Nothing Special   »   [go: up one dir, main page]

JPH09176294A - Liquid sealing material - Google Patents

Liquid sealing material

Info

Publication number
JPH09176294A
JPH09176294A JP34158095A JP34158095A JPH09176294A JP H09176294 A JPH09176294 A JP H09176294A JP 34158095 A JP34158095 A JP 34158095A JP 34158095 A JP34158095 A JP 34158095A JP H09176294 A JPH09176294 A JP H09176294A
Authority
JP
Japan
Prior art keywords
liquid
particle size
inorganic filler
less
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34158095A
Other languages
Japanese (ja)
Other versions
JP3137314B2 (en
Inventor
Akihiro Kondo
晃弘 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP07341580A priority Critical patent/JP3137314B2/en
Publication of JPH09176294A publication Critical patent/JPH09176294A/en
Application granted granted Critical
Publication of JP3137314B2 publication Critical patent/JP3137314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a liquid sealing material which can greatly improve the reliability of semiconductors in accelerated tests such as a pressure cracker test and a thermal shock test by using a specific composition. SOLUTION: This liquid sealing material is composed of, as major components, (A) a liquid epoxy resin, (B) an alkylated diamino diphenyl methane which is a liquid aromatic amine hardener at room temp., (C) a polybutadiene compound having an epoxy group(s), (D) a silane coupling agent having not less than one functional group selected from among epoxy, amino and mercapto groups and an inorganic filler of which average particle size is 3-10μm and in which particles with their sizes of not more than 1μm account for 6-45wt.% and particles with their sizes of not less than 30μm account for not more than 25wt.% respectively of the total inorganic filler component, and the blending weight ratio of each component is given in the formula. ratios.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体の封止に用
いられる液状封止材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid sealing material used for sealing a semiconductor.

【0002】[0002]

【従来の技術】プラスチックピングリッドアレイ(以
下、PPGAという)型半導体封止には液状の封止材料
が用いられているが、セラミックスによる気密封止型に
比べて信頼性の点で充分ではなく、デュアルインライン
(以下、DIPという)型に比べプラスチックパッケー
ジの普及が遅れていた。PPGA型半導体の信頼性低下
の原因としては、[パッケージ加工された有機のプリ
ント配線基板から湿気が侵入する。DIP型パッケー
ジのトランスファーモールド成形と異なり、無圧下で液
状封止材料をパッケージ内に流入し成形するため樹脂中
に気泡が残存して、熱ストレスが加わった際にクラック
が発生する。樹脂と半導体チップ、有機基板との線膨
張係数が異なるために熱ストレスが加わった際、界面で
の剥離を生じ湿気の侵入を容易にしてしまう。]等が挙
げられる。
2. Description of the Related Art A liquid sealing material is used for plastic pin grid array (hereinafter referred to as PPGA) type semiconductor encapsulation, but it is not sufficient in reliability as compared with a hermetically sealed type using ceramics. The spread of plastic packages has been delayed compared to the dual in-line (hereinafter referred to as DIP) type. The cause of the decrease in reliability of the PPGA type semiconductor is that [moisture enters from the packaged organic printed wiring board. Unlike the transfer molding of the DIP type package, the liquid encapsulating material flows into the package without pressure and is molded, so that air bubbles remain in the resin and cracks occur when heat stress is applied. Since the resin, the semiconductor chip, and the organic substrate have different linear expansion coefficients, when heat stress is applied, peeling occurs at the interface, which facilitates moisture infiltration. And the like.

【0003】[0003]

【発明が解決しようとする課題】本発明は、プレッシャ
ークッカーテスト(以下、PCTという)や冷熱サイク
ルテスト(以下、T/Cという)等の促進試験において
も半導体の信頼性を大幅に向上できる液状の封止材料を
提供するものである。
DISCLOSURE OF THE INVENTION The present invention is a liquid that can greatly improve the reliability of semiconductors in accelerated tests such as a pressure cooker test (hereinafter referred to as PCT) and a thermal cycle test (hereinafter referred to as T / C). The present invention provides a sealing material.

【0004】[0004]

【課題を解決するための手段】そこで本発明は、従来の
このような問題を解決するために鋭意検討を重ねてきた
結果、液状エポキシ樹脂、常温で液体である芳香族アミ
ン系硬化剤アルキル化ジアミノジフェニルメタン、エポ
キシ基を有するポリブタジエン化合物、シランカップリ
ング剤に、特定の粒度分布を有する無機充填材を配合し
た組成物が、プレッシャークッカーテスト(以下、PC
Tという)や冷熱サイクルテスト(以下、T/Cとい
う)等の促進試験においても半導体の信頼性を大幅に向
上できる封止材料となることを見いだし、本発明を完成
するに至ったものである。即ち本発明は、(a)液状エ
ポキシ樹脂、(b)常温で液体である芳香族アミン系硬
化剤アルキル化ジアミノジフェニルメタン、(c)エポ
キシ基を有するポリブタジエン化合物、(d)エポキシ
基、アミノ基、メルカプト基の群から選ばれる1個以上
の官能基を分子内に有するシランカップリング剤、及び
(e)特定の粒度分布を有する無機充填材を主成分とす
る液状封止材料において、各成分の配合割合が重量比で
(c)/{(a)+(b)+(c)}=0.03〜0.
10、(d)/{(a)+(b)+(c)}=0.02
〜0.10で、かつ(e)/{(a)+(b)+(c)
+(d)+(e)}=0.50〜0.80であり、
(e)の無機充填材はその平均粒径が3〜10μmで、
粒径1μm以下のものが全無機充填材成分中6〜45重
量%で、かつ粒径30μm以上のものが全無機充填材成
分中の25重量%以下の粒度分布を有する無機充填材を
配合した液状封止材料であり、有機プリント配線基板を
用いたPPGA型半導体の信頼性を大幅に向上させるこ
とができる。
Therefore, as a result of intensive studies for solving the above problems, the present invention has revealed that liquid epoxy resins and aromatic amine curing agents that are liquid at room temperature are alkylated. A composition obtained by blending diaminodiphenylmethane, an epoxy group-containing polybutadiene compound, and a silane coupling agent with an inorganic filler having a specific particle size distribution was subjected to a pressure cooker test (hereinafter, referred to as PC
The present invention has been completed by finding that it can be used as a sealing material that can greatly improve the reliability of semiconductors in accelerated tests such as T) and thermal cycle tests (hereinafter referred to as T / C). . That is, the present invention includes (a) a liquid epoxy resin, (b) an aromatic amine curing agent alkylated diaminodiphenylmethane that is liquid at room temperature, (c) a polybutadiene compound having an epoxy group, (d) an epoxy group, an amino group, A silane coupling agent having one or more functional groups selected from the group of mercapto groups in the molecule, and (e) a liquid sealing material containing an inorganic filler having a specific particle size distribution as a main component The mixing ratio is (c) / {(a) + (b) + (c)} = 0.03 to 0.
10, (d) / {(a) + (b) + (c)} = 0.02
˜0.10, and (e) / {(a) + (b) + (c)
+ (D) + (e)} = 0.50 to 0.80,
The inorganic filler (e) has an average particle size of 3 to 10 μm,
An inorganic filler having a particle size of 1 μm or less in an amount of 6 to 45% by weight in the total inorganic filler component and an inorganic filler having a particle size of 30 μm or more in an amount of 25% by weight or less in the total inorganic filler component was blended. Since it is a liquid encapsulating material, the reliability of a PPGA type semiconductor using an organic printed wiring board can be significantly improved.

【0005】[0005]

【発明の実施の形態】本発明に用いられる(a)の液状
エポキシ樹脂は、その成分の50重量%以上は、25℃
における粘度が10Pa・s以下であることが好まし
い。エポキシ樹脂成分の50重量%以上が低粘度の液状
エポキシでないと組成物の粘度が高くなり、PPGAパ
ッケージ中を液状封止材料で流入封止する際、気泡を巻
き込んだり、コーナー端部への充填不良が発生し易くな
り信頼性低下につながるので好ましくない。エポキシ樹
脂の粘度測定方法としては、室温で液状の材料の場合、
25℃において東機産業(株)製E型粘度計で測定す
る。この要件を満足するエポキシ樹脂であれば、特に限
定されるものではないが具体例を挙げると、ビスフェノ
ールAジグリシジルエーテル型エポキシ樹脂、ビスフェ
ノールFジグリシジルエーテル型エポキシ樹脂、ビスフ
ェノールSジグリシジルエーテル型エポキシ樹脂、3,
3’,5,5’−テトラメチル―4,4’−ジヒドロキ
シビフェニルジグリシジルエーテル型エポキシ樹脂、
4,4’−ジヒドロキシビフェニルジグリシジルエーテ
ル型エポキシ樹脂、1,6−ジヒドロキシビフェニルジ
グリシジルエーテル型エポキシ樹脂、フェノールノボラ
ック型エポキシ樹脂、臭素型クレゾールノボラック型エ
ポキシ樹脂、ビスフェノールDジグリシジルエーテル型
エポキシ樹脂等がある。これらは単独でも混合しても差
し支えない。また、信頼性の優れた液状封止材料を得る
ために、使用に耐えるエポキシ樹脂はNa、Cl
のイオン性不純物はできるだけ少ないものが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The liquid epoxy resin (a) used in the present invention contains 50% by weight or more of its components at 25 ° C.
It is preferable that the viscosity at 10 is 10 Pa · s or less. If 50% by weight or more of the epoxy resin component is not a low-viscosity liquid epoxy, the viscosity of the composition will be high, and when encapsulating the PPGA package with a liquid encapsulation material, air bubbles will be trapped or corner corners will be filled. It is not preferable because defects easily occur and reliability is lowered. As a method for measuring the viscosity of an epoxy resin, in the case of a liquid material at room temperature,
It is measured with an E-type viscometer manufactured by Toki Sangyo Co., Ltd. at 25 ° C. There is no particular limitation as long as it is an epoxy resin that satisfies this requirement, but specific examples thereof include bisphenol A diglycidyl ether type epoxy resin, bisphenol F diglycidyl ether type epoxy resin, bisphenol S diglycidyl ether type epoxy resin. Resin, 3,
3 ', 5,5'-tetramethyl-4,4'-dihydroxybiphenyl diglycidyl ether type epoxy resin,
4,4'-dihydroxybiphenyl diglycidyl ether type epoxy resin, 1,6-dihydroxybiphenyl diglycidyl ether type epoxy resin, phenol novolac type epoxy resin, bromine type cresol novolac type epoxy resin, bisphenol D diglycidyl ether type epoxy resin, etc. There is. These may be used alone or in combination. Further, in order to obtain a highly reliable liquid encapsulating material, it is preferable that the epoxy resin that can withstand use has as little ionic impurities as Na + and Cl as much as possible.

【0006】本発明に用いられる(b)の芳香族アミン
系硬化剤は、アルキル化ジアミノジフェニルメタンであ
り、常温で液体のものである。芳香環を有さないアミン
類は耐熱性に乏しく、零度以下の雰囲気下でも反応性に
富むため保存性に劣るという致命的な欠点を有し本発明
に適さない。また、信頼性の優れた液状封止材料を得る
ために、使用に耐えるアミン系硬化剤はNa、Cl
等のイオン性不純物はできるだけ少ないものが好まし
い。(b)の芳香族アミン系硬化剤は(a)液状エポキ
シ樹脂との組み合わせによって、非常に流動性が良い材
料を提供することができる。無圧下でパッケージ内に流
入し硬化させても、気泡が残らず、ボイド・未充填など
流動性の不具合も発生しにくい。主剤である(a)のエ
ポキシ樹脂と、硬化剤である(b)の芳香族アミン系硬
化剤アルキル化ジアミノジフェニルメタンとの配合モル
比{(a)/(b)}は0.9〜1.2が望ましい。
0.9未満の、硬化剤が過多の場合は、過剰に未反応の
アミノ基が残存することとなり、耐湿性の低下・信頼性
の低下に繋がる。逆に1.2超えると即ちエポキシ樹脂
が多くなると硬化が不十分となり、信頼性の低下に繋が
る。
The aromatic amine curing agent (b) used in the present invention is alkylated diaminodiphenylmethane, which is a liquid at room temperature. Amines having no aromatic ring are poor in heat resistance and have a fatal drawback of poor storage stability because they are highly reactive even in an atmosphere of zero degree or less, and are not suitable for the present invention. In addition, in order to obtain a highly reliable liquid encapsulating material, amine-based curing agents that can be used are Na + and Cl −.
It is preferable that the amount of ionic impurities, such as The aromatic amine type curing agent of (b) can provide a material having very good fluidity by combination with the liquid epoxy resin of (a). Even when flowing into the package under no pressure and curing, no air bubbles remain, and problems with fluidity such as voids and unfilling hardly occur. The compounding molar ratio {(a) / (b)} of the epoxy resin of (a) which is the main agent and the aromatic amine curing agent alkylated diaminodiphenylmethane of (b) which is the curing agent is 0.9 to 1. 2 is desirable.
When the amount of the curing agent is less than 0.9 and the curing agent is excessive, unreacted amino groups remain excessively, which leads to a decrease in moisture resistance and a decrease in reliability. On the other hand, if it exceeds 1.2, that is, if the amount of epoxy resin increases, the curing becomes insufficient, leading to a decrease in reliability.

【0007】本発明に用いられるエラストマーとして
は、(a)のエポキシ樹脂との相溶性が良く、低応力化
及び強靱化が期待される(c)のエポキシ基を有するポ
リブタジエン化合物が挙げられる。一般にエラストマー
は、エポキシ樹脂との相溶性に欠けるため注入硬化した
後はブリードのため成形性が低下する性質を有する。し
かし、エポキシ基を分子の一部に組み込むことにより相
溶性が増し、硬化剤(b)と一部反応し架橋するため、
ブリード性は良くなり、エポキシ基を有するポリブタジ
エン特有の低応力化及び強靱化も発現できると考えられ
る。エポキシ基を有するポリブタジエン化合物は、数平
均分子量が1000〜2000が好ましい。1000未
満だとブリードし易くなり、2000を越えると粘度が
高くなり、いずれも好ましくない。また、エポキシ含有
率(主鎖付加モル分率%)は、3〜10%が好ましい。
3%未満だと相溶性に欠け、10%を越えると硬化剤と
架橋し、いわゆる海島構造を取らなくなるため低応力化
が望めなくなる。低応力化の確認には例えば3点曲げ試
験、強靱化の確認には例えばKIC測定が挙げられる
が、いずれのテストの結果でも優れた結果を得ることが
できる。このエポキシ基を有するポリブタジエン化合物
は、その添加量を調整することにより、低応力性及び靱
性を最大限に引き出すことができる。添加量は、(c)
/{(a)+(b)+(c)}=0.03〜0.10が
望ましいが、0.03未満だと低応力化及び強靱化の効
果が望めなく、特にT/C(温度サイクルテスト)時に
表面クラックが発生し信頼性の不良に繋がる原因とな
る。また、0.10を越えると(a)のエポキシ樹脂と
の相溶性が悪くなりパッケージ表面に油浮き、ブリード
するといった成形性低下の原因となる。また、更に低応
力効果があり、かつ(c)のエポキシ基を有するポリブ
タジエン化合物と相溶性のある、ランダム共重合シリコ
ーン変性エポキシ樹脂、ランダム共重合シリコーン変性
フェノール樹脂、又はエポキシ基含有のポリオレフィン
等と組み合わせても良い。
Examples of the elastomer used in the present invention include polybutadiene compounds having an epoxy group (c), which have good compatibility with the epoxy resin (a) and are expected to have low stress and toughness. Elastomers generally lack compatibility with epoxy resins, and therefore have the property of being reduced in moldability due to bleeding after injection curing. However, by incorporating an epoxy group into a part of the molecule, the compatibility increases, and the epoxy compound partially reacts with the curing agent (b) to crosslink,
It is considered that the bleeding property is improved and the low stress and toughness peculiar to polybutadiene having an epoxy group can be exhibited. The polybutadiene compound having an epoxy group preferably has a number average molecular weight of 1,000 to 2,000. If it is less than 1000, bleeding tends to occur, and if it exceeds 2000, the viscosity becomes high, and both are not preferred. Further, the epoxy content (main chain addition mole fraction%) is preferably 3 to 10%.
If it is less than 3%, the compatibility is poor, and if it exceeds 10%, it crosslinks with the curing agent, so that a so-called sea-island structure cannot be obtained, so that a reduction in stress cannot be expected. For example, a 3-point bending test can be used to confirm the reduction of stress, and a KIC measurement can be used to confirm the toughness. Excellent results can be obtained by any of the test results. The polybutadiene compound having an epoxy group can maximize its low stress property and toughness by adjusting the addition amount thereof. The addition amount is (c)
/{(A)+(b)+(c)}=0.03-0.10 is desirable, but if it is less than 0.03, the effects of low stress and toughness cannot be expected, and especially T / C (temperature This may cause surface cracks during the cycle test) and lead to poor reliability. On the other hand, if it exceeds 0.10, the compatibility with the epoxy resin (a) deteriorates, which causes a drop in moldability such as oil floating on the package surface and bleeding. Further, with a random copolymer silicone-modified epoxy resin, a random copolymer silicone-modified phenol resin, or an epoxy group-containing polyolefin, which has a lower stress effect and is compatible with the epoxy group-containing polybutadiene compound of (c). May be combined.

【0008】(d)のエポキシ基、アミノ基、メルカプ
ト基の群から選ばれる1個以上の官能基を分子内に有す
るシランカップリング剤としては、エポキシシラン(例
えば、信越化学工業(株)製KBM−403)が好まし
い。また用途に応じて基板との密着性を高めたい場合に
は、必要に応じてアミノシランおよびメルカプトシラン
をカップリング剤全量に対し一部ないし全部添加しても
よい。
Examples of the silane coupling agent (d) having one or more functional groups selected from the group consisting of epoxy group, amino group and mercapto group in the molecule include epoxy silanes (for example, manufactured by Shin-Etsu Chemical Co., Ltd.). KBM-403) is preferred. Further, if it is desired to enhance the adhesion to the substrate depending on the application, aminosilane and mercaptosilane may be added in part or in whole with respect to the total amount of the coupling agent, if necessary.

【0009】(e)の無機充填材(以下単に充填材とい
う)としては、例えば、結晶シリカ、溶融シリカ等が用
いられる。形状は一般に球状、破砕状、フレーク状等が
あるが、充填材をより多く添加することにより線膨張係
数の低減化が図られ、その効果を上げるためには球状の
無機充填材が最も良い。添加量は、(e)/{(a)+
(b)+(c)+(d)+(e)}=0.50〜0.8
0が望ましい。0.50未満だと、上述の線膨張係数の
低減効果は小さく、0.80を越えると結果として得ら
れる液状封止材料の粘度が高くなり過ぎ、実用レベルで
はないため好ましくない。また充填材の粒度分布を調整
することにより粘度等の流動特性を最大限に引き出すこ
とが可能である。一般に分布範囲の広い粒度分布をもつ
充填材ほど、大きな粒径をもつ充填材ほど粘度が低くな
る傾向があることが知られている。しかし、低粘度化を
目的に例えば50μm以上の大きな粒径だけを揃えた充
填材は、確実に粘度は低くなるものの、硬化中に比重の
比較的重い充填材が沈み、硬化物の上下で組成比率の異
なる、いわゆるフィラー沈降が発生する。また、粒径の
大きな充填材を使う欠点として、狭い隙間に流入しない
という点が挙げられる。PPGA型パッケージに代表さ
れるように、多ピン化省スペース化のパッケージの傾向
にあって、一例としてワイヤー・ワイヤー間のピッチが
最近狭くなってきている。このような傾向にあり無圧下
で液状封止材料を流入し、ボイド・未充填など流動性の
不具合がないよう成形するために、充填材の粒径を小さ
くしなければならない。しかし粒径を小さくすることに
よって流動性が損なわれる不具合も多くなる。そこで充
填材の平均粒径を3〜10μmと、従来の液状封止材料
のそれより小さくし、かつ粒径30μm以上のものが全
充填材成分中の25重量%以下と粒径を小さくすること
により、流動性も損なわない。また1μm以下のものが
全充填材成分中6〜45重量%と、微粒の充填材を適量
入れ、粒度分布を調整することで、硬化時に微粒の充填
材が沈みやすい充填材の沈降を抑えることができる。本
発明でいう粒度分布および平均粒径は、レーザー式(Ho
riba、LA-500)にて測定する。なお平均粒径は、メジア
ン径とした。本発明の液状封止材料材料には、前記の必
須成分の他に必要に応じて他の樹脂や反応を促進するた
めの触媒、希釈剤、顔料、カップリング剤、難燃剤、レ
ベリング剤、消泡剤等の添加物用いても差し支えない。
液状封止材料は、例えば各成分、添加物等を3本ロール
にて分散混練し真空下脱泡処理して製造する。
As the inorganic filler (e) (hereinafter, simply referred to as a filler), crystalline silica, fused silica or the like is used. The shape generally has a spherical shape, a crushed shape, a flake shape, and the like, but the linear expansion coefficient can be reduced by adding more filler, and a spherical inorganic filler is best for improving the effect. The addition amount is (e) / {(a) +
(B) + (c) + (d) + (e)} = 0.50 to 0.8
0 is desirable. If it is less than 0.50, the above-mentioned effect of reducing the linear expansion coefficient is small, and if it exceeds 0.80, the viscosity of the resulting liquid sealing material becomes too high, which is not a practical level, which is not preferable. Further, by adjusting the particle size distribution of the filler, it is possible to maximize flow characteristics such as viscosity. It is generally known that a filler having a wide particle size distribution and a filler having a large particle size tend to have a lower viscosity. However, a filler having only a large particle size of, for example, 50 μm or more for the purpose of lowering the viscosity certainly lowers the viscosity, but the filler having a relatively high specific gravity sinks during curing, and the composition is above and below the cured product. So-called filler sedimentation occurs with different proportions. Another drawback of using a filler having a large particle size is that it does not flow into a narrow gap. As typified by a PPGA type package, there is a tendency toward a package with a large number of pins and space saving, and as an example, the pitch between wires has become narrower recently. The particle size of the filler must be reduced in order to allow the liquid encapsulating material to flow in under such a tendency without any pressure and to prevent the fluidity problems such as voids and unfilling from occurring. However, reducing the particle size also increases the problem that the fluidity is impaired. Therefore, the average particle size of the filler is set to 3 to 10 μm, which is smaller than that of the conventional liquid sealing material, and the particle size of 30 μm or more is reduced to 25% by weight or less in all the filler components. Therefore, the fluidity is not impaired. In addition, the amount of 1 μm or less is 6 to 45% by weight in all the filler components, and an appropriate amount of fine filler is added to control the particle size distribution to prevent the fine filler from sinking during curing. You can The particle size distribution and the average particle size referred to in the present invention are laser type (Ho
riba, LA-500). The average particle diameter was the median diameter. The liquid encapsulating material of the present invention includes, in addition to the above-mentioned essential components, other resins and catalysts for accelerating the reaction as necessary, a diluent, a pigment, a coupling agent, a flame retardant, a leveling agent, and a quenching agent. Additives such as foaming agents may be used.
The liquid encapsulating material is produced, for example, by dispersing and kneading each component, additive, etc. with a three-roll and defoaming treatment under vacuum.

【0010】[0010]

【実施例】以下本発明を以下に示す実施例及び比較例で
説明する。 ・ビスフェノールFジグリシジルエーテル型エポキシ樹脂: (エポキシ当量155、1.6Pa・s/25℃) 100重量部 ・ナフタレンFジグリシジルエーテル型エポキシ樹脂: (当量135、124Pa・s以下/25℃) ・アルキル化ジアミノジフェニルメタン硬化剤: (アミノ当量65) 42重量部 ・エポキシ基を有するポリブタジエンゴム: 5重量部 (数平均分子量1500、エポキシ含有率5モル%) ・グリシジルトリメトキシシラン: 6重量部 ・溶融シリカ: 350重量部 ・カーボンブラック: 1重量部 上記の原材料を3本ロールにて、分散混練し真空下脱泡
処理をして液状封止材料を得た。得られた液状封止材料
を用いて、PPGAパッケージを封止し165℃で3時
間オーブン中で硬化して半導体パッケージを得た。
The present invention will be described below with reference to the following examples and comparative examples. Bisphenol F diglycidyl ether type epoxy resin: (epoxy equivalent 155, 1.6 Pa · s / 25 ° C.) 100 parts by weight Naphthalene F diglycidyl ether type epoxy resin: (equivalent weight 135, 124 Pa · s or less / 25 ° C.) Alkylated diaminodiphenylmethane curing agent: (Amino equivalent 65) 42 parts by weight Polybutadiene rubber having an epoxy group: 5 parts by weight (number average molecular weight 1500, epoxy content 5 mol%) Glycidyltrimethoxysilane: 6 parts by weight Melting Silica: 350 parts by weight Carbon black: 1 part by weight The above raw materials were dispersed and kneaded by a three-roll mill and defoamed under vacuum to obtain a liquid sealing material. A PPGA package was encapsulated using the obtained liquid encapsulating material and cured in an oven at 165 ° C. for 3 hours to obtain a semiconductor package.

【0011】《評価方法》 ・粘度:E型粘度計(25℃)にて、2.5rpmで測
定したものを値とした。この値が高いほど悪い。粘度が
50Pa・sを越えるとディスペンス時の作業性が悪く
なる。 ・チキソ比:上述粘度計で、0.5rpmと2.5rp
mでの粘度の比を値とした。 ・保存性:初期粘度の倍の粘度になる時間をとった。 ○は72時間以上、△は24〜72時間、×は24時間
以下 ・硬化性:PPGAパッケージピースパーツに液状封止
材料を注入し、硬化条件165℃/3時間にて硬化し、
パッケージ表面のボイドの数、フィラー分離を観察し
た。パッケージ表面のボイドの数は顕微鏡で観察し、数
μm以上のボイドを家運とした。未充填パッケージは、
超音波殺傷機(以下SATという)にて観察した。フィ
ラー分離は、パッケージの断面を研磨し、表面の樹脂層
の厚みを測定した。5μm以上のものをフィラー分離有
りとして表した。評価したPPGAパッケージの数は1
0個である。 ・硬化後の剥離・クラック 処理前 PCT処理(125℃/2.3atm)720時間後 T/C処理(−65℃/30分←→150℃/30
分)1000サイクル後についてSATを用いて、半導
体チップとプリント基板界面との剥離、クラックの有無
を確認した。評価したPPGAパッケージの数は、10
個である。
<< Evaluation Method >> Viscosity: The value was measured by an E-type viscometer (25 ° C.) at 2.5 rpm. The higher the value, the worse. When the viscosity exceeds 50 Pa · s, workability at the time of dispensing deteriorates. -Thixo ratio: 0.5 rpm and 2.5 rpm with the above viscometer
The ratio of the viscosity in m was taken as the value. -Storage property: Time was taken for the viscosity to be twice the initial viscosity. ○: 72 hours or more, △: 24-72 hours, ×: 24 hours or less ・ Curable: Injecting a liquid sealing material into PPGA package piece parts and curing under curing conditions of 165 ° C./3 hours,
The number of voids on the package surface and filler separation were observed. The number of voids on the surface of the package was observed with a microscope, and voids of several μm or more were taken as luck. The unfilled package is
It was observed with an ultrasonic killer (hereinafter referred to as SAT). For the filler separation, the cross section of the package was polished, and the thickness of the resin layer on the surface was measured. Those having a size of 5 μm or more were indicated as having filler separation. 1 PPGA package evaluated
There are zero.・ Peeling / cracking after curing Before treatment PCT treatment (125 ° C / 2.3 atm) 720 hours later T / C treatment (-65 ° C / 30 minutes ← → 150 ° C / 30
Min) After 1000 cycles, the presence or absence of cracks and peeling between the semiconductor chip and the printed circuit board interface was confirmed using SAT. The number of evaluated PPGA packages is 10
Individual.

【0012】 表 1 シ リ カ A B C D E F 平均粒径(μm) 5.4 4.2 7.8 2.5 3.2 7.3 1μm以下の重量% 30 39 20 40 48 10 1〜30μmの重量% 55 52 62 55 51 61 30μm以上の重量% 15 9 18 5 1 29 Table 1 Silica ABC D E F Average particle size (μm) 5.4 4.2 7.8 2.5 3.2 7.3 1 μm or less weight% 30 39 20 40 48 10 1-30 μm weight% 55 52 62 55 51 61 30 μm or more weight% 15 9 18 5 1 29

【0013】 表 2 実 施 例 1 2 3 4 5 配合(重量部) ヒ゛スフェノ-ルF型シ゛ク゛リシシ゛ルエ-テルエホ゜キシ樹脂 100 100 100 100 60 ナフタレン型シ゛ク゛リシシ゛ルエ-テルエホ゜キシ樹脂 40 アルキル化ジアミノジフェニルメタン 42 42 42 42 47 ポリブタジエンゴム 5 5 5 5 5 グリシジルトリメトキシシラン 6 6 6 6 6 カーボンブラック 1 1 1 1 1 溶融シリカA 350 500 350 溶融シリカB 350 溶融シリカC 350 特性 粘度(Pa・s) 30 45 36 24 38 チキソ比 1.2 1.2 1.3 1.1 1.3 保存性 ○ ○ ○ ○ ○ 硬化性 ボイドの数 0 0 0 0 0 未充填 0 0 0 0 0 フィラー分離 無 無 無 無 無 硬化後 剥離 0 0 0 0 0 クラック 0 0 0 0 0 PCT処理後 剥離 0 0 0 0 0 クラック 0 0 0 0 0 T/C処理後 剥離 0 0 0 0 0 クラック 0 0 0 0 0 Table 2 Example 1 2 3 4 5 compounding (parts by weight) bisphenol F type glyceryl ether epoxy resin 100 100 100 100 60 naphthalene type glyceryl ether-terepoxy resin 40 alkylated diaminodiphenylmethane 42 42 42 42 42 47 polybutadiene rubber 5 5 5 5 5 Glycidyltrimethoxysilane 6 6 6 6 6 Carbon black 1 1 1 1 1 Fused silica A 350 500 350 Fused silica B 350 Fused silica C 350 Characteristic viscosity (Pa · s) 30 45 36 24 38 Thixo ratio 1.2 1.2 1.3 1.1 1.3 Storability ○ ○ ○ ○ ○ Number of curable voids 0 0 0 0 0 Unfilled 0 0 0 0 0 Filler separation No No No No No Peeling after curing Peeling 0 0 0 0 0 0 PCT Treatment Peeling 0 0 0 0 0 Crack 0 0 0 0 0 0 After T / C treatment Peeling 0 0 0 0 0 0 Crack 0 0 0 0 0

【0013】 表 3 比 較 例 1 2 3 4 5 配合(重量部) ヒ゛スフェノ-ルF型シ゛ク゛リシシ゛ルエ-テルエホ゜キシ樹脂 100 100 100 100 30 ナフタレン型シ゛ク゛リシシ゛ルエ-テルエホ゜キシ樹脂 70 アルキル化ジアミノジフェニルメタン 42 42 42 42 45 ポリブタジエンゴム 5 5 5 5 5 グリシジルトリメトキシシラン 6 6 6 6 6 カーボンブラック 1 1 1 1 1 溶融シリカA 200 350 溶融シリカD 350 溶融シリカE 350 溶融シリカF 350 特性 粘度(Pa・s) 43 54 27 17 76 チキソ比 1.1 1.2 1.3 1.1 1.3 保存性 ○ ○ ○ ○ × 硬化性 ボイドの数 2 15 0 0 3 未充填 1 2 0 0 20 フィラー分離 有 無 有 無 無 硬化後 剥離 0 0 0 0 0 クラック 0 0 0 0 0 PCT処理後 剥離 0 0 0 10 4 クラック 0 0 0 6 2 T/C処理後 剥離 0 0 0 10 0 クラック 0 0 0 10 0 Table 3 Comparative Example 1 2 3 4 5 Compounding (parts by weight) Bisphenol F type glyceryl terepoxy resin 100 100 100 100 30 Naphthalene type glyceryl tereoxy resin 70 Alkylated diaminodiphenylmethane 42 42 42 42 42 42 Polybutadiene rubber 5 5 5 5 5 Glycidyltrimethoxysilane 6 6 6 6 6 Carbon black 1 1 1 1 1 Fused silica A 200 350 Fused silica D 350 Fused silica E 350 Fused silica F 350 Characteristic viscosity (Pa · s) 43 54 27 17 76 Thixo ratio 1.1 1.2 1.3 1.1 1.3 Storability ○ ○ ○ ○ × Number of curable voids 2 15 0 0 3 Unfilled 1 2 0 0 20 Filler separation Yes No Yes No No No Peeling after curing 0 0 0 0 0 PCT Crack 0 0 0 0 0 PCT Peeling after treatment 0 0 0 10 4 Crack 0 0 0 6 2 T / C Peeling after treatment 0 0 0 10 10 Crack 0 0 0 0 10 0

【0014】[0014]

【発明の効果】本発明の液状封止材料で半導体パッケー
ジの封止を行うと、プレッシャークッカーテストや冷熱
サイクルテストにおいても剥離クラックのない高信頼性
の半導体を得ることがでるので工業的メリット大であ
る。
Industrial Applicability When the semiconductor package is encapsulated with the liquid encapsulating material of the present invention, a highly reliable semiconductor free from peeling cracks can be obtained even in a pressure cooker test or a thermal cycle test, which is an industrial advantage. Is.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 63/00 NJD C08L 63/00 NJD 63/08 NJD 63/08 NJD NJQ NJQ H01L 23/29 H01L 23/30 R 23/31 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C08L 63/00 NJD C08L 63/00 NJD 63/08 NJD 63/08 NJD NJQ NJQ H01L 23/29 H01L 23/30 R 23/31

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a)液状エポキシ樹脂、(b)常温で
液体である芳香族アミン系硬化剤アルキル化ジアミノジ
フェニルメタン、(c)エポキシ基を有するポリブタジ
エン化合物、(d)エポキシ基、アミノ基、メルカプト
基の群から選ばれる1個以上の官能基を分子内に有する
シランカップリング剤、及び(e)下記に示す特定の粒
度分布を有する無機充填材を主成分とする液状封止材料
において、各成分の配合割合が重量比で(c)/
{(a)+(b)+(c)}=0.03〜0.10、
(d)/{(a)+(b)+(c)}=0.02〜0.
10で、かつ(e)/{(a)+(b)+(c)+
(d)+(e)}=0.50〜0.80であることを特
徴とする液状封止材料。
1. A liquid epoxy resin, (b) an aromatic amine curing agent alkylated diaminodiphenylmethane which is liquid at room temperature, (c) a polybutadiene compound having an epoxy group, (d) an epoxy group, an amino group, A silane coupling agent having one or more functional groups selected from the group of mercapto groups in the molecule, and (e) a liquid encapsulating material containing an inorganic filler having a specific particle size distribution shown below as a main component, The mixing ratio of each component is (c) / weight ratio
{(A) + (b) + (c)} = 0.03-0.10,
(D) / {(a) + (b) + (c)} = 0.02-0.
10 and (e) / {(a) + (b) + (c) +
(D) + (e)} = 0.50-0.80, The liquid sealing material characterized by the above-mentioned.
【請求項2】(e)無機充填材が、平均粒径が3〜10
μmで、粒径1μm以下のものが全無機充填材成分中6
〜45重量%で、かつ粒径30μm以上のものが全無機
充填材成分中の25重量%以下の粒度分布を有する請求
項1記載の液状封止材料。
2. The (e) inorganic filler has an average particle size of 3 to 10.
6 μm with a particle size of 1 μm or less in all inorganic filler components
The liquid encapsulating material according to claim 1, which has a particle size distribution of not more than 45% by weight and a particle size of 30 μm or more in all inorganic filler components of 25% by weight or less.
JP07341580A 1995-12-27 1995-12-27 Liquid sealing material Expired - Fee Related JP3137314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07341580A JP3137314B2 (en) 1995-12-27 1995-12-27 Liquid sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07341580A JP3137314B2 (en) 1995-12-27 1995-12-27 Liquid sealing material

Publications (2)

Publication Number Publication Date
JPH09176294A true JPH09176294A (en) 1997-07-08
JP3137314B2 JP3137314B2 (en) 2001-02-19

Family

ID=18347180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07341580A Expired - Fee Related JP3137314B2 (en) 1995-12-27 1995-12-27 Liquid sealing material

Country Status (1)

Country Link
JP (1) JP3137314B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158366A (en) * 1996-12-05 1998-06-16 Sumitomo Bakelite Co Ltd Liquid injection sealing underfill material
EP0846728A3 (en) * 1996-12-04 1999-08-18 Sumitomo Bakelite Company Limited Liquid epoxy resin potting material
JP2001122945A (en) * 1999-10-27 2001-05-08 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
WO2001046320A1 (en) * 1999-12-20 2001-06-28 3M Innovative Properties Company Encapsulant compositions with thermal shock resistance
JP2005194502A (en) * 2003-12-12 2005-07-21 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2006016433A (en) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for semiconductor encapsulation and flip chip semiconductor device
JP2006188622A (en) * 2005-01-07 2006-07-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006199886A (en) * 2005-01-24 2006-08-03 Sumitomo Bakelite Co Ltd Liquid sealing resin composition
JP2006225464A (en) * 2005-02-16 2006-08-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
US7169833B2 (en) * 2003-03-28 2007-01-30 Shin-Estu Chemical Co., Ltd. Liquid epoxy resin composition and semiconductor device
US7692318B2 (en) 2005-03-25 2010-04-06 Shin-Etsu Chemical Co., Ltd. Liquid epoxy resin composition and semiconductor device
US9018281B2 (en) 2006-09-14 2015-04-28 Shin-Etsu Chemical Co., Ltd. Set of resin compositions for preparing system-in-package type semiconductor device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846728A3 (en) * 1996-12-04 1999-08-18 Sumitomo Bakelite Company Limited Liquid epoxy resin potting material
JPH10158366A (en) * 1996-12-05 1998-06-16 Sumitomo Bakelite Co Ltd Liquid injection sealing underfill material
JP2001122945A (en) * 1999-10-27 2001-05-08 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP4534280B2 (en) * 1999-10-27 2010-09-01 日立化成工業株式会社 Epoxy resin molding material for sealing and electronic component device
WO2001046320A1 (en) * 1999-12-20 2001-06-28 3M Innovative Properties Company Encapsulant compositions with thermal shock resistance
US6664318B1 (en) 1999-12-20 2003-12-16 3M Innovative Properties Company Encapsulant compositions with thermal shock resistance
US7169833B2 (en) * 2003-03-28 2007-01-30 Shin-Estu Chemical Co., Ltd. Liquid epoxy resin composition and semiconductor device
JP2005194502A (en) * 2003-12-12 2005-07-21 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP4557148B2 (en) * 2003-12-12 2010-10-06 信越化学工業株式会社 Liquid epoxy resin composition and semiconductor device
JP2006016433A (en) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for semiconductor encapsulation and flip chip semiconductor device
JP2006188622A (en) * 2005-01-07 2006-07-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006199886A (en) * 2005-01-24 2006-08-03 Sumitomo Bakelite Co Ltd Liquid sealing resin composition
JP2006225464A (en) * 2005-02-16 2006-08-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
US7692318B2 (en) 2005-03-25 2010-04-06 Shin-Etsu Chemical Co., Ltd. Liquid epoxy resin composition and semiconductor device
US9018281B2 (en) 2006-09-14 2015-04-28 Shin-Etsu Chemical Co., Ltd. Set of resin compositions for preparing system-in-package type semiconductor device

Also Published As

Publication number Publication date
JP3137314B2 (en) 2001-02-19

Similar Documents

Publication Publication Date Title
US20010034382A1 (en) Sealing material for flip-chip semiconductor device, and flip-chip semiconductor device made therewith
JPH1045877A (en) Liquid sealing material
JPH09176294A (en) Liquid sealing material
JP3351974B2 (en) Liquid injection underfill material
JPH0284458A (en) Rubber modified phenol resin, epoxy resin composition and semiconductor device sealed with the composition
JPH05148411A (en) Thermosetting resin composition and semiconductor device
JP2000017149A (en) Liquid epoxy resin composition for sealing medium and its cured product
KR100429363B1 (en) Epoxy resin composition for semiconductor device sealing
JP2000336244A (en) Liquid sealing resin composition and semiconductor device using the composition
KR100250770B1 (en) Low humid and good adhesive epoxy resin composition for the encapsulation of semiconductor
JPH0931161A (en) Liquid epoxy resin composition
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP2690795B2 (en) Epoxy resin composition
JPH04296046A (en) Resin-sealed semiconductor device
JP2002226673A (en) Liquid epoxy resin composition for sealing semiconductor, and semiconductor device
JP4270059B2 (en) Semiconductor sealing resin composition and semiconductor device
KR100430196B1 (en) Epoxy Resin Compositions for Semiconductor Device Sealing
JPH0639517B2 (en) Epoxy resin composition
JP3309688B2 (en) Method for producing epoxy resin composition
JP2874090B2 (en) Epoxy resin composition and semiconductor device
JPH0625385A (en) Epoxy resin composition and semiconductor device
JPH10176099A (en) Epoxy resin composition and resin-sealed type semiconductor device by using the same
JP2003155329A (en) Epoxy resin composition and semiconductor device
JPH05206329A (en) Epoxy resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20071208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081208

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121208

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20131208

LAPS Cancellation because of no payment of annual fees