation chamber by the first transfer means. After that, the first opening is closed again.
When the substrate is transferred from the first isolation chamber to the first transfer chamber of the second single-wafer processing machine, the first opening on the side of the first transfer chamber is opened, and the substrate is also transferred by the first transfer means. Is the first
After being transferred into the transfer chamber, the first opening is closed again. As a result, the first single-wafer processing machine and the second single-wafer processing machine can always perform phase vacuum insulation and can transfer only the substrate. The atmosphere inside the leaf vacuum processing machine is not influenced by each other.

【0014】第1隔離室を介して第2の枚葉式真空処理
機械に供給された基板は、上述の回転テーブルの駆動に
より各真空処理室を真空絶縁し、各真空処理室で第2の
真空処理が行われる。この第2の真空処理が終了する
と、回転テーブルの駆動により第2の枚葉式真空処理機
械の第2搬送室および第3の枚葉式真空処理機械の第1
搬送室を介して、基板を1枚づつ第2の枚葉式真空処理
機械から第2の枚葉式真空処理機械へと搬送するのであ
るが、基板は第2の枚葉式真空処理機械の第2搬送室と
第3の枚葉式真空処理機械の第1搬送室との間に設けら
れる第2隔離室の一対の第2開口を介して搬送される。
この第2隔離室は上述の第1隔離室と同様な作用を行
い、第2の枚葉式真空処理機械内と第3の枚葉式真空処
理機械内とを常に相真空絶縁することができ、かつ基板
のみを搬送することができる。以下、同様にして基板は
第3、第4、・・・、第n番目の枚葉式真空処理機械に
おいて第3、第4、・・・、第n番目の真空処理が行わ
れるのであるが、各枚葉式真空処理機械の間は第3、第
4、・・・、第(n−1)隔離室により常に相真空絶縁
される。そして、第n番目の真空処理が行われた基板は
第n番目の枚葉式真空処理機械の取出室から1枚づつ外
方へと取り出される。
The substrate supplied to the second single-wafer type vacuum processing machine through the first isolation chamber vacuum-insulates each vacuum processing chamber by driving the above-mentioned rotary table, and the second vacuum processing chamber is subjected to the second insulation in each vacuum processing chamber. Vacuum processing is performed. When the second vacuum processing is completed, the rotary table is driven to drive the second transfer chamber of the second single-wafer processing machine and the first transfer chamber of the third single-wafer processing machine.
The substrates are transferred one by one from the second single-wafer processing machine to the second single-wafer processing machine through the transfer chamber. It is transported through a pair of second openings of a second isolation chamber provided between the second transport chamber and the first transport chamber of the third single-wafer processing machine.
This second isolation chamber performs the same operation as the above-mentioned first isolation chamber, and can always provide phase vacuum insulation between the inside of the second single-wafer processing machine and the inside of the third single-wafer processing machine. Moreover, only the substrate can be transported. Hereinafter, in the same manner, the substrates are subjected to the third, fourth, ..., Nth vacuum processing in the nth single-wafer type vacuum processing machine. , The (n-1) th isolation chambers are provided between the single-wafer-type vacuum processing machines for phase vacuum insulation. Then, the substrates subjected to the n-th vacuum processing are taken out one by one from the taking-out chamber of the n-th single wafer processing machine.

【0015】請求項3の発明によれば、基板は装置外部
の基板供給室から隔離室を介して第1の枚葉式真空処理
機械の仕込室に基板が仕込まれるのであるが、基板はこ
の隔離室に形成される一対の開口を通って仕込室に搬送
される。この開口は隔離室内部に配設される一対のロッ
クバルブにより、基板供給室と仕込室とを相互に真空絶
縁可能である。基板供給室から隔離室内に基板を搬送す
るときはこの基板供給室側の開口を開弁し、搬送手段に
より基板が隔離室内に搬送された後、再び開口を閉弁す
る。そして、隔離室から仕込室に基板を搬送するときは
この仕込室側の開口を開弁し、同じく搬送手段により基
板が仕込室内に搬送された後、再びこの開口を閉弁す
る。基板は仕込室に位置する基板ホルダに保持されるの
であるが、第1駆動機構および第2駆動機構の駆動によ
り回転テーブルが所定角度の回転および所定距離の昇降
作用を行うことにより各真空処理室を真空絶縁し、第1
の真空処理が行われる。この第1の真空処理が終了する
と、回転テーブルの駆動により搬送室および第2の枚葉
式真空処理機械の第1搬送室を介して、基板を1枚づつ
第1の枚葉式真空処理機械から第2の枚葉式真空処理機
械へと供給する。第1搬送室を介して第2の枚葉式真空
処理機械に供給された基板は、上述の回転テーブルの駆
動により各真空処理室を真空絶縁し、各真空処理室にお
いて第2の真空処理が行われる。この第2の真空処理が
終了すると、回転テーブルの駆動により第2搬送室およ
び第3の枚葉式真空処理機械の第1搬送室を介して、基
板は第3の枚葉式真空処理機械へと供給され、以下、同
様に第3、第4、・・・、第n番目の真空処理が行われ
る。これら第1ないし第n番目の真空処理済の基板は第
n番目の枚葉式真空処理機械の取出室より外方へと取り
出されるのであるが、上述した仕込室への基板の仕込み
とは逆の手順で外部の基板供給室へと移送される。以上
により、常に各枚葉式真空処理機械の内外とを相真空絶
縁することができるので、装置内での基板の成膜を能率
的に、かつ安定して行うことができる。
According to the third aspect of the invention, the substrate is loaded from the substrate supply chamber outside the apparatus into the loading chamber of the first single wafer processing machine through the isolation chamber. It is conveyed to the preparation chamber through a pair of openings formed in the isolation chamber. This opening can vacuum-insulate the substrate supply chamber and the loading chamber from each other by a pair of lock valves arranged inside the isolation chamber. When the substrate is transferred from the substrate supply chamber into the isolation chamber, the opening on the substrate supply chamber side is opened, and after the substrate is transferred into the isolation chamber by the transfer means, the opening is closed again. When the substrate is transferred from the isolation chamber to the charging chamber, the opening on the charging chamber side is opened, and after the substrate is transferred to the charging chamber by the transfer means, the opening is closed again. The substrate is held by a substrate holder located in the loading chamber, and each rotary chamber is driven by the first drive mechanism and the second drive mechanism to rotate the rotary table at a predetermined angle and move up and down for a predetermined distance. Vacuum insulated, first
Vacuum processing is performed. When the first vacuum processing is completed, the first single-wafer processing machine is driven one by one through the transfer chamber and the first transfer chamber of the second single-wafer processing machine by driving the rotary table. To a second single wafer processing machine. The substrate supplied to the second single-wafer type vacuum processing machine via the first transfer chamber vacuum-insulates each vacuum processing chamber by driving the rotary table, and the second vacuum processing is performed in each vacuum processing chamber. Done. When the second vacuum processing is completed, the substrate is transferred to the third single-wafer processing machine through the second transfer chamber and the first transfer chamber of the third single-wafer processing machine by driving the rotary table. , And the third, fourth, ..., Nth vacuum processes are similarly performed. These first to n-th vacuum-processed substrates are taken out from the take-out chamber of the n-th single-wafer type vacuum processing machine, which is the reverse of the above-mentioned loading of substrates into the loading chamber. It is transferred to the external substrate supply chamber by the procedure. As described above, the inside and outside of each single-wafer type vacuum processing machine can always be insulated from each other by phase vacuum, so that the film formation of the substrate in the apparatus can be performed efficiently and stably.

【0016】[0016]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の実施例による枚葉式真空処
理装置の配置平面図を示しており、その全体は50で示
され、図2はその外観図を示している。本実施例による
枚葉式真空処理装置50はハードディスク用基板(アル
ミニウム合金製)の成膜を行う装置であり、第1の枚葉
式真空処理機械(以下、単に第1サテライトと称する)
51、第2の枚葉式真空処理機械(以下、単に第2サテ
ライトと称する)52および第3の枚葉式真空処理機械
(以下、単に第3サテライトと称する)53から成る。
第1サテライト51の本体54には仕込室57、予備室
58a、58b、加熱室59a、59b、第1搬送室6
0、再生室61および予備室58cがそれぞれ45度間
隔で配設されている。また、第2サテライト52の本体
55には第1搬送室60、加熱室62、第1スパッタ室
63a、63b、第2スパッタ室63c、63d、第2
搬送室65および再生室66が同様に45度間隔で配設
されており、さらに、第3サテライト53の本体56に
は第2搬送室65、反応室68a、68b、68c、取
出室、予備室70および再生室71が同様に45度間隔
で配設されている。これらの真空処理室は各々独立して
真空排気可能となっている。
FIG. 1 shows a layout plan view of a single-wafer type vacuum processing apparatus according to an embodiment of the present invention, which is generally designated by 50, and FIG. 2 shows an external view thereof. The single-wafer type vacuum processing apparatus 50 according to the present embodiment is an apparatus for forming a film on a hard disk substrate (made of aluminum alloy), and is a first single-wafer type vacuum processing machine (hereinafter, simply referred to as a first satellite).
51, a second single-wafer processing machine (hereinafter simply referred to as a second satellite) 52, and a third single-wafer processing machine (hereinafter simply referred to as a third satellite) 53.
The main body 54 of the first satellite 51 includes a charging chamber 57, auxiliary chambers 58a and 58b, heating chambers 59a and 59b, and a first transfer chamber 6.
0, the regeneration chamber 61 and the spare chamber 58c are arranged at intervals of 45 degrees. Further, in the main body 55 of the second satellite 52, the first transfer chamber 60, the heating chamber 62, the first sputtering chambers 63a and 63b, the second sputtering chambers 63c and 63d, the second
A transfer chamber 65 and a regeneration chamber 66 are similarly arranged at intervals of 45 degrees, and further, in the main body 56 of the third satellite 53, a second transfer chamber 65, reaction chambers 68a, 68b, 68c, a take-out chamber, and a preliminary chamber. Similarly, the 70 and the regeneration chamber 71 are arranged at intervals of 45 degrees. Each of these vacuum processing chambers can be independently evacuated.

【0018】すなわち、本実施例の枚葉式真空処理装置
50は第1サテライト51で基板の仕込み、および前処
理としての加熱処理を行い、第2サテライト52では主
に磁性層成膜処理を行い、そして第3サテライト53で
は主に保護膜成膜処理を行うのであるが、特に第2サテ
ライト52の第1スパッタ室63a、63bではCr
(クロム)層の成膜、第2スパッタ室64a、64bで
はCo(コバルト)合金の成膜を行い、これら第1、第
2スパッタ室63a、63b、64a、64bはUCT
(ウルトラクリーンテクノロジ)成膜室となっている。
第3サテライト53の反応室68a〜68cではプラズ
マCVD(P−CVD)によりC(カーボン)膜の成膜
を行うようにしている。
That is, in the single-wafer type vacuum processing apparatus 50 of the present embodiment, the first satellite 51 prepares the substrate and the heat treatment as the pretreatment, and the second satellite 52 mainly performs the magnetic layer film forming treatment. The protective film forming process is mainly performed on the third satellite 53, but especially in the first sputtering chambers 63a and 63b of the second satellite 52, Cr is used.
A (chromium) layer is formed, a Co (cobalt) alloy is formed in the second sputtering chambers 64a and 64b, and the first and second sputtering chambers 63a, 63b, 64a and 64b are UCT.
(Ultra Clean Technology) It is a film forming chamber.
In the reaction chambers 68a to 68c of the third satellite 53, a C (carbon) film is formed by plasma CVD (P-CVD).

【0019】次に各サテライト51、52、53の本体
54、55、56の構成について説明するが、各本体5
4、55、56はそれぞれ同様な構成を有するので、代
表的に第1サテライト51の本体54について説明す
る。
Next, the structure of the main bodies 54, 55 and 56 of the satellites 51, 52 and 53 will be described.
Since the reference numerals 4, 55, and 56 have the same configurations, the main body 54 of the first satellite 51 will be representatively described.

【0020】第1サテライト51の本体54内部には、
図13に示した従来の枚葉式真空処理装置14と同様
に、図14に示す基板搬送機構23が配設されている。
すなわち、回転テーブル24の中央底部には、本体54
の一部に固定される支持板25を貫通する軸部24aが
真空シールに挿通しており、この下端部は回転テーブル
24を所定距離だけ昇降させるための、本発明の構成要
素である第2駆動機構としての昇降駆動部26に固定さ
れている。回転テーブル24の軸部24aにはギヤ30
が一体的かつ同心的に固定されており、このギヤ30
と、支持板25上に配設される、本発明の構成要素でも
ある第1駆動機構としての回転駆動部27の駆動軸31
との間にタイミングベルト29が巻装されている。この
回転駆動部27の駆動により、回転テーブル24が所定
角度づつ、所定のタイミングで回転駆動されるようにな
っている。
Inside the main body 54 of the first satellite 51,
Similar to the conventional single-wafer processing apparatus 14 shown in FIG. 13, the substrate transfer mechanism 23 shown in FIG. 14 is provided.
That is, at the center bottom of the turntable 24, the main body 54
A shaft portion 24a penetrating a support plate 25 fixed to a part of the upper end is inserted into a vacuum seal, and the lower end portion thereof is a constituent element of the present invention for raising and lowering the rotary table 24 by a predetermined distance. It is fixed to an up-and-down drive unit 26 as a drive mechanism. A gear 30 is attached to the shaft portion 24a of the rotary table 24.
Are fixed integrally and concentrically.
And the drive shaft 31 of the rotary drive unit 27 as the first drive mechanism, which is also a component of the present invention, disposed on the support plate 25.
A timing belt 29 is wound between and. By the drive of the rotary drive unit 27, the rotary table 24 is rotationally driven by a predetermined angle at a predetermined timing.

【0021】また図14に示すように、回転テーブル2
4上の外周縁部には45度間隔で8個の基板ホルダ32
が配設されており、これは図14に示されるように、基
板ホルダ32の底板32aにはシール部材33が装着さ
れており、また底板32aと回転テーブル24との間は
複数のばね34により弾性支持されている。図示せずと
も、ばね34の下端部にはそれぞれ台座が固定されてお
り、この台座を介して回転テーブル24に固定されてい
るものとする。なお、基板22はその下端部を基板ホル
ダ32の上端部に形成された円弧状の溝22bに係合さ
せることにより保持されるようになっている。
Further, as shown in FIG. 14, the rotary table 2
8 substrate holders 32 are arranged at 45 degree intervals on the outer peripheral edge of
14, a seal member 33 is attached to the bottom plate 32a of the substrate holder 32, and a plurality of springs 34 are provided between the bottom plate 32a and the rotary table 24, as shown in FIG. Elastically supported. Although not shown, pedestals are fixed to the lower ends of the springs 34, respectively, and are fixed to the rotary table 24 via the pedestals. The substrate 22 is held by engaging its lower end with an arcuate groove 22b formed in the upper end of the substrate holder 32.

【0022】第2および第3サテライト52、53の本
体55、56内にも上述のような基板搬送機構23が配
設されているのであるが、回転テーブル24は本体5
4、55、56内の所定の真空度に保たれた搬送空間
(図10参照)内で回転駆動部27により回転駆動さ
れ、また昇降駆動部26の駆動により所定距離だけ上昇
駆動されたときは、それぞれの基板ホルダ32は本体5
4、55、56に等角度間隔で配設される各真空処理室
に収容されるようになっている。このとき基板ホルダ3
2の底板32aの装着されるシール部材33により、各
真空処理室と搬送空間とは相真空絶縁された状態とな
る。この状態で、それぞれの真空処理室で所定の真空処
理がされるようになっている。
Although the substrate transfer mechanism 23 as described above is also provided in the main bodies 55 and 56 of the second and third satellites 52 and 53, the rotary table 24 is provided in the main body 5.
Transport space S kept at a predetermined degree of vacuum in 4, 55, 56
(Refer to FIG. 10) When each of the substrate holders 32 is driven to rotate by the rotation driving unit 27 and is moved up by a predetermined distance by driving of the elevating and lowering driving unit 26, the respective substrate holders 32 are moved.
4, 55 and 56 are housed in respective vacuum processing chambers arranged at equal angular intervals. At this time, the substrate holder 3
Due to the seal member 33 attached to the second bottom plate 32a, the respective vacuum processing chambers and the transfer space S are in a state of mutual vacuum insulation. In this state, a predetermined vacuum processing is performed in each vacuum processing chamber.

【0023】図2に示すように、第1サテライト51の
仕込室57と第3サテライト53の取出室69とは一直
線上に並んで配設されており、これら仕込室57および
取出室69の下方には直線コンベヤ80が搬送台81の
上に敷設されている。直線コンベヤ80には所定の間隔
をおいてカセット82が載置されており、それぞれのカ
セット82は12枚の基板22を収容することが可能と
なっている。直線コンベヤ80の上流側から矢印aの方
向に移送されてくるカセット82が仕込室57の近傍に
まで到達すると、ここで基板仕込装置74により1枚づ
つ基板22が仕込室57へと仕込まれるようになってい
る。なお、仕込室57は後述するように基板供給室7
2、隔離室73aおよび仕込室本体76から成り、この
うち基板供給室72へと基板22が基板仕込装置74に
より供給されるようになっている。そこで、この基板仕
込装置74の詳細について以下に説明する。
As shown in FIG. 2, the charging chamber 57 of the first satellite 51 and the take-out chamber 69 of the third satellite 53 are arranged in line, and below the charging chamber 57 and the take-out chamber 69. A linear conveyor 80 is laid on a carrier 81. Cassettes 82 are placed on the linear conveyor 80 at predetermined intervals, and each cassette 82 can accommodate twelve substrates 22. When the cassette 82 transferred from the upstream side of the linear conveyor 80 in the direction of the arrow a reaches the vicinity of the preparation chamber 57, the substrate preparation device 74 prepares the substrates 22 one by one into the preparation chamber 57. It has become. The loading chamber 57 is the substrate supply chamber 7 as described later.
2, the isolation chamber 73a and the loading chamber main body 76, of which the substrate 22 is fed to the substrate feeding chamber 72 by the substrate loading device 74. Therefore, the details of the substrate charging device 74 will be described below.

【0024】図3に基板仕込装置74の要部の拡大図を
示すが、基板供給室72の直下方には、図15に示す基
板ホルダ32と同様な構成の保持部材85が架台88上
に配設されている。すなわち、保持部材85の底板85
aにはシール部材86が装着されており、底板85aと
架台88との間は複数のばね87により弾性支持されて
いる。これもまた図示せずとも、ばね87の下端部には
それぞれ台座が固定されており、この台座を介して架台
88に固定されているものとする。そして保持部材85
の上端部には円弧状の溝85bが形成されており、ここ
に基板22の下端部を係合させることにより、基板22
を保持させるようになっている。また架台88の下端部
には、図示せずともこの保持部材85を所定距離だけ昇
降させる駆動装置が取り付けられており、保持部材85
を図3に示す下降位置から所定距離だけ上昇させたとき
には、上方の基板供給室72の開口72aを介して底板
85aから基板22を含めた保持部材上部を収容させ、
かつ底板85aに装着されるシール部材86により基板
供給室72内と外気とを相隔離することができるように
なっている。
FIG. 3 shows an enlarged view of the main part of the substrate loading device 74. Below the substrate supply chamber 72, a holding member 85 having the same structure as the substrate holder 32 shown in FIG. It is arranged. That is, the bottom plate 85 of the holding member 85
A seal member 86 is attached to a and elastically supported by a plurality of springs 87 between the bottom plate 85a and the pedestal 88. Although not shown, pedestals are fixed to the lower ends of the springs 87, and the pedestals 88 are fixed via the pedestals. And the holding member 85
An arcuate groove 85b is formed at the upper end of the substrate 22 by engaging the lower end of the substrate 22 with the groove 85b.
Is designed to hold. Further, a drive device for raising and lowering the holding member 85 by a predetermined distance is attached to the lower end portion of the gantry 88, and the holding member 85 is not shown.
3 is raised from the lowered position shown in FIG. 3 by a predetermined distance, the upper part of the holding member including the substrate 22 is accommodated from the bottom plate 85a through the opening 72a of the upper substrate supply chamber 72,
Further, the inside of the substrate supply chamber 72 and the outside air can be separated from each other by the seal member 86 attached to the bottom plate 85a.

【0025】保持部材85の側部には、直線コンベヤ8
0上のカセット82から1枚づつ基板22を保持部材8
5に転送する転送部材90が配設されており、これは図
3ないし図5に示すように軸部91と翼部92とから成
る。軸部91は軸方向に所定距離だけ昇降することがで
き、また軸のまわりに所定角度だけ回動することができ
るようになっている。他方、翼部92の先端中央部には
一対の係合部93、93が配設されており、これら係合
部93、93は図4に示すように、翼部92から外方へ
所定距離だけ突出することができ、さらにこの位置から
上下方向に所定距離だけ移動させることにより、一点鎖
線で示す基板22の中心孔22aに係合可能となってい
る。
A linear conveyor 8 is provided on the side of the holding member 85.
The holding member 8 holds the substrates 22 one by one from the cassette 82 on the 0.
There is provided a transfer member 90 for transferring to 5, which comprises a shank 91 and a wing 92 as shown in FIGS. The shaft portion 91 can be moved up and down by a predetermined distance in the axial direction, and can be rotated about the shaft by a predetermined angle. On the other hand, a pair of engaging portions 93, 93 are provided in the central portion of the tip of the wing portion 92, and these engaging portions 93, 93 are, as shown in FIG. It is possible to engage with the central hole 22a of the substrate 22 indicated by the alternate long and short dash line by moving from this position in the vertical direction by a predetermined distance.

【0026】基板仕込装置74は以上のように構成され
るが、次に仕込室57の詳細について説明する。
The substrate preparation device 74 is constructed as described above. Next, the details of the preparation chamber 57 will be described.

【0027】仕込室57は上述したように基板供給室7
2、隔離室73aおよび仕込室本体76から成ってお
り、図6に隔離室73aの拡大断面図を示す。基板仕込
装置74により基板供給室72に供給された基板22は
図6に示す隔離室73aを通って第1サテライト51の
真空処理室の1つである仕込室本体76に搬送されるの
であるが、以下、隔離室73aの詳細について説明す
る。
The preparation chamber 57 is the substrate supply chamber 7 as described above.
2, the isolation chamber 73a and the charging chamber main body 76, and FIG. 6 shows an enlarged sectional view of the isolation chamber 73a. The substrate 22 supplied to the substrate supply chamber 72 by the substrate preparation device 74 is conveyed to the preparation chamber main body 76 which is one of the vacuum processing chambers of the first satellite 51 through the isolation chamber 73a shown in FIG. The details of the isolation chamber 73a will be described below.

【0028】中継部材98は隔離室73aの底部中央に
配設され、これは中継ブロック104、駆動ロッド10
5および駆動部106から成る。この中継部材98の駆
動部106はケーシング95の底壁下面中央にシール部
材103を介して固定されており、その駆動ロッド10
5をケーシング95の第1貫通孔102に挿通させてい
る。そして、この駆動ロッド105の端部には、上部に
基板22を保持するための係合溝104aを形成した中
継ブロック104が固定されており、駆動部106の駆
動により中継ブロック104は所定距離だけ昇降駆動さ
れるようになっている。中継部材98は以上のようにし
て構成されるが、隔離室73aはこの中継部材98を中
心に図中左右対称な構成となっている。
The relay member 98 is disposed at the center of the bottom of the isolation chamber 73a, which is the relay block 104 and the drive rod 10.
5 and the driving unit 106. The drive portion 106 of the relay member 98 is fixed to the center of the bottom surface of the bottom wall of the casing 95 via the seal member 103, and the drive rod 10 thereof is provided.
5 is inserted into the first through hole 102 of the casing 95. A relay block 104 having an engaging groove 104a for holding the substrate 22 is fixed to the end of the drive rod 105, and the relay block 104 is driven by a predetermined distance by driving the drive unit 106. It is designed to be driven up and down. The relay member 98 is configured as described above, but the isolation chamber 73a has a symmetrical configuration in the figure with the relay member 98 as the center.

【0029】隔離室73aの左右の側壁には搬送部材9
7a、97bおよびロックバルブ99a、99bが配設
されている。搬送部材97a、97bは搬送ブロック1
11a、111b、駆動ロッド112a、112bおよ
び駆動部113a、113bとから成る。搬送部材97
a、97bの駆動部113a、113bはケーシング9
5の両側壁外部にシール部材109a、109bを介し
て固定されており、その駆動ロッド112a、112b
をケーシング95の両側壁の第2貫通孔107a、10
7bに挿通させている。そして、この駆動ロッド112
a、112bの端部には、上部に基板22を保持するた
めの係合溝114a、114bを形成した搬送ブロック
111a、111bが固定されており、駆動部113
a、113bの駆動により搬送ブロック111a、11
1bは、図6において一点鎖線で示すP(P’)の位置
から隔離室73a中央の二点鎖線で示すQの位置まで水
平方向に移動可能となっている。なお、この搬送部材9
7a、97bは図7に示すように、その駆動ロッド11
2a、112bは端部で二股に分岐しており、その各々
の端部に搬送ブロック111a、111bが二分割され
て固定されている。これら両ブロック間の間隔は図示す
るように中継部材98の中継ブロック104の幅より若
干大きく形成されている。
Transport members 9 are provided on the left and right side walls of the isolation chamber 73a.
7a, 97b and lock valves 99a, 99b are provided. The transport members 97a and 97b are the transport block 1
11a and 111b, drive rods 112a and 112b, and drive units 113a and 113b. Transport member 97
The drive portions 113a and 113b of a and 97b are the casing 9
5 are fixed to the outside of both side walls via seal members 109a and 109b, and their drive rods 112a and 112b.
The second through holes 107a, 10a on both side walls of the casing 95.
It is inserted through 7b. Then, this drive rod 112
Transport blocks 111a and 111b formed with engagement grooves 114a and 114b for holding the substrate 22 on the top are fixed to the end portions of a and 112b, and the driving unit 113 is provided.
a, 113b drive the transport blocks 111a, 11a
1b is horizontally movable from the position of P (P ') shown by the one-dot chain line in FIG. 6 to the position of Q shown by the two-dot chain line in the center of the isolation chamber 73a. In addition, this conveying member 9
7a and 97b, as shown in FIG.
2a and 112b are bifurcated at their ends, and the transport blocks 111a and 111b are divided into two parts and fixed to their respective ends. As shown in the drawing, the interval between these two blocks is formed to be slightly larger than the width of the relay block 104 of the relay member 98.

【0030】次に、ロックバルブ99a、99bの詳細
について説明する。図6においてケーシング95の底壁
部および側壁部にはそれぞれ開口101a、101bお
よび第3貫通孔108a、108bが形成されており、
開口101a、101bには弁座形成部材100a、1
00bがシールリング115a、115bを介在して取
り付けられている。これに対向して直方形状の弁体11
4a、114bがその外周縁部に形成した溝にエラスト
マー等で成るシール部材116a、116bを嵌着して
いて、弁座形成部材100a、100bと当接して図示
するような弁閉状態をとることができる。第3貫通孔1
08a、108bを気密に固定するように駆動部117
a、117bがシール部材110a、110bを介して
ケーシング95の外壁に固定されており、その駆動ロッ
ド118a、118bが第3貫通孔108a、108b
に遊嵌して端部に上述した弁体114a、114bを固
定している。駆動部117a、117bは弁体114
a、114bを図6においてx方向およびy方向に所定
距離だけ移動させることができ、弁体114a、114
bをy方向のストローク分だけ上方に駆動して一点鎖線
で示すRの位置に移動させ、弁開状態をとらせることが
できるようになっている。これらxおよびy方向の駆動
は、図示せずとも、駆動部117a、117b内の駆動
ロッド118a、118bには永久磁石が固定されてお
り、これと同心的にこれら永久磁石と対向するように電
磁石を配設し、この電磁石の移動および電磁力の調整に
より行われるようになっている。これにより、弁体11
4a、114bをx方向の駆動により弁開位置および弁
閉位置に移動させ、またy方向の駆動により弁閉位置で
弁体114a、114bを弁座形成部材100a、10
0bに対して押圧させて隔離室73aを密閉するように
している。
Next, details of the lock valves 99a and 99b will be described. In FIG. 6, openings 101a and 101b and third through holes 108a and 108b are formed in the bottom wall portion and the side wall portion of the casing 95, respectively.
The valve seat forming members 100a, 1 are provided in the openings 101a, 101b.
00b is attached via seal rings 115a and 115b. Opposite to this, rectangular valve body 11
4a and 114b are fitted with seal members 116a and 116b made of an elastomer or the like in grooves formed in the outer peripheral edge portions thereof, and abut the valve seat forming members 100a and 100b to take a valve closed state as shown in the figure. You can Third through hole 1
The driving unit 117 is arranged so as to fix the 08a and 108b in an airtight manner.
a and 117b are fixed to the outer wall of the casing 95 via seal members 110a and 110b, and their drive rods 118a and 118b have third through holes 108a and 108b.
The valve bodies 114a and 114b described above are fixed to the ends by loose fitting. The drive units 117a and 117b are the valve bodies 114.
a and 114b can be moved by a predetermined distance in the x direction and the y direction in FIG.
The valve b can be opened by driving b upward by the stroke in the y direction to move it to the position R indicated by the alternate long and short dash line. For driving in the x and y directions, permanent magnets are fixed to the drive rods 118a and 118b in the drive units 117a and 117b, although not shown, and the electromagnets are concentrically opposed to the permanent magnets. Is provided, and the movement of the electromagnet and the adjustment of the electromagnetic force are performed. Thereby, the valve body 11
4a, 114b are moved to the valve open position and the valve closed position by driving in the x direction, and the valve bodies 114a, 114b are moved to the valve seat forming members 100a, 10a at the valve closing position by driving in the y direction.
The isolation chamber 73a is closed by pressing it against 0b.

【0031】上述の開口101aは基板供給室72に連
通しており、他方の開口101bは仕込室本体76に連
通しているのであるが、隔離室73a上部のこれら開口
101a、101bに対応する位置には基板支持部材9
6a、96bが配設されている。これら基板支持部材9
6a、96bは駆動部119a、119bおよび支持部
120a、120bとから成り、駆動部119a、11
9bの駆動により支持部120a、120bを図6の位
置から開口101a、101bを介してそれぞれ基板供
給室72および仕込室本体76内部にまで下降させるこ
とができるようになっている。またこの支持部120
a、120bの端部には上下一対のアーム121a、1
21a、121b、121bが配設されており、これら
アーム121a、121bは図8に示すように、軸方向
および上下方向に移動可能で、図8Cに示すように基板
22の中心孔22aに係合することができるようになっ
ている。
The above-mentioned opening 101a communicates with the substrate supply chamber 72, and the other opening 101b communicates with the preparation chamber main body 76, but the positions corresponding to these openings 101a, 101b above the isolation chamber 73a. The substrate support member 9
6a and 96b are provided. These substrate support members 9
6a and 96b are composed of drive units 119a and 119b and support units 120a and 120b.
By driving 9b, the supporting portions 120a and 120b can be lowered from the position shown in FIG. 6 to the inside of the substrate supply chamber 72 and the loading chamber main body 76 through the openings 101a and 101b, respectively. In addition, this support portion 120
A pair of upper and lower arms 121a and 1a are provided at the ends of a and 120b.
21a, 121b, 121b are arranged. These arms 121a, 121b are movable in the axial direction and the vertical direction as shown in FIG. 8, and engage with the central hole 22a of the substrate 22 as shown in FIG. 8C. You can do it.

【0032】隔離室73aは以上のように構成され、基
板支持部材96a、96b、搬送部材97a、97bお
よび中継部材98により本発明の搬送手段が構成され
る。また通常、ロックバルブ99a、99bは図6に示
すように弁閉状態をとっており、また隔離室73a内部
はターボ分子ポンプ83(図2参照)により図示しない
排気口を介して所定の真空度に保たれている。
The isolation chamber 73a is configured as described above, and the substrate support members 96a and 96b, the transport members 97a and 97b, and the relay member 98 constitute the transport means of the present invention. Further, normally, the lock valves 99a and 99b are in a valve closed state as shown in FIG. 6, and the inside of the isolation chamber 73a is controlled by a turbo molecular pump 83 (see FIG. 2) through an exhaust port (not shown) to a predetermined vacuum degree. Is kept at.

【0033】第1サテライト51と第2サテライト52
との間に配設される第1搬送室60は図10に示すよう
に、第1サテライト51側の搬送室本体V、第2サテラ
イト52側の搬送室本体Wおよびこれら搬送室本体V、
Wの間に配設される隔離室73bとから成るが、この隔
離室73bは図6を参照して説明した仕込室57の隔離
室73aとまったく同一の構成となっている。すなわ
ち、後述するように仕込室57に仕込まれた基板22は
加熱室59a、59bにおいて所定の加熱処理が行われ
た後、この第1搬送室60を通って基板22が第1サテ
ライト51から第2サテライト52へと供給されるので
あるが、サテライトA側の基板ホルダ32に保持されて
搬送室本体Vに収容された基板22は、隔離室73b内
部の基板支持部材96a、96b、搬送部材97a、9
7bおよび中継部材98とから成る搬送手段により第2
サテライト52側の搬送室本体W内に収容される基板ホ
ルダ32’に保持される。また、第2サテライト52と
第3サテライト53との間に配設される第2搬送室65
の隔離室73cも同様に構成される。
First satellite 51 and second satellite 52
As shown in FIG. 10, the first transfer chamber 60 disposed between the transfer chamber main body V on the first satellite 51 side, the transfer chamber main body W on the second satellite 52 side, and the transfer chamber main body V,
The isolation chamber 73b is disposed between W and has the same structure as the isolation chamber 73a of the preparation chamber 57 described with reference to FIG. That is, as will be described later, the substrate 22 loaded in the loading chamber 57 is subjected to a predetermined heat treatment in the heating chambers 59a and 59b, and then the substrate 22 passes from the first satellite 51 to the first satellite 51 through the first transfer chamber 60. Although being supplied to the two satellites 52, the substrate 22 held by the substrate holder 32 on the satellite A side and accommodated in the transfer chamber main body V is the substrate support members 96a and 96b inside the isolation chamber 73b, and the transfer member 97a. , 9
2nd by the conveyance means which consists of 7b and the relay member 98.
It is held by the substrate holder 32 ′ housed in the transfer chamber body W on the satellite 52 side. In addition, a second transfer chamber 65 arranged between the second satellite 52 and the third satellite 53.
The isolation chamber 73c is also configured similarly.

【0034】さらに取出室69について説明すると、図
2を参照して、取出室69は取出室本体77、隔離室7
3dおよび基板供給室123とから成り、この基板供給
室123の直下方に、上述した基板仕込装置74と同様
な構成の基板取出装置75が配設されている。基板取出
装置75は転送部材124および保持部材125等から
なり、これにより基板供給室123から外方へ取り出さ
れた基板22を前方の直線コンベヤ80上を流れるカセ
ット82内へと収容するようになっている。
Explaining the take-out chamber 69 further, referring to FIG. 2, the take-out chamber 69 is composed of the take-out chamber main body 77 and the isolation chamber 7.
3d and a substrate supply chamber 123, a substrate take-out device 75 having the same configuration as the substrate preparation device 74 described above is arranged immediately below the substrate supply chamber 123. The substrate take-out device 75 is composed of a transfer member 124, a holding member 125, and the like, and thereby the substrate 22 taken out from the substrate supply chamber 123 is accommodated in a cassette 82 that flows on a front linear conveyor 80. ing.

【0035】本実施例の枚葉式真空処理装置50は以上
のように構成されるが、次にこの作用について説明す
る。
The single-wafer processing apparatus 50 of this embodiment is constructed as described above, and its operation will be described below.

【0036】図2を参照して、仕込室57への基板22
の仕込みについて説明する。直線コンベヤ80により移
送される未処理の基板22を収容したカセット82が基
板仕込装置74の近傍にまで到達すると、転送部材90
の翼部92が図示の位置まで回動し、かつ軸部91が軸
方向に所定距離下降する。このとき、その翼部92の係
合部93、93が基板22の中心孔22aに対向する。
すると、これら係合部93、93が軸方向に所定距離だ
け突出し、また上下方向に移動することにより係合部9
3、93が基板22の中心孔22aに係合する。そして
軸部91が軸方向に所定距離だけ上昇し、翼部92を所
定角度だけ回動させ、再び軸方向に所定距離だけ下降さ
せると、図3に示すように基板22が保持部材85の溝
85b上に転送される。そして架台88が所定距離だけ
上昇することにより基板22が直上方の基板供給室72
内に収容される。
Referring to FIG. 2, the substrate 22 to the preparation chamber 57
The preparation will be described. When the cassette 82 containing the unprocessed substrate 22 transferred by the linear conveyor 80 reaches the vicinity of the substrate loading device 74, the transfer member 90.
The wing portion 92 rotates to the position shown in the figure, and the shaft portion 91 descends in the axial direction by a predetermined distance. At this time, the engaging portions 93, 93 of the wing portion 92 face the central hole 22 a of the substrate 22.
Then, the engaging portions 93, 93 protrude axially by a predetermined distance and move in the vertical direction, whereby the engaging portion 9
3, 93 engage with the central hole 22 a of the substrate 22. Then, when the shaft portion 91 is moved up by a predetermined distance in the axial direction, the blade portion 92 is rotated by a predetermined angle, and is lowered again by the predetermined distance in the axial direction, the substrate 22 moves into the groove of the holding member 85 as shown in FIG. 85b. Then, the pedestal 88 is raised by a predetermined distance, so that the substrate 22 is directly above the substrate supply chamber 72.
Housed within.

【0037】図6を参照して、隔離室73a内部におい
て左方の搬送部材97aは先ずP位置にあり、基板22
が基板供給室72内に収容されると、ロックバルブ99
aはR位置に移動して開口101aを開弁状態とする。
すなわち隔離室73aと基板供給室72とが相連通す
る。なお、このとき保持部材85の底板85aに装着さ
れるシール部材86により基板供給室72と装置外部と
は真空絶縁されており、また隔離室73a内部における
右方のロックバルブ99bは弁閉位置にあるので隔離室
73bと仕込室本体76とは真空絶縁された状態となっ
ている。この状態で基板支持部材96aの支持部120
aが下方へと延び、開弁状態となっている開口100a
を通って基板供給室72内の基板22の中心孔22aに
対して、支持部120aのアーム121a、121aが
対向する。この状態を図8Aに示す。次いで図8Bおよ
び図8Cに示すようにアーム121a、121aが軸方
向に突出することにより基板22の中心孔22aを貫通
し、そして上下方向に移動して基板22の中心孔22a
に係合する。その後、再び支持部120aが上方へと移
動し、図6に示す位置まで上昇し、下方の搬送部材97
aがP位置から実線で示す位置に、またロックバルブが
R位置から実線で示す弁閉状態となり、再び隔離室73
aが基板供給室72および仕込室本体76の双方から隔
離する。なお、ロックバルブ99aの開閉に伴って隔離
室73a内の真空度が低下しても、隔離室73の内部は
ターボ分子ポンプ83の真空排気作用により常に所定の
真空度にまで回復される。
Referring to FIG. 6, the transfer member 97a on the left side is first in the P position inside the isolation chamber 73a, and the substrate 22
When the substrate is housed in the substrate supply chamber 72, the lock valve 99
a moves to the R position to open the opening 101a.
That is, the isolation chamber 73a and the substrate supply chamber 72 communicate with each other. At this time, the substrate supply chamber 72 and the outside of the apparatus are vacuum-insulated by the seal member 86 mounted on the bottom plate 85a of the holding member 85, and the lock valve 99b on the right inside the isolation chamber 73a is at the valve closed position. Therefore, the isolation chamber 73b and the charging chamber body 76 are vacuum-insulated. In this state, the supporting portion 120 of the substrate supporting member 96a
The opening 100a in which a is extended downward and is in a valve open state
The arms 121a and 121a of the support portion 120a face the central hole 22a of the substrate 22 in the substrate supply chamber 72 through the through holes. This state is shown in FIG. 8A. Then, as shown in FIGS. 8B and 8C, the arms 121a and 121a project axially to penetrate the center hole 22a of the substrate 22 and move vertically to move the center hole 22a of the substrate 22.
Engages. After that, the supporting portion 120a again moves upward, rises to the position shown in FIG.
a from the P position to the position shown by the solid line, and the lock valve from the R position to the valve closed state shown by the solid line.
a separates from both the substrate supply chamber 72 and the loading chamber body 76. Even if the degree of vacuum in the isolation chamber 73a decreases as the lock valve 99a opens and closes, the inside of the isolation chamber 73 is always restored to a predetermined degree of vacuum by the vacuum evacuation action of the turbo molecular pump 83.

【0038】基板22を支持した基板支持部材120a
は下方の搬送部材97aの搬送ブロック111aに向け
て下降し、搬送ブロック111aの係合溝114aに基
板を載置する。すると支持部120aのアーム121
a、121aが先と逆の手順で基板22の中心孔22a
に対する係合状態を解除する。このときの搬送部材97
aおよび基板22の状態を簡単にではあるが図7に示
す。次いで中継部材98の下降位置で搬送部材97aが
図6において右方へと移動し、基板22を保持したまま
搬送ブロック111aを図中二点鎖線で示すQの位置ま
で搬送する。搬送ブロック111aがQの位置に停止す
ると、中継部材が図6に示す下降位置から上方へと移動
し、中継ブロック104の係合溝104aに基板22の
下端部を係合させ、さらに上昇することにより搬送ブロ
ック111aに代わって中継ブロック104が基板22
を保持する。基板22と搬送ブロック111aとの係合
状態が解除されると、搬送ブロック111aは駆動部1
13aにより再び左方へと移動され、一点鎖線で示すP
位置において次の基板を保持すべく待機する。
A substrate support member 120a supporting the substrate 22
Moves down toward the transfer block 111a of the lower transfer member 97a and places the substrate in the engagement groove 114a of the transfer block 111a. Then, the arm 121 of the support portion 120a
a and 121a are the reverse of the above procedure, and the center hole 22a of the substrate 22 is
The engagement state with respect to is released. Transport member 97 at this time
The state of a and the substrate 22 is shown in FIG. 7 though briefly. Next, the transport member 97a moves to the right in FIG. 6 at the lowered position of the relay member 98, and transports the transport block 111a to the position Q indicated by a two-dot chain line in the figure while holding the substrate 22. When the transport block 111a stops at the Q position, the relay member moves upward from the lowered position shown in FIG. 6, engages the lower end portion of the substrate 22 with the engagement groove 104a of the relay block 104, and further moves up. The relay block 104 replaces the transfer block 111a with the substrate 22.
Hold. When the engagement state between the substrate 22 and the transport block 111a is released, the transport block 111a moves to the drive unit 1
13a is moved to the left again, and P indicated by the alternate long and short dash line
Wait to hold the next substrate in position.

【0039】図7を参照して、基板22を保持した中継
ブロック104がその上昇位置を保った状態で、右方の
搬送部材97bが駆動を開始する。すなわち、駆動部1
13bの駆動により搬送ブロック111bを中継部材1
06が位置するQ位置(図7において一点鎖線で示す位
置)まで移動し、そこで停止する。そして駆動部106
の駆動により中継ブロック104が下降し、基板22を
搬送ブロック111bの係合溝114bに係合させ、さ
らに下降することにより中継ブロック104に代わって
搬送ブロック111bが基板22を保持する。次いで搬
送ブロック111bは基板22を保持したまま駆動部1
13bの駆動により図6において実線で示す位置にまで
移動して停止する。そこで搬送ブロック111bの直上
方に位置する基板支持部材96bの支持部120bが駆
動部119bの駆動により下方に移動し、アーム121
b、121bを基板22の中心孔22aに対向させ、上
述した他方の基板支持部材119aのアーム121a、
121aと同様な作用で搬送ブロック111b上の基板
22を保持し、その後、所定距離だけ上昇する。この状
態で、搬送部材97bがP’の位置まで後退し、またロ
ックバルブ99bがR位置まで後退する。すなわち、ロ
ックバルブ99bは弁開位置にあり、隔離室73aと仕
込室本体76とが相連通する。このとき、第1サテライ
ト51の回転テーブル9は上昇位置にあり、回転テーブ
ル9の外周縁部に配設された各基板ホルダ32が仕込室
本体76を含む第1サテライト51の各真空処理室内に
収容されている。この状態で、基板22を支持している
基板支持部材96bの保持部120bは下方へと延び、
弁開状態となっている開口101bを介して仕込室本体
76に収容される基板ホルダ32へと基板22を載置す
る。そしてアーム121b、121bと基板22の中心
孔22aとの係合状態を解除して再び図6に示す位置ま
で上昇し、その後、ロックバルブ99bが図示する弁閉
状態をとる。
Referring to FIG. 7, the transfer member 97b on the right side starts to be driven in a state where the relay block 104 holding the substrate 22 maintains its raised position. That is, the drive unit 1
The transfer block 111b is moved to the relay member 1 by driving 13b.
It moves to the Q position where 06 is located (the position shown by the alternate long and short dash line in FIG. 7) and stops there. And the drive unit 106
The relay block 104 is lowered by the driving of (1), the substrate 22 is engaged with the engagement groove 114b of the transport block 111b, and further lowered, the transport block 111b holds the substrate 22 in place of the relay block 104. Next, the transport block 111b holds the substrate 22 and drives the drive unit 1
By driving 13b, it moves to the position shown by the solid line in FIG. 6 and stops. Therefore, the support portion 120b of the substrate support member 96b located immediately above the transfer block 111b moves downward by the drive of the drive portion 119b, and the arm 121 is moved.
b and 121b are opposed to the central hole 22a of the substrate 22, and the arm 121a of the other substrate supporting member 119a described above is provided.
The substrate 22 on the transport block 111b is held by the same action as 121a, and then the substrate 22 is raised by a predetermined distance. In this state, the transport member 97b retracts to the position P'and the lock valve 99b retracts to the R position. That is, the lock valve 99b is in the valve open position, and the isolation chamber 73a and the charging chamber body 76 are in communication with each other. At this time, the rotary table 9 of the first satellite 51 is in the raised position, and the substrate holders 32 arranged on the outer peripheral edge of the rotary table 9 are placed in the vacuum processing chambers of the first satellite 51 including the charging chamber body 76. It is housed. In this state, the holding portion 120b of the substrate supporting member 96b supporting the substrate 22 extends downward,
The substrate 22 is placed on the substrate holder 32 housed in the charging chamber body 76 via the opening 101b in the valve open state. Then, the engagement state between the arms 121b and 121b and the central hole 22a of the substrate 22 is released, and the arms are raised again to the position shown in FIG. 6, after which the lock valve 99b takes the valve closed state shown in the figure.

【0040】以上のようにして、図9に示すように、基
板22は1枚づつ基板保持部材85により基板供給室7
2に供給され、隔離室73a内部の搬送手段、すなわち
基板支持部材96aから搬送部材97a、中継部材9
8、搬送部材97b、次いで基板支持部材96bを経由
して仕込室本体76内に位置する第1サテライト51の
本体54内の回転テーブル9の外周縁部に固定される基
板ホルダ32へと保持される。この隔離室73aによ
り、基板22の装置外部から第1サテライト51の基板
ホルダ32への仕込みは、常に第1サテライト51内の
雰囲気すなわち真空状態と外気とを真空絶縁した状態で
行うことができる。
As described above, as shown in FIG. 9, the substrates 22 are held one by one by the substrate holding member 85.
2, the transfer means inside the isolation chamber 73a, that is, the substrate support member 96a to the transfer member 97a, the relay member 9
8, the carrier member 97b, and then the substrate supporting member 96b, and the substrate holder 32 fixed to the outer peripheral edge of the rotary table 9 in the main body 54 of the first satellite 51 located in the main body 76 of the charging chamber. It By this isolation chamber 73a, the substrate 22 can be charged into the substrate holder 32 of the first satellite 51 from the outside of the apparatus at all times with the atmosphere inside the first satellite 51, that is, the vacuum state and the outside air being vacuum-insulated.

【0041】図1を参照して、仕込室57内において、
さらに詳しくは仕込室本体76内において未処理の基板
22を保持した基板ホルダ32は、回転テーブル9の所
定距離の下降、45度回転(図中矢印の向き)および所
定距離の上昇により予備室58aに移送される。このと
き、上述のような過程を経て仕込室本体76において新
たな未処理の基板22が基板ホルダ32に保持される。
そして再び回転テーブル9の下降、45度回転および上
昇の一連の動作を繰り返すことにより、仕込室57へと
順次、未処理の基板22が基板ホルダ32に保持され
る。先に未処理の基板22を保持した基板ホルダ32が
加熱室59bに供給されると、これより上流側の加熱室
59aにも未処理の基板22を保持した基板ホルダ32
が供給された状態となるが、この時点で加熱室59aお
よび59bにおいて一斉に基板22の所定の真空加熱処
理(脱ガス処理)が行われる。なお、予備室58a、5
8bに供給された基板22はここでは何ら真空処理はさ
れることなく、待機しているだけである。
Referring to FIG. 1, in the charging chamber 57,
More specifically, the substrate holder 32 holding the unprocessed substrate 22 in the loading chamber main body 76 is lowered by the predetermined distance of the turntable 9 and rotated by 45 degrees (in the direction of the arrow in the figure) and raised by the predetermined distance, so that the preliminary chamber 58a. Be transferred to. At this time, a new unprocessed substrate 22 is held by the substrate holder 32 in the charging chamber main body 76 through the above process.
Then, by repeating a series of operations of lowering the rotating table 9, rotating by 45 degrees, and raising, the unprocessed substrates 22 are sequentially held by the substrate holder 32 in the preparation chamber 57. When the substrate holder 32 holding the unprocessed substrate 22 is supplied to the heating chamber 59b, the substrate holder 32 holding the unprocessed substrate 22 also in the heating chamber 59a on the upstream side.
However, at this time, the substrate 22 is simultaneously subjected to a predetermined vacuum heat treatment (degassing treatment) in the heating chambers 59a and 59b. In addition, the preliminary chambers 58a, 5
The substrate 22 supplied to 8b is not subjected to any vacuum processing here, and is merely waiting.

【0042】加熱室59a、59bにおける所定の真空
加熱処理が終了すると、再び回転テーブル9の上述した
一連の駆動が再開され、仕込室57においては上述のよ
うに未処理の基板22が順次、仕込まれる。また第1搬
送室60に至った基板ホルダ32は図10に示すように
第1サテライト51側の搬送室本体Vに収容される。こ
こに収容された加熱処理済の基板22は隔離室73bを
介して、第2サテライト52側の搬送室本体Wに収容さ
れる基板ホルダ32’へと移送される。この第1搬送室
60の隔離室73b内に配設される搬送手段は、仕込室
57の隔離室73a内に配設される搬送手段と同様な作
用で第1サテライト51側の搬送室本体Vから第2サテ
ライト52側の搬送室本体Wへと基板22を搬送するの
で、その詳細な説明は省略する。
When the predetermined vacuum heating processing in the heating chambers 59a and 59b is completed, the above-described series of driving of the rotary table 9 is restarted again, and the untreated substrates 22 are sequentially charged in the charging chamber 57 as described above. Be done. Further, the substrate holder 32 reaching the first transfer chamber 60 is housed in the transfer chamber body V on the first satellite 51 side as shown in FIG. The heat-treated substrate 22 accommodated therein is transferred to the substrate holder 32 ′ accommodated in the transfer chamber main body W on the second satellite 52 side via the isolation chamber 73b. The transfer means arranged in the isolation chamber 73b of the first transfer chamber 60 has the same action as the transfer means arranged in the isolation chamber 73a of the preparation chamber 57, and the transfer chamber main body V on the first satellite 51 side. Since the substrate 22 is transferred from to the transfer chamber body W on the second satellite 52 side, detailed description thereof will be omitted.

【0043】第1搬送室を介して第2サテライト52の
基板ホルダ32’に供給された基板22は、第1サテラ
イト51と同様に、回転テーブル9の一連の駆動により
搬送室本体Wから加熱室62に移送され、ここで再び所
定の真空加熱処理(〜280℃)が行われる。このと
き、第2サテライト52の搬送室本体W内に位置する基
板ホルダ32’は、隔離室73bを搬送されてきた次の
基板22を保持する。このようにして順次、基板22が
第2サテライト52へと搬送される。加熱室62におい
て所定の加熱真空処理された基板22は第1スパッタ室
63a、63bにそれぞれ移送され、ここで先ずCr
(クロム)のUCT成膜が一斉に行われる。その後、こ
れら成膜済の基板22を第2スパッタ室64a、64b
に移送し、Co合金のUCT成膜を一斉に行う。これら
第1、第2のスパッタ処理により基板22に磁性層の成
膜が行われる。この第2サテライト52において磁性層
の成膜が行われた基板22は順次第2搬送室65を介し
て第3サテライト53の基板ホルダ32”(図示されて
いない)へと供給されるのであるが、第2搬送室65の
隔離室73cも仕込室57の隔離室73aと同様な作用
を行うことにより、基板22を第2サテライト52から
第3サテライト53へと搬送する。
The substrate 22 supplied to the substrate holder 32 'of the second satellite 52 via the first transfer chamber is moved from the transfer chamber main body W to the heating chamber by a series of drive of the rotary table 9 like the first satellite 51. It is transferred to 62, where a predetermined vacuum heat treatment (up to 280 ° C.) is performed again. At this time, the substrate holder 32 ′ located in the transfer chamber body W of the second satellite 52 holds the next substrate 22 transferred in the isolation chamber 73b. In this way, the substrate 22 is sequentially transported to the second satellite 52. The substrate 22 that has been subjected to a predetermined heating and vacuum treatment in the heating chamber 62 is transferred to the first sputtering chambers 63a and 63b, respectively.
UCT film formation of (chromium) is performed all at once. After that, the substrate 22 on which the film has been formed is placed in the second sputtering chambers 64a and 64b.
Then, the UCT film of the Co alloy is simultaneously formed. A magnetic layer is formed on the substrate 22 by these first and second sputtering processes. The substrate 22 on which the magnetic layer is formed in the second satellite 52 is sequentially supplied to the substrate holder 32 ″ (not shown) of the third satellite 53 via the second transfer chamber 65. The isolation chamber 73c of the second transfer chamber 65 also performs the same operation as that of the isolation chamber 73a of the loading chamber 57 to transfer the substrate 22 from the second satellite 52 to the third satellite 53.

【0044】第2搬送室65を介して第3サテライト5
3の基板ホルダ32”に供給された基板22は、上述し
た第1、第2サテライト51、52の回転テーブル9と
同様に、第3サテライト53の回転テーブル9が下降、
45度回転および上昇の一連の駆動を行い、第1搬送室
65から冷却室67へと移送され、所定の冷却処理が行
われる。この基板22の冷却処理が終了すると再び回転
テーブル9の一連の駆動が再開され、これにより順次、
第2サテライト52から第2搬送室65を介して第3サ
テライト53の基板ホルダ32”に搬送されてきた基板
22を冷却室へと供給する。冷却済の基板22はそれぞ
れ反応室68a〜68cに移送され、ここでプラズマC
VD法によりC(カーボン)膜を磁性層の上から成膜す
る。すなわち保護膜の成膜を行う。反応室68a〜68
cにおいて保護膜の成膜が行われた基板22は、回転テ
ーブル9の一連の駆動により取出室69を介して装置外
部へと取り出されるのであるが、以下、この基板22の
取出作用について説明する。
The third satellite 5 is passed through the second transfer chamber 65.
The substrate 22 supplied to the third substrate holder 32 ″ has the turntable 9 of the third satellite 53 lowered similarly to the turntable 9 of the first and second satellites 51 and 52 described above.
A series of driving of rotation and ascending by 45 degrees is performed, the first transport chamber 65 is transferred to the cooling chamber 67, and a predetermined cooling process is performed. When the cooling process of the substrate 22 is completed, a series of driving of the rotary table 9 is restarted again, and thereby, sequentially,
The substrate 22 transferred from the second satellite 52 to the substrate holder 32 ″ of the third satellite 53 via the second transfer chamber 65 is supplied to the cooling chamber. The cooled substrate 22 is supplied to each of the reaction chambers 68a to 68c. Transferred, where plasma C
A C (carbon) film is formed on the magnetic layer by the VD method. That is, a protective film is formed. Reaction chamber 68a-68
The substrate 22 on which the protective film is formed in c is taken out to the outside of the apparatus through the take-out chamber 69 by a series of drive of the rotary table 9. The taking-out action of the substrate 22 will be described below. .

【0045】図2を参照して、第3サテライト53の回
転テーブル9の一連の駆動により取出室本体77に移送
されてきた成膜済の基板22は隔離室73dの上述と同
様な搬送手段により基板供給室123に搬送されるので
あるが、このとき基板供給室123の直下方に配設され
る基板取出装置75の保持部材125は基板供給室12
3内に収容されている。すなわち、先に説明した基板仕
込装置74の保持部材85が仕込室57の基板供給室7
2内に収容されたときの状態と同様に、基板供給室12
3と外気とを相真空絶縁した状態となっている。この状
態で、隔離室73d内の搬送手段の作用により基板22
を保持した保持部材125は図2に示す下降位置をと
り、転送部材124が上述した基板仕込装置74の転送
部材90と同様な作用で保持部材125から直線コンベ
ヤ80上の前方のカセット82へと基板22を転送す
る。以下、この動作を繰り返すことにより、第3サテラ
イト53で保護膜の成膜が行われた基板22は順次、取
出室69から1枚づつ装置外部に取り出され、直線コン
ベヤ80上のカセット82へと収容される。
With reference to FIG. 2, the film-formed substrate 22 transferred to the take-out chamber main body 77 by a series of driving of the rotary table 9 of the third satellite 53 is carried out by the transfer means similar to the above in the isolation chamber 73d. The substrate is conveyed to the substrate supply chamber 123, and at this time, the holding member 125 of the substrate unloading device 75 disposed immediately below the substrate supply chamber 123 is the substrate supply chamber 12.
It is housed in 3. That is, the holding member 85 of the substrate preparation device 74 described above is the substrate supply chamber 7 of the preparation chamber 57.
2, the substrate supply chamber 12
3 and the outside air are in phase vacuum insulation. In this state, the substrate 22 is moved by the action of the transfer means in the isolation chamber 73d.
The holding member 125 which holds the holding member 125 takes the lowered position shown in FIG. 2, and the transfer member 124 moves from the holding member 125 to the front cassette 82 on the linear conveyor 80 by the same operation as the transfer member 90 of the substrate loading device 74 described above. The substrate 22 is transferred. Hereinafter, by repeating this operation, the substrates 22 on which the protective films have been formed by the third satellites 53 are sequentially taken out one by one from the take-out chamber 69 to the outside of the apparatus, and are transferred to the cassette 82 on the linear conveyor 80. Be accommodated.

【0046】なお、第1、第2および第3サテライト5
1、52、53にそれぞれ配設される再生室61、6
6、71は、各サテライト51、52、53の基板ホル
ダ32、32’、32”が基板22の真空処理の過程で
積層した付着膜の除去、すなわちスパッタクリーニング
等による基板ホルダのクリーニングをする真空処理室で
あり、枚葉式真空処理装置50の運転中でも上記基板ホ
ルダのクリーニング作用を行うことができるようにして
いる。また付着物の除去が困難な場合は、装置全体を大
気にベントすることなしに、これら再生室61、66、
71で基板ホルダの交換を行うことができるようになっ
ており、装置の稼働率を向上させるようにしている。
The first, second and third satellites 5 are
Playback chambers 61 and 6 disposed at 1, 52 and 53, respectively.
Denoted at 6 and 71 are vacuums for removing the adhering films laminated by the substrate holders 32, 32 ′ and 32 ″ of the satellites 51, 52 and 53 during the vacuum processing of the substrate 22, that is, cleaning the substrate holder by sputter cleaning or the like. It is a processing chamber and is configured to be able to perform the cleaning action of the substrate holder even while the single wafer processing apparatus 50 is in operation.If it is difficult to remove the deposits, vent the entire apparatus to the atmosphere. Without these reproduction chambers 61, 66,
The substrate holder can be replaced at 71 to improve the operating rate of the apparatus.

【0047】本実施例による枚葉式真空処理装置50は
以上のような作用を行うのであるが、以下のような効果
を奏することができる。
The single-wafer processing apparatus 50 according to the present embodiment performs the above-mentioned operations, but has the following effects.

【0048】すなわち、仕込室57および取出室69の
それぞれに図6に示す隔離室73a(73d)を設けて
いるので、枚葉式真空処理装置50とその外部とを常に
真空絶縁することができ、能率的に、かつ基板22への
安定な薄膜作成を行うことができる。
That is, since the isolation chamber 73a (73d) shown in FIG. 6 is provided in each of the charging chamber 57 and the take-out chamber 69, the single-wafer type vacuum processing apparatus 50 and its outside can always be vacuum-insulated. Therefore, it is possible to efficiently and stably form a thin film on the substrate 22.

【0049】また、第1搬送室60および第2搬送室6
5にも同様な隔離室73b、73cを設けているので、
各サテライト間の雰囲気を完全に分離することができ
る。すなわち例えば第2および第3サテライト52、5
3について言えば、本実施例では第2サテライト52で
はUCT成膜を、他方、第3サテライト53ではプラズ
マCVDによる成膜をそれぞれ行うようにしたが、第3
サテライト53ではCH(炭化水素)系その他の特殊な
ガスを使用する。しかし第2搬送室65の隔離室73c
によりこれらの特殊なガスが第2サテライト52に回り
込むのを防止することができ、よって第2サテライト5
2において常に安定なUCT成膜を行うことができる。
Further, the first transfer chamber 60 and the second transfer chamber 6
Since 5 also has similar isolation chambers 73b and 73c,
The atmosphere between the satellites can be completely separated. That is, for example, the second and third satellites 52, 5
Regarding the third aspect, in the present embodiment, the UCT film formation is performed on the second satellite 52, while the film formation by plasma CVD is performed on the third satellite 53, respectively.
The satellite 53 uses a CH (hydrocarbon) -based or other special gas. However, the isolation chamber 73c of the second transfer chamber 65
Therefore, it is possible to prevent these special gases from entering the second satellite 52, and thus the second satellite 5 can be prevented.
In 2, it is possible to always perform stable UCT film formation.

【0050】また隔離室73a〜73dでは基板22の
みを搬送するようにしているので、特に第1、第2搬送
室60、65について言えば、上述した従来のインライ
ン方式のスパッタ装置1の有していた問題点、すなわち
同一キャリア9(基板ホルダ32、32’、32”)に
プラズマCVDによる膜や、UCTによる成膜が積層さ
れ、キャリアからの放出ガスまたは膜剥離が発生して成
膜室の雰囲気を悪化させてしまう、という問題が生じる
恐れがない。
Further, since only the substrate 22 is transferred in the isolation chambers 73a to 73d, the first inline transfer chamber 60 and the second transfer chamber 65 in particular have the above-described conventional in-line type sputtering apparatus 1. That is, a film formed by plasma CVD or a film formed by UCT is laminated on the same carrier 9 (substrate holders 32, 32 ', 32 "), and the gas released from the carrier or film peeling occurs to form a film forming chamber. There is no fear of causing the problem of deteriorating the atmosphere.

【0051】以上を換言すると、本実施例の枚葉式真空
処理装置50によれば、従来、行い得なかったUCT成
膜とプラズマCVDによる成膜とがひとつの装置で安定
に行うことができる。
In other words, according to the single-wafer processing apparatus 50 of this embodiment, the UCT film formation and the plasma CVD film formation, which cannot be conventionally performed, can be stably performed by one device. .

【0052】以上、本発明の実施例について説明した
が、勿論、本発明はこれに限定されることなく、本発明
の技術的思想に基づいて種々の変形が可能である。
Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications can be made based on the technical idea of the present invention.

【0053】例えば以上の実施例では、枚葉式真空処理
装置50の各サテライト51、52、53の各真空処理
室を図1および図2に示したように配置したが、これに
限らず、各真空処理室の配置変更または真空処理室の変
更も可能である。例えば、第1サテライト51の予備室
58a、58bを加熱室に、また加熱室59a、59b
を基板表面改質用スパッタ室に、また第2サテライトの
真空処理室を上述の実施例と同様な配置にし、かつ第3
サテライト53の反応室68a〜68cをC(カーボ
ン)膜成膜用スパッタ室として配置しても、基板(この
例ではガラス基板に好適)の成膜を実施することも勿
論、本発明に適用可能である。この場合でも、勿論、上
述の実施例と同様な効果を奏することができる。
For example, in the above embodiment, the vacuum processing chambers of the satellites 51, 52, 53 of the single-wafer processing apparatus 50 are arranged as shown in FIGS. 1 and 2, but not limited to this. It is also possible to change the arrangement of each vacuum processing chamber or change the vacuum processing chamber. For example, the preliminary chambers 58a and 58b of the first satellite 51 are used as heating chambers, and the heating chambers 59a and 59b are also used.
In the sputtering chamber for substrate surface modification, and the vacuum processing chamber of the second satellite in the same arrangement as in the above-mentioned embodiment.
Even if the reaction chambers 68a to 68c of the satellite 53 are arranged as a sputtering chamber for forming a C (carbon) film, the substrate (suitable for a glass substrate in this example) can of course be applied to the present invention. Is. Even in this case, of course, the same effect as that of the above-described embodiment can be obtained.

【0054】また以上の実施例では、仕込室57および
取出室69の双方に同一構成の隔離室73a、73dを
設けたが、どちらか一方のみとしてもよい。
In the above embodiment, the isolation chambers 73a and 73d having the same structure are provided in both the charging chamber 57 and the take-out chamber 69, but only one of them may be provided.

【0055】また以上の実施例では、隔離室内部に配設
される一対のロックバルブ99a、99bは電磁力によ
り駆動されるようにしたが、これに代えて、図11に示
すような構成のロックバルブ129としてもよい。これ
は、端部が斜め方向に形成された開口134の縁部にシ
ール部材133を装着させ、これに対向するように弁板
130を当接させるようにしたものであり、この弁板1
30を駆動ロッド131を介して駆動部132により駆
動させ、隔離室E内と下方の真空処理室Fとの間を真空
絶縁可能としたものである。
In the above embodiment, the pair of lock valves 99a and 99b arranged inside the isolation chamber are driven by electromagnetic force. Instead of this, the lock valves 99a and 99b are constructed as shown in FIG. The lock valve 129 may be used. In this configuration, a seal member 133 is attached to an edge portion of an opening 134 whose end portion is formed in an oblique direction, and a valve plate 130 is abutted so as to face the seal member 133.
30 is driven by a drive unit 132 via a drive rod 131 so that the inside of the isolation chamber E and the vacuum processing chamber F below can be vacuum-insulated.

【0056】また以上の実施例では、一対の開口101
a、101bは隔離室73a(ないし73d)の底壁部
に形成したが、これを側壁部に形成して、隔離室内部に
おける基板の搬送を水平方向を主体にするようにしても
よい。
In the above embodiment, the pair of openings 101 is used.
Although a and 101b are formed on the bottom wall portion of the isolation chamber 73a (or 73d), they may be formed on the side wall portion so that the substrate is mainly transported in the isolation chamber in the horizontal direction.

【0057】また以上の実施例では、サテライト(枚葉
式真空処理機械)を3台として説明したが、これに限ら
ず、第4、第5、・・・、とさらに複数のサテライトを
配設して行ってもよい。
In the above embodiments, three satellites (single-wafer type vacuum processing machine) have been described, but the present invention is not limited to this, and a plurality of satellites such as fourth, fifth, ... Are arranged. You may go.

【0058】[0058]

【発明の効果】以上述べたように、本発明の枚葉式真空
処理装置によれば、基板の成膜を行う真空処理室の雰囲
気をその前処理側および後処理側の真空処理室の雰囲気
と完全に分離することができるので、ウルトラクリーン
テクノロジ(UCT)による成膜やプラズマCVDによ
る成膜等の種々の複合プロセスをひとつの装置で両立し
て行うことができる。
As described above, according to the single-wafer type vacuum processing apparatus of the present invention, the atmosphere of the vacuum processing chamber in which the film is formed on the substrate is set to the atmosphere of the vacuum processing chamber on the pretreatment side and the posttreatment side. Therefore, various complex processes such as film formation by ultra clean technology (UCT) and film formation by plasma CVD can be simultaneously performed in one device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による枚葉式真空処理装置の配
置平面図である。
FIG. 1 is an arrangement plan view of a single-wafer type vacuum processing apparatus according to an embodiment of the present invention.

【図2】同外観を示す斜視図である。FIG. 2 is a perspective view showing the same appearance.

【図3】図2の要部を示す拡大図である。FIG. 3 is an enlarged view showing a main part of FIG.

【図4】図3の要部を示す正面図である。FIG. 4 is a front view showing a main part of FIG. 3;

【図5】同側面図である。FIG. 5 is a side view of the same.

【図6】本発明の実施例による枚葉式真空処理装置の隔
離室の拡大断面図である。
FIG. 6 is an enlarged sectional view of an isolation chamber of a single-wafer type vacuum processing apparatus according to an embodiment of the present invention.

【図7】図6の作用を説明するための要部の簡略した斜
視図である。
FIG. 7 is a simplified perspective view of a main part for explaining the operation of FIG.

【図8】本発明の実施例における搬送手段である基板支
持部材の作用を説明するための部分概略側面図で、Aは
基板との係合位置を示す図、Bは係合作用の途中を示す
図、Cは係合状態を示す図である。
FIG. 8 is a partial schematic side view for explaining the action of a substrate supporting member which is a transporting means in the embodiment of the present invention, A is a diagram showing an engaging position with a substrate, and B is a process of the engaging action. The figure, C is a figure which shows an engagement state.

【図9】図6の作用を説明する概略斜視図である。FIG. 9 is a schematic perspective view illustrating the operation of FIG.

【図10】他の隔離室の配置構成を示す拡大断面図であ
る。
FIG. 10 is an enlarged cross-sectional view showing the arrangement configuration of another isolation chamber.

【図11】本発明の実施例におけるロックバルブの変形
例を示す拡大断面図である。
FIG. 11 is an enlarged cross-sectional view showing a modification of the lock valve according to the embodiment of the present invention.

【図12】従来例の真空処理装置を示す部分破断側面図
である。
FIG. 12 is a partially cutaway side view showing a conventional vacuum processing apparatus.

【図13】他の従来例の真空処理装置を示す平面図であ
る。
FIG. 13 is a plan view showing another conventional vacuum processing apparatus.

【図14】図13の内部機構を説明する斜視図である。FIG. 14 is a perspective view illustrating an internal mechanism of FIG.

【図15】図14の要部の拡大斜視図である。FIG. 15 is an enlarged perspective view of a main part of FIG.

【符号の説明】[Explanation of symbols]

22 基板 24 回転テーブル 32 基板ホルダ 50 枚葉式真空処理装置 51 第1の枚葉式真空処理機械(第1サテライ
ト) 52 第2の枚葉式真空処理機械(第2サテライ
ト) 53 第3の枚葉式真空処理機械(第3サテライ
ト) 57 仕込室 60 第1搬送室 65 第2搬送室 69 取出室 72 基板供給室 73a 隔離室 73b 隔離室 73c 隔離室 73d 隔離室 76 仕込室本体 77 取出室本体 96a 基板支持部材 96b 基板支持部材 97a 搬送部材 97b 搬送部材 98 中継部材 99a ロックバルブ 99b ロックバルブ 101a 開口 101b 開口 123 基板供給室 129 ロックバルブ 134 開口
22 substrate 24 rotary table 32 substrate holder 50 single wafer type vacuum processing device 51 first single wafer processing vacuum machine (first satellite) 52 second single wafer processing vacuum machine (second satellite) 53 third wafer Leaf type vacuum processing machine (third satellite) 57 Preparation chamber 60 First transfer chamber 65 Second transfer chamber 69 Ejection chamber 72 Substrate supply room 73a Isolation room 73b Isolation room 73c Isolation room 73d Isolation room 76 Preparation room body 77 Ejection room body 96a Substrate support member 96b Substrate support member 97a Transport member 97b Transport member 98 Relay member 99a Lock valve 99b Lock valve 101a Opening 101b Opening 123 Substrate supply chamber 129 Lock valve 134 Opening

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転テーブルの外周縁部に等角度間隔に
配設された複数の基板ホルダと、該各基板ホルダの直上
方に配設された複数の真空処理室と、前記回転テーブル
を回転駆動する第1駆動機構と、前記回転テーブルを昇
降駆動する第2駆動機構とから成る枚葉式真空処理機械
を複数備え、真空処理工程の順序で、第1の前記枚葉式
真空処理機械は前記複数の真空処理室のうち少なくとも
1つの真空処理室を仕込室とし、又更に他の少なくとも
1つの真空処理室を搬送室とし、第2の前記枚葉式真空
処理機械は前記複数の真空処理室のうち少なくとも1つ
の真空処理室を第1搬送室とし、又他の少なくとも1つ
の真空処理室は第2搬送室とし、同様に、第3の前記枚
葉式真空処理機械は前記複数の真空処理室のうち少なく
とも1つの真空処理室を第1搬送室とし、又他の少なく
とも1つの真空処理室を第2搬送室とし、以下、同様に
第4、第5、・・・、第n番目の前記枚葉式真空処理機
械を構成し、かつ該第n番目の枚葉式真空処理機械の前
記第2搬送室は取出室とし、前記第1、第2駆動機構に
より前記回転テーブルを所定角度ずつ回転させ、かつ前
記回転テーブルを所定距離上昇させて前記各真空処理室
を真空絶縁して所定の真空処理を行わせるようにし、前
記第1の枚葉式真空処理機械の前記各真空処理室で第1
の真空処理を行った基板を前記搬送室及び前記第2の枚
葉式真空処理機械の前記第1搬送室を介して前記第2の
枚葉式真空処理機械の前記第1搬送室、前記各真空処理
室に前記第1、第2駆動機構の駆動により順次前記基板
ホルダで支持し、かつ真空絶縁して第2の真空処理を行
わせ、該第2の真空処理を行った前記基板を前記第2の
搬送室及び前記第3の枚葉式真空処理機械の前記第1搬
送室を介して前記第3の枚葉式真空処理機械の前記第1
搬送室、前記各真空処理室に前記第1、第2駆動機構の
駆動により順次、前記基板ホルダで支持し、かつ真空絶
縁して第3の真空処理を行わせ、前記第2搬送室及び前
記第4の枚葉式真空処理機械の前記第1搬送室を介し
て、以下同様に、第4、第5、・・・、第n番目の真空
処理を行わせた後、前記取出室より外方に前記第1乃至
第n番目の真空処理済の前記基板を取り出すようにし、
かつ前記第1の枚葉式真空処理機械の前記搬送室内と前
記第2の枚葉式真空処理機械の前記第1搬送室との間に
共通の第1隔離室を設け、該第1隔離室内部に前記第1
の枚葉式真空処理機械の前記搬送室から前記第2の枚葉
式真空処理機械の前記第1搬送室へ基板を搬送する第1
搬送手段と、前記第1の枚葉式真空処理機械内と前記第
2の枚葉式真空処理機械内とを相互に真空絶縁する一対
の第1ロックバルブを設け、該第1ロックバルブは前記
第1隔離室の壁部に形成された一対の第1開口を開閉す
るための第1弁板を備え、かつ前記第1隔離室と前記第
1の枚葉式真空処理機械の前記搬送室、及び前記第1隔
離室と前記第2の枚葉式真空処理機械の前記第1搬送室
を交互に真空絶縁可能とし、前記第2の枚葉式真空処理
機械の前記第2搬送室と前記第3の枚葉式真空処理機械
の前記第1搬送室との間に共通の第2隔離室を設け、該
第2隔離室内部に前記第2の枚葉式真空処理機械の前記
第2搬送室から前記第3の枚葉式真空処理機械の前記第
1搬送室へ基板を搬送する第2搬送手段と、前記第2の
枚葉式真空処理機械内と前記第3の枚葉式真空処理機械
内とを相互に真空絶縁する一対の第2ロックバルブを設
け、該第2ロックバルブは前記第2隔離室の壁部に形成
された一対の第2開口を開閉するための第2弁板を備
え、かつ前記第2隔離室と前記第2の枚葉式真空処理機
械の前記第2搬送室、及び前記第2隔離室と前記第3の
枚葉式真空処理機械の前記第1搬送室を交互に真空絶縁
可能とし、前記第3の枚葉式真空処理機械の前記第2搬
送室と前記第4の枚葉式真空処理機械の前記第1搬送室
との間に共通の第3隔離室を設け、該第3隔離室内部に
前記第3の枚葉式真空処理機械の前記第2搬送室から前
記第4の枚葉式真空処理機械の前記第1搬送室へ基板を
搬送する第3搬送手段と、前記第3の枚葉式真空処理機
械内と前記第4の枚葉式真空処理機械内とを相互に真空
絶縁する一対の第3ロックバルブを設け、該第3ロック
バルブは前記第3隔離室の壁部に形成された一対の第3
開口を開閉するための第3弁板を備え、かつ前記第3隔
離室と前記第3の枚葉式真空処理機械の前記第2搬送
室、及び前記第3隔離室と前記第4の枚葉式真空処理機
械の前記第1搬送室を交互に真空絶縁可能とし、以下、
同様に第4、第5、・・・、第(n−1)隔離室を構成
し、常に各前記枚葉式真空処理機械内を相真空絶縁する
ようにしたことを特徴とする枚葉式真空処理装置。
1. A plurality of substrate holders arranged at equal angular intervals on an outer peripheral edge of a rotary table, a plurality of vacuum processing chambers arranged immediately above the respective substrate holders, and the rotary table being rotated. A plurality of single-wafer type vacuum processing machines each comprising a first driving mechanism for driving and a second driving mechanism for vertically moving the rotary table are provided, and the first single-wafer type vacuum processing machine is arranged in the order of vacuum processing steps. At least one vacuum processing chamber of the plurality of vacuum processing chambers serves as a charging chamber, and at least one other vacuum processing chamber serves as a transfer chamber, and the second single-wafer processing machine has the plurality of vacuum processing chambers. At least one vacuum processing chamber of the chambers is used as a first transfer chamber, and at least one other vacuum processing chamber is used as a second transfer chamber. Similarly, the third single-wafer processing machine has the plurality of vacuum processing chambers. Vacuum processing of at least one of the processing chambers The chamber is referred to as a first transfer chamber, the other at least one vacuum processing chamber is referred to as a second transfer chamber, and hereinafter, the fourth, fifth, ... The second transfer chamber of the n-th single-wafer type vacuum processing machine is an extraction chamber, and the rotary table is rotated by a predetermined angle by the first and second drive mechanisms. A predetermined distance is raised to vacuum-insulate the vacuum processing chambers so as to perform a predetermined vacuum processing.
Through the transfer chamber and the first transfer chamber of the second single-wafer vacuum processing machine, the first transfer chamber of the second single-wafer vacuum processing machine, In the vacuum processing chamber, the substrate holder is sequentially supported by the driving of the first and second driving mechanisms, and vacuum insulation is performed to perform the second vacuum processing, and the substrate subjected to the second vacuum processing is The first transfer chamber of the third single-wafer processing machine via the second transfer chamber and the first transfer chamber of the third single-wafer processing machine.
The transfer chamber and the respective vacuum processing chambers are sequentially supported by the substrate holder by being driven by the first and second drive mechanisms, and vacuum insulation is performed to perform a third vacuum processing. After the fourth, fifth, ..., N-th vacuum processing is similarly performed via the first transfer chamber of the fourth single-wafer processing machine, outside the extraction chamber. To take out the first to nth vacuum-processed substrates,
A common first isolation chamber is provided between the transfer chamber of the first single-wafer vacuum processing machine and the first transfer chamber of the second single-wafer vacuum processing machine, and the first isolation chamber is provided. Inside the first
For transferring a substrate from the transfer chamber of the single-wafer processing machine to the first transfer chamber of the second single-wafer vacuum processing machine
A pair of first lock valves for vacuum-insulating the conveying means and the inside of the first single-wafer processing machine and the second single-wafer processing machine from each other are provided, and the first locking valve is A first valve plate for opening and closing a pair of first openings formed in the wall of the first isolation chamber, and the first isolation chamber and the transfer chamber of the first single-wafer vacuum processing machine; And the first transfer chamber of the second single-wafer type vacuum processing machine can be alternately vacuum-insulated, and the second transfer chamber of the second single-wafer type vacuum processing machine and the second transfer chamber of the second single-wafer type vacuum processing machine. A common second isolation chamber is provided between the second transfer chamber of the third single-wafer type vacuum processing machine and the second transfer chamber of the second single-wafer type vacuum processing machine. Second transfer means for transferring a substrate from the first transfer chamber to the first transfer chamber of the third single-wafer vacuum processing machine, and the second single-wafer vacuum processing machine A pair of second lock valves for vacuum-insulating the inside and the inside of the third single-wafer type vacuum processing machine are provided, and the second lock valves are a pair of first lock valves formed on a wall portion of the second isolation chamber. A second valve plate for opening and closing two openings, and the second isolation chamber and the second transfer chamber of the second single-wafer processing machine, and the second isolation chamber and the third sheet. The first transfer chamber of the leaf type vacuum processing machine can be alternately vacuum insulated, and the second transfer chamber of the third single-wafer type vacuum processing machine and the first of the fourth single-wafer type vacuum processing machine. A common third isolation chamber is provided between the transfer chamber and the transfer chamber, and the third transfer chamber from the second transfer chamber of the third single-wafer processing machine to the fourth single-wafer vacuum processing machine. Third transfer means for transferring the substrate to the first transfer chamber, inside the third single wafer processing vacuum processing machine, and the fourth single wafer processing vacuum machine DOO cross a pair of third locking valve to vacuum insulation and third locking third valve of the pair formed in the wall portion of the third isolation chamber
A third valve plate for opening and closing the opening is provided, and the third isolation chamber and the second transfer chamber of the third single-wafer processing machine, and the third isolation chamber and the fourth single-wafer. The first transfer chamber of the vacuum type vacuum processing machine can be alternately vacuum insulated,
Similarly, the fourth, fifth, ..., (n-1) th isolation chambers are configured so that the inside of each of the single-wafer type vacuum processing machines is always phase vacuum insulated. Vacuum processing equipment.
【請求項2】 第1乃至第(n−1)の前記搬送手段は
それぞれ、前記開口を介して垂直方向に駆動され、かつ
前記基板を支持可能な一対の基板支持部材と、水平方向
に駆動され、かつ該基板支持部材との間で前記基板の受
け渡しが可能な一対の搬送部材と、垂直方向に駆動さ
れ、かつ前記一対の搬送部材間の前記基板の受け渡しを
中継する中継部材とから成る請求項1に記載の枚葉式真
空処理装置。
2. The first to (n-1) th transporting means are respectively driven in the vertical direction through the opening, and are driven in the horizontal direction with a pair of substrate supporting members capable of supporting the substrate. And a transfer member capable of transferring the substrate to and from the substrate support member, and a relay member that is driven in the vertical direction and relays the transfer of the substrate between the pair of transfer members. The single-wafer processing apparatus according to claim 1.
【請求項3】 回転テーブルの外周縁部に等角度間隔に
配設された複数の基板ホルダと、該各基板ホルダの直上
方に配設された複数の真空処理室と、前記回転テーブル
を回転駆動する第1駆動機構と、前記回転テーブルを昇
降駆動する第2駆動機構とから成る枚葉式真空処理機械
を複数備え、真空処理工程の順序で、第1の前記枚葉式
真空処理機械は前記複数の真空処理室のうち少なくとも
1つの真空処理室を仕込室とし、又更に他の少なくとも
1つの真空処理室を搬送室とし、第2の前記枚葉式真空
処理機械は前記複数の真空処理室のうち少なくとも1つ
の真空処理室を第1搬送室とし、又他の少なくとも1つ
の真空処理室は第2搬送室とし、同様に、第3の前記枚
葉式真空処理機械は前記複数の真空処理室のうち少なく
とも1つの真空処理室を第1搬送室とし、又他の少なく
とも1つの真空処理室を第2搬送室とし、以下、同様に
第4、第5、・・・、第n番目の前記枚葉式真空処理機
械を構成し、かつ該第n番目の枚葉式真空処理機械の前
記第2搬送室は取出室とし、前記第1、第2駆動機構に
より前記回転テーブルを所定角度ずつ回転させ、かつ前
記回転テーブルを所定距離上昇させて前記各真空処理室
を真空絶縁して所定の真空処理を行わせるようにし、前
記第1の枚葉式真空処理機械の前記各真空処理室で第1
の真空処理を行った基板を前記搬送室及び前記第2の枚
葉式真空処理機械の前記第1搬送室を介して前記第2の
枚葉式真空処理機械の前記第1搬送室、前記各真空処理
室に前記第1、第2駆動機構の駆動により順次前記基板
ホルダで支持し、かつ真空絶縁して第2の真空処理を行
わせ、該第2の真空処理を行った前記基板を前記第2の
搬送室及び前記第3の枚葉式真空処理機械の前記第1搬
送室を介して前記第3の枚葉式真空処理機械の前記第1
搬送室、前記各真空処理室に前記第1、第2駆動機構の
駆動により順次、前記基板ホルダで支持し、かつ真空絶
縁して第3の真空処理を行わせ、前記第2搬送室及び前
記第4の枚葉式真空処理機械の前記第1搬送室を介し
て、以下同様に、第4、第5、・・・、第n番目の真空
処理を行わせた後、前記取出室より外方に前記第1乃至
第n番目の真空処理済の前記基板を取り出すようにし、
かつ前記仕込室及び/又は前記取出室と前記枚葉式真空
処理機械の外部に連通可能な基板供給室との間に共通の
隔離室を設け、該隔離室内部に前記仕込室及び/又は前
記取出室と前記基板供給室との間で前記基板を搬送する
搬送手段と、前記仕込室及び/又は前記取出室内と前記
基板供給室内とを相互に真空絶縁する一対のロックバル
ブを設け、該ロックバルブは前記隔離室の壁部に形成さ
れた一対の開口を開閉するための弁板を備え、かつ前記
隔離室と前記仕込室及び/又は前記取出室、及び前記隔
離室と前記基板供給室とを交互に真空絶縁可能とし、常
に各前記枚葉式真空処理機械の内外とを相真空絶縁する
ようにしたことを特徴とする枚葉式真空処理装置。
3. A plurality of substrate holders arranged at equal angular intervals on the outer peripheral edge of the rotary table, a plurality of vacuum processing chambers arranged immediately above the respective substrate holders, and the rotary table being rotated. A plurality of single-wafer type vacuum processing machines each comprising a first driving mechanism for driving and a second driving mechanism for vertically moving the rotary table are provided, and the first single-wafer type vacuum processing machine is arranged in the order of vacuum processing steps. At least one vacuum processing chamber of the plurality of vacuum processing chambers serves as a charging chamber, and at least one other vacuum processing chamber serves as a transfer chamber, and the second single-wafer processing machine has the plurality of vacuum processing chambers. At least one vacuum processing chamber of the chambers is used as a first transfer chamber, and at least one other vacuum processing chamber is used as a second transfer chamber. Similarly, the third single-wafer processing machine has the plurality of vacuum processing chambers. Vacuum processing of at least one of the processing chambers The chamber is referred to as a first transfer chamber, the other at least one vacuum processing chamber is referred to as a second transfer chamber, and hereinafter, the fourth, fifth, ... The second transfer chamber of the n-th single-wafer type vacuum processing machine is an extraction chamber, and the rotary table is rotated by a predetermined angle by the first and second drive mechanisms. A predetermined distance is raised to vacuum-insulate the vacuum processing chambers so as to perform a predetermined vacuum processing.
Through the transfer chamber and the first transfer chamber of the second single-wafer vacuum processing machine, the first transfer chamber of the second single-wafer vacuum processing machine, In the vacuum processing chamber, the substrate holder is sequentially supported by the driving of the first and second driving mechanisms, and vacuum insulation is performed to perform the second vacuum processing, and the substrate subjected to the second vacuum processing is The first transfer chamber of the third single-wafer processing machine via the second transfer chamber and the first transfer chamber of the third single-wafer processing machine.
The transfer chamber and the respective vacuum processing chambers are sequentially supported by the substrate holder by being driven by the first and second drive mechanisms, and vacuum insulation is performed to perform a third vacuum processing. After the fourth, fifth, ..., N-th vacuum processing is similarly performed via the first transfer chamber of the fourth single-wafer processing machine, outside the extraction chamber. To take out the first to nth vacuum-processed substrates,
A common isolation chamber is provided between the loading chamber and / or the unloading chamber and a substrate supply chamber that can communicate with the outside of the single-wafer type vacuum processing machine, and the loading chamber and / or the isolation chamber is provided inside the isolation chamber. A transfer means for transferring the substrate between the take-out chamber and the substrate supply chamber, and a pair of lock valves for vacuum-insulating the loading chamber and / or the take-out chamber and the substrate supply chamber from each other are provided. The valve includes a valve plate for opening and closing a pair of openings formed in the wall of the isolation chamber, and the isolation chamber and the charging chamber and / or the extraction chamber, and the isolation chamber and the substrate supply chamber. The single-wafer type vacuum processing apparatus is characterized in that it can be alternately vacuum-insulated, and the inside and outside of each of the single-wafer type vacuum processing machines are always phase-vacuum insulated.
JP35058595A 1995-12-22 1995-12-22 Single wafer vacuum processing equipment Expired - Fee Related JP3606979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35058595A JP3606979B2 (en) 1995-12-22 1995-12-22 Single wafer vacuum processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35058595A JP3606979B2 (en) 1995-12-22 1995-12-22 Single wafer vacuum processing equipment

Publications (2)

Publication Number Publication Date
JPH09176856A true JPH09176856A (en) 1997-07-08
JP3606979B2 JP3606979B2 (en) 2005-01-05

Family

ID=18411481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35058595A Expired - Fee Related JP3606979B2 (en) 1995-12-22 1995-12-22 Single wafer vacuum processing equipment

Country Status (1)

Country Link
JP (1) JP3606979B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123684A (en) * 2005-10-31 2007-05-17 Masato Toshima Substrate treatment device
JP2013237885A (en) * 2012-05-14 2013-11-28 Toyota Motor Corp Plasma film-forming apparatus
US9287152B2 (en) 2009-12-10 2016-03-15 Orbotech LT Solar, LLC. Auto-sequencing multi-directional inline processing method
US9462921B2 (en) 2011-05-24 2016-10-11 Orbotech LT Solar, LLC. Broken wafer recovery system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193944A (en) * 1990-11-28 1992-07-14 Hitachi Ltd Disk film forming device
JPH05304197A (en) * 1992-04-27 1993-11-16 Hitachi Ltd Multi-chamber system
JPH06302667A (en) * 1993-04-15 1994-10-28 Hitachi Ltd Chamber system
JPH06302668A (en) * 1993-04-16 1994-10-28 Hitachi Ltd Multi-chamber device
JPH09104982A (en) * 1995-08-05 1997-04-22 Kokusai Electric Co Ltd Substrate treating device
JPH09104983A (en) * 1995-08-05 1997-04-22 Kokusai Electric Co Ltd Substrate treating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193944A (en) * 1990-11-28 1992-07-14 Hitachi Ltd Disk film forming device
JPH05304197A (en) * 1992-04-27 1993-11-16 Hitachi Ltd Multi-chamber system
JPH06302667A (en) * 1993-04-15 1994-10-28 Hitachi Ltd Chamber system
JPH06302668A (en) * 1993-04-16 1994-10-28 Hitachi Ltd Multi-chamber device
JPH09104982A (en) * 1995-08-05 1997-04-22 Kokusai Electric Co Ltd Substrate treating device
JPH09104983A (en) * 1995-08-05 1997-04-22 Kokusai Electric Co Ltd Substrate treating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123684A (en) * 2005-10-31 2007-05-17 Masato Toshima Substrate treatment device
US9287152B2 (en) 2009-12-10 2016-03-15 Orbotech LT Solar, LLC. Auto-sequencing multi-directional inline processing method
US9462921B2 (en) 2011-05-24 2016-10-11 Orbotech LT Solar, LLC. Broken wafer recovery system
JP2013237885A (en) * 2012-05-14 2013-11-28 Toyota Motor Corp Plasma film-forming apparatus

Also Published As

Publication number Publication date
JP3606979B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
US8377210B2 (en) Film forming apparatus
KR100826404B1 (en) Substrate processing apparatus, a processing chamber and a method of manufacturing a coated substrate
KR890002837B1 (en) Continuous sputtering apparatus
US6517691B1 (en) Substrate processing system
JP2699045B2 (en) Substrate handling processing system
JP4369866B2 (en) Substrate processing apparatus and processing method
JPH083744A (en) Vacuum treatment apparatus, method of treating substrate in vacuum treatment apparatus and lock for vacuum treatment apparatus
JP2010126789A (en) Sputtering film deposition system
JP2001135704A (en) Substrate treatment apparatus and transfer control method for substrate transfer tray
JP4417734B2 (en) In-line vacuum processing equipment
JP2000129442A (en) Deposition apparatus
JPH09176856A (en) Sheet type vacuum treating apparatus
JP2553074B2 (en) Method and apparatus for transporting wafer-shaped material
JPH11238785A (en) Substrate-treating device and method therefor
JPH05326666A (en) Conveyor
US20210087674A1 (en) System with dual-motion substrate carriers
JPH01135015A (en) Semiconductor wafer treating device
US6030459A (en) Low-pressure processing device
JP4468558B2 (en) Disk transport device
JPH01120811A (en) Semiconductor wafer treatment equipment
JPH09165683A (en) Sheet type vacuum treating apparatus
JP4350653B2 (en) Optical disc manufacturing method and optical disc manufacturing apparatus
JPH07153693A (en) Multichamber type equipment for forming film
JPH06336678A (en) Plasma cvd device
JPH03193874A (en) Continuous formation of thin film in vacuum

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees