Nothing Special   »   [go: up one dir, main page]

JPH0857314A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH0857314A
JPH0857314A JP6196598A JP19659894A JPH0857314A JP H0857314 A JPH0857314 A JP H0857314A JP 6196598 A JP6196598 A JP 6196598A JP 19659894 A JP19659894 A JP 19659894A JP H0857314 A JPH0857314 A JP H0857314A
Authority
JP
Japan
Prior art keywords
catalyst
nox
supported
carrier
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6196598A
Other languages
Japanese (ja)
Inventor
Osamu Ogawa
修 小川
Naoto Miyoshi
直人 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6196598A priority Critical patent/JPH0857314A/en
Publication of JPH0857314A publication Critical patent/JPH0857314A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To prevent the poisoning of an NOx absorbent by sulfur while ensuring the initial rate of removal of NOx and prevent the deterioration of NOx removing performance after repeated use CONSTITUTION: An oxide selected from silica, titania and zirconia is carried on an alumina carrier by impregnating and firing alkoxide of Si, Ti or Zr and an NOx absorbent selected from alkali metals, alkaline earth metals and rare earth elements and a catalytic noble metal are further carried on the carrier to obtain the objective catalyst. The characteristics of the selected oxide and alumina are exhibited and the poisoning of the NOx absorbent by sulfur is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排気ガス浄化用触媒に関
し、詳しくはリーン側の排気ガスであっても窒素酸化物
(NOx)を効率よく浄化できる触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst, and more particularly to a catalyst capable of efficiently purifying nitrogen oxides (NOx) even in lean exhaust gas.

【0002】[0002]

【従来の技術】従来より、自動車の排気ガス浄化用触媒
として、CO及びHCの酸化とNOxの還元とを同時に
行って排気ガスを浄化する三元触媒が用いられている。
このような触媒としては、例えばコージェライトなどの
耐熱性担体にγ−アルミナからなる担持層を形成し、そ
の担持層にPt,Pd,Rhなどの触媒貴金属を担持さ
せたものが広く知られている。
2. Description of the Related Art Conventionally, a three-way catalyst for purifying exhaust gas by simultaneously oxidizing CO and HC and reducing NOx has been used as a catalyst for purifying exhaust gas of an automobile.
As such a catalyst, for example, a catalyst in which a supporting layer made of γ-alumina is formed on a heat resistant carrier such as cordierite and a catalytic precious metal such as Pt, Pd, Rh is supported on the supporting layer is widely known. There is.

【0003】ところで、このような排気ガス浄化用触媒
の浄化性能は、エンジンの空燃比(A/F)によって大
きく異なる。すなわち、空燃比の大きい、つまり燃料濃
度が希薄なリーン側では排気ガス中の酸素量が多くな
り、COやHCを浄化する酸化反応が活発である反面N
Oxを浄化する還元反応が不活発になる。逆に空燃比の
小さい、つまり燃料濃度が濃いリッチ側では排気ガス中
の酸素量が少なくなり、酸化反応は不活発となるが還元
反応は活発になる。
By the way, the purification performance of such an exhaust gas purification catalyst greatly differs depending on the air-fuel ratio (A / F) of the engine. That is, on the lean side where the air-fuel ratio is large, that is, where the fuel concentration is lean, the amount of oxygen in the exhaust gas is large, and the oxidation reaction for purifying CO and HC is active, but N
The reduction reaction for purifying Ox becomes inactive. On the contrary, on the rich side where the air-fuel ratio is small, that is, where the fuel concentration is high, the amount of oxygen in the exhaust gas is small, and the oxidation reaction becomes inactive but the reduction reaction becomes active.

【0004】一方、自動車の走行において、市街地走行
の場合には加速・減速が頻繁に行われ、空燃比はストイ
キ(理論空燃比)近傍からリッチ状態までの範囲内で頻
繁に変化する。このような走行における低燃費化の要請
に応えるには、なるべく酸素過剰の混合気を供給するリ
ーン側での運転が必要となる。したがってリーン側にお
いてもNOxを十分に浄化できる触媒の開発が望まれて
いる。
On the other hand, when driving an automobile, acceleration and deceleration are frequently performed in urban areas, and the air-fuel ratio frequently changes within the range from near stoichiometric (theoretical air-fuel ratio) to the rich state. In order to meet the demand for low fuel consumption in such traveling, it is necessary to operate on the lean side to supply an air-fuel mixture with excess oxygen as much as possible. Therefore, it is desired to develop a catalyst that can sufficiently purify NOx even on the lean side.

【0005】そこで本願出願人は、先にアルカリ土類金
属とPtをアルミナなどの多孔質担体に担持した排気ガ
ス浄化用触媒を提案している(特開平5−317652
号)。この触媒によれば、NOxはアルカリ土類金属に
吸着し、それがHCなどの還元性ガスと反応して浄化さ
れるため、リーン側においてもNOxの浄化性能に優れ
ている。
Therefore, the applicant of the present application has previously proposed an exhaust gas purifying catalyst in which an alkaline earth metal and Pt are carried on a porous carrier such as alumina (Japanese Patent Laid-Open No. 5-317652).
issue). According to this catalyst, NOx is adsorbed on the alkaline earth metal and is reacted with a reducing gas such as HC to be purified, so that the lean side is also excellent in NOx purification performance.

【0006】特開平5−317652号に開示された触
媒では、例えばバリウムが単独酸化物として担体に担持
され、それがNOxと反応して硝酸バリウム(Ba(N
32 )を生成することでNOxを吸着するものと考
えられている。
In the catalyst disclosed in Japanese Unexamined Patent Publication No. 5-317652, for example, barium is supported on a carrier as a single oxide, which reacts with NOx to produce barium nitrate (Ba (N
It is considered that NOx is adsorbed by producing O 3 ) 2 ).

【0007】[0007]

【発明が解決しようとする課題】ところが排気ガス中に
は、燃料中に含まれる硫黄(S)が燃焼して生成したS
Oxが含まれ、それが酸素過剰雰囲気中で触媒金属によ
り酸化されてSO3 となる。そしてそれがやはり排気ガ
ス中に含まれる水蒸気により容易に硫酸となり、これら
がバリウムと反応して亜硫酸バリウムや硫酸バリウムが
生成し、これによりバリウムが被毒劣化することが明ら
かとなった。また、アルミナなどの多孔質担体はSOx
を吸着しやすいという性質があることから、上記硫黄被
毒が促進されるという問題がある。
However, in the exhaust gas, sulfur (S) contained in the fuel is burned to generate S.
Ox is contained, and it is oxidized to SO 3 by the catalytic metal in the oxygen excess atmosphere. It was also clarified that sulfuric acid is easily converted to sulfuric acid by the water vapor contained in the exhaust gas, which reacts with barium to generate barium sulfite or barium sulfate, which causes the barium to be poisoned and deteriorated. In addition, the porous carrier such as alumina is SOx.
Since it has a property of easily adsorbing sulfur, there is a problem that the sulfur poisoning is promoted.

【0008】そして、このようにバリウムが亜硫酸塩や
硫酸塩となると、もはやNOxを吸着することができな
くなり、その結果上記触媒では、耐久後のNOxの浄化
性能が低下するという不具合があった。また、チタニア
はSOxを吸収しにくいので、アルミナ担体に代えてチ
タニア担体を用いることが想起され実験が行われた。そ
の結果、SOxはチタニアには吸着されにくくそのまま
下流に流れ、触媒貴金属と直接接触したSOxのみが酸
化されるだけであるので被毒の程度は少ないことが明ら
かとなった。ところがチタニア担体では初期活性が低
く、耐久後のNOxの浄化性能も低いままであるという
致命的な不具合があることも明らかとなった。
When barium becomes a sulfite or a sulfate as described above, NOx can no longer be adsorbed, and as a result, the catalyst has a problem that the NOx purification performance after durability is deteriorated. Further, since titania hardly absorbs SOx, it was remembered to use a titania carrier instead of an alumina carrier, and an experiment was conducted. As a result, it became clear that SOx was not easily adsorbed by titania and flowed as it was, and only SOx that was in direct contact with the catalytic noble metal was oxidized, so that the degree of poisoning was small. However, it became clear that the titania carrier has a fatal defect that the initial activity is low and the NOx purification performance after the endurance remains low.

【0009】本発明はこのような事情に鑑みてなされた
ものであり、初期のNOx浄化率を確保しつつ、NOx
吸収材の硫黄被毒を防止して耐久後におけるNOx浄化
性能の低下を防止することを目的とする。
The present invention has been made in view of such circumstances, and it is possible to secure the initial NOx purification rate while maintaining NOx.
The purpose of the present invention is to prevent sulfur poisoning of the absorbent material and prevent deterioration of NOx purification performance after endurance.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の排気ガス浄化用触媒は、アルミナ担体上に、金属ア
ルコキシドを含浸後焼成することにより担持されたシリ
カ,チタニア及びジルコニアから選ばれる酸化物と、ア
ルカリ金属,アルカリ土類金属及び希土類元素から選ば
れるNOx吸収材と、触媒貴金属と、を担持してなるこ
とを特徴とする。
The exhaust gas purifying catalyst of the present invention for solving the above-mentioned problems is an oxidation selected from silica, titania and zirconia supported on an alumina carrier by impregnating a metal alkoxide and then calcining. And an NOx absorbent selected from an alkali metal, an alkaline earth metal and a rare earth element, and a catalytic noble metal.

【0011】[0011]

【作用】本発明の排気ガス浄化用触媒では、アルミナ担
体上に金属アルコキシドを原料として担持されたシリ
カ,チタニア及びジルコニアから選ばれる酸化物が担持
されている。この酸化物は担体として用いた場合は初期
活性が低いが、本発明では担体の主成分はアルミナであ
るので、初期においては十分高いNOx浄化性能が確保
される。
In the exhaust gas purifying catalyst of the present invention, an oxide selected from silica, titania and zirconia, which is supported by using a metal alkoxide as a raw material, is supported on an alumina carrier. This oxide has low initial activity when used as a carrier, but in the present invention, since the main component of the carrier is alumina, a sufficiently high NOx purification performance is secured in the initial stage.

【0012】また、これらの酸化物はSOxを吸着しに
くいという性質をもち、理由は不明であるがアルミナ担
体自体もSOxを吸着しにくくなり、NOx吸収材の硫
黄被毒が防止される。なお、この酸化物の作用は、アル
ミナ担体に金属アルコキシドを含浸させることで酸化物
を担持した場合に現れ、アルミナと酸化物粉末を物理的
に混合しただけではこのような作用は現れない。
Further, these oxides have a property that SOx is hard to be adsorbed, and although the reason is not clear, the alumina carrier itself is hard to adsorb SOx, and sulfur poisoning of the NOx absorbent is prevented. The action of the oxide appears when the oxide is supported by impregnating the alumina carrier with the metal alkoxide, and such a action does not appear only by physically mixing the alumina and the oxide powder.

【0013】[0013]

【実施例】【Example】

〔発明の具体例〕シリカ,チタニア及びジルコニアから
選ばれる酸化物の担持量は、アルミナ担体100gに対
して0.01〜1molの範囲が望ましい。酸化物が
0.01molより少ないと硫黄被毒が生じて耐久後の
NOx浄化性能が低下し、1molより多くなると初期
のNOx浄化性能が低下し酸化活性も低下するようにな
る。酸化物の種類としては、シリカ,チタニア及びジル
コニアのうちの一種でもよいし複数種混合されていても
よい。
Specific Example of the Invention The amount of the oxide selected from silica, titania and zirconia is preferably in the range of 0.01 to 1 mol with respect to 100 g of the alumina carrier. When the amount of the oxide is less than 0.01 mol, sulfur poisoning occurs and the NOx purification performance after endurance deteriorates, and when it exceeds 1 mol, the initial NOx purification performance decreases and the oxidation activity also decreases. As the kind of oxide, one kind of silica, titania and zirconia may be used, or a plurality of kinds may be mixed.

【0014】アルカリ金属としてはリチウム、ナトリウ
ム、カリウム、ルビジウム、セシウム、フランシウムが
挙げられる。また、アルカリ土類金属とは周期表2A族
元素をいい、バリウム、ベリリウム、マグネシウム、カ
ルシウム、ストロンチウムが挙げられる。また希土類元
素としては、スカンジウム、イットリウム、ランタン、
セリウム、プラセオジム、ネオジムなどが例示される。
Examples of alkali metals include lithium, sodium, potassium, rubidium, cesium and francium. The alkaline earth metal is an element of Group 2A of the periodic table, and examples thereof include barium, beryllium, magnesium, calcium, and strontium. Further, as rare earth elements, scandium, yttrium, lanthanum,
Examples include cerium, praseodymium, and neodymium.

【0015】このNOx吸収材の担持量は、アルミナ担
体100gに対して0.05〜0.5molの範囲が望
ましい。NOx吸収材が0.05molより少ないとN
Ox浄化性能が低下し、0.5molより多くなると酸
化活性が低下するようになる。触媒貴金属としては、白
金(Pt)、パラジウム(Pd)、ロジウム(Rh)の
少なくとも一種が用いられる。白金又はパラジウムの担
持量は、アルミナ担体100gに対して0.1〜20.
0gの範囲が望ましく、0.3〜10.0gの範囲が特
に好ましい。担持量が0.1gより少ないと初期及び耐
久後のNOx浄化性能が低下し、20.0gを超えて担
持しても効果が飽和し、過剰に担持された触媒貴金属の
有効利用が図れない。
The amount of the NOx absorbent supported is preferably in the range of 0.05 to 0.5 mol with respect to 100 g of the alumina carrier. N is less than 0.05 mol of NOx absorbent
The Ox purification performance deteriorates, and if it exceeds 0.5 mol, the oxidation activity will decrease. At least one of platinum (Pt), palladium (Pd), and rhodium (Rh) is used as the catalytic noble metal. The amount of platinum or palladium supported is 0.1 to 20.
The range of 0 g is desirable, and the range of 0.3 to 10.0 g is particularly preferable. If the supported amount is less than 0.1 g, the NOx purification performance at the initial stage and after endurance will decrease, and if the supported amount exceeds 20.0 g, the effect will be saturated, and the excessively supported catalytic noble metal cannot be effectively utilized.

【0016】ロジウムの担持量は、アルミナ担体100
gに対して0.001〜1.0gの範囲が望ましく、
0.05〜0.5gの範囲が特に好ましい。担持量が
0.001gより少ないと初期及び耐久後のNOx浄化
性能が低下し、1.0gを超えると白金あるいはパラジ
ウムの効果が逆に低下する。ロジウムの担持量は白金あ
るいはパラジウムの担持量と相対的に決定されるのが望
ましく、白金あるいはパラジウムの担持量の合計量の1
/3以下、さらに好ましくは1/5以下とするのがよ
い。
The amount of rhodium supported is 100% on the alumina carrier.
The range of 0.001 to 1.0 g is desirable with respect to g,
The range of 0.05 to 0.5 g is particularly preferable. If the supported amount is less than 0.001 g, the NOx purification performance at the initial stage and after the durability deteriorates, and if it exceeds 1.0 g, the effect of platinum or palladium decreases conversely. It is desirable that the amount of rhodium supported be determined relative to the amount of platinum or palladium supported, which is 1 of the total amount of platinum or palladium supported.
It is preferably / 3 or less, and more preferably 1/5 or less.

【0017】本発明の排気ガス浄化用触媒を製造する場
合において、シリカ,チタニア及びジルコニアから選ば
れる酸化物、NOx吸収材、触媒貴金属の担持順序は特
に制限されないが、貴金属をアルミナ担体上により高分
散させる理由から触媒貴金属は酸化物より前に担持する
のが望ましい。 (実施例1)所定濃度のジニトロジアンミン白金水溶液
1L中に活性アルミナ粉末600gを浸漬して攪拌し、
蒸発乾固後250℃で1時間焼成して、アルミナ粉末1
00gに対してPtを2g担持したPt担持粉末を調製
した。
In the case of producing the exhaust gas purifying catalyst of the present invention, the order of loading the oxide selected from silica, titania and zirconia, the NOx absorbent, and the catalyst noble metal is not particularly limited, but the noble metal is more highly supported on the alumina carrier. For reasons of dispersion, it is desirable to support the catalytic noble metal before the oxide. (Example 1) 600 g of activated alumina powder was immersed in 1 L of an aqueous solution of dinitrodiammine platinum having a predetermined concentration and stirred,
After evaporating to dryness, baking at 250 ° C for 1 hour gives alumina powder 1
A Pt-supported powder in which 2 g of Pt was supported with respect to 00 g was prepared.

【0018】このPt担持粉末610gを2−プロパノ
ール6L中に混合し、80℃で1時間攪拌した。それを
80℃に維持して攪拌しながら、オルト珪酸テトラエチ
ル1.5mol(312.5g)を滴下して添加し、8
0℃で2時間攪拌を続けた。そして室温まで冷却後濾過
し、得られた粉末を乾燥後500℃で1時間焼成した。
これによりアルミナ粉末100gに対してシリカを0.
3mol担持したPt−Si担持粉末を得た。
610 g of this Pt-supported powder was mixed in 6 L of 2-propanol and stirred at 80 ° C. for 1 hour. While maintaining it at 80 ° C. and stirring, tetraethyl orthosilicate (1.5 mol, 312.5 g) was added dropwise.
Stirring was continued for 2 hours at 0 ° C. Then, the mixture was cooled to room temperature and filtered, and the obtained powder was dried and calcined at 500 ° C. for 1 hour.
As a result, silica was added to 100 g of the alumina powder in an amount of 0.
3 mol of Pt-Si supported powder was obtained.

【0019】次にこのPt−Si担持粉末700gを所
定濃度の酢酸バリウム水溶液1L中に浸漬して攪拌し、
蒸発乾固後500℃で1時間焼成した。これにより、ア
ルミナ粉末100gに対して酸化バリウムを0.3mo
l担持したPt−Si−Ba担持粉末を調製した。この
Pt−Si−Ba担持粉末970gと、アルミナゾル
(アルミナ含有率10重量%)680gと、水290g
を混合してスラリーを調製し、コーディエライト製ハニ
カム担体基材をこのスラリーに浸漬後引き上げて余分な
スラリーを吹き払い、乾燥後500℃で1時間焼成して
コート層を形成した。コート層は担体基材1Lに対して
120g形成され、表2に示すように担体基材1Lに対
してPtが2g、Si(金属換算)が0.3mol、B
a(金属換算)が0.3mol担持された触媒が得られ
た。 (実施例2)オルト珪酸テトラエチルの代わりにチタン
酸テトライソプロピル1.5mol(426.345
g)を添加したこと以外は実施例1と同様にして、実施
例2の触媒を調製した。チタンはチタニアとして担持さ
れ、その担持量は担体基材1Lに対してTi(金属換
算)が0.3molである。 (実施例3)オルト珪酸テトラエチルの代わりにジルコ
ニウムテトラn−ブトキシド1.5mol(575.5
2g)を添加したこと以外は実施例1と同様にして、実
施例3の触媒を調製した。ジルコニウムはジルコニアと
して担持され、その担持量は担体基材1Lに対してZr
(金属換算)が0.3molである。 (比較例1)オルト珪酸テトラエチルを添加しなかった
こと以外は実施例1と同様にして、PtとBaのみを担
持した比較例1の触媒を調製した。 (比較例2)オルト珪酸テトラエチルを添加しなかった
こと以外は実施例1と同様にして、PtとBaのみを担
持したPt−Ba担持粉末を調製した。
Next, 700 g of this Pt-Si supported powder was immersed in 1 L of an aqueous barium acetate solution having a predetermined concentration and stirred,
After evaporating to dryness, it was baked at 500 ° C. for 1 hour. As a result, 0.3 mol of barium oxide was added to 100 g of alumina powder.
A Pt-Si-Ba-supported powder on which 1 was supported was prepared. 970 g of this Pt-Si-Ba supported powder, 680 g of alumina sol (alumina content 10% by weight), and 290 g of water
Was mixed to prepare a slurry, and a honeycomb carrier base material made of cordierite was dipped in the slurry, pulled up to blow off excess slurry, dried and baked at 500 ° C. for 1 hour to form a coat layer. The coating layer was formed in an amount of 120 g per 1 L of the carrier substrate, and as shown in Table 2, Pt was 2 g, Si (metal conversion) was 0.3 mol, and B was relative to 1 L of the carrier substrate.
A catalyst supporting 0.3 mol of a (metal conversion) was obtained. (Example 2) Instead of tetraethyl orthosilicate, tetraisopropyl titanate 1.5 mol (426.345)
A catalyst of Example 2 was prepared in the same manner as in Example 1 except that g) was added. Titanium is supported as titania, and the supported amount is 0.3 mol of Ti (metal conversion) with respect to 1 L of the carrier substrate. (Example 3) Zirconium tetra n-butoxide 1.5 mol (575.5) instead of tetraethyl orthosilicate
A catalyst of Example 3 was prepared in the same manner as in Example 1 except that 2 g) was added. Zirconium is supported as zirconia, and the supported amount is Zr based on 1 L of the carrier substrate.
(Metal conversion) is 0.3 mol. Comparative Example 1 A catalyst of Comparative Example 1 supporting only Pt and Ba was prepared in the same manner as in Example 1 except that tetraethyl orthosilicate was not added. (Comparative Example 2) A Pt-Ba-supporting powder supporting only Pt and Ba was prepared in the same manner as in Example 1 except that tetraethyl orthosilicate was not added.

【0020】このPt−Ba担持粉末610gに対して
シリカ粉末(SiO2 )1.5mol(90.13g)
を物理的に混合し、その粉末を実施例1と同様にしてス
ラリー化しコートして比較例2の触媒を調製した。シリ
カは担体基材1Lに対してSi(金属換算)として0.
3mol含まれている。 (比較例3)シリカ粉末の代わりにチタニア(Ti
2 )粉末を1.5mol(119.85g)混合した
こと以外は比較例2と同様にして、担体基材1Lに対し
てTi(金属換算)が0.3mol含まれた比較例3の
触媒を調製した。 (比較例4)シリカ粉末の代わりにジルコニア(ZrO
2 )粉末を1.5mol(184.83g)混合したこ
と以外は比較例2と同様にして、担体基材1Lに対して
Zr(金属換算)が0.3mol含まれた比較例4の触
媒を調製した。 (浄化性能評価)上記触媒の浄化性能を下記条件で評価
した。
Silica powder (SiO 2 ) 1.5 mol (90.13 g) per 610 g of this Pt-Ba supported powder.
Was physically mixed, and the powder was slurried and coated in the same manner as in Example 1 to prepare a catalyst of Comparative Example 2. Silica is 0. 1 as Si (metal conversion) with respect to 1 L of the carrier substrate.
3 mol is contained. (Comparative Example 3) Instead of silica powder, titania (Ti
O 2) powder except that the mixed 1.5mol (119.85g) and in the same manner as in Comparative Example 2, Ti (in terms of metal relative to the support substrate 1L) of Comparative Example 3 contained 0.3mol catalyst Was prepared. (Comparative Example 4) Instead of silica powder, zirconia (ZrO
2 ) In the same manner as in Comparative Example 2 except that 1.5 mol (184.83 g) of powder was mixed, the catalyst of Comparative Example 4 containing 0.3 mol of Zr (metal conversion) was added to 1 L of the carrier substrate. Prepared. (Evaluation of Purification Performance) The purification performance of the above catalyst was evaluated under the following conditions.

【0021】エミッション評価 希薄燃焼エンジン(1.6リットル)搭載車両の廃棄通
路に上記触媒を設置し、市外地走行モ−ドで走行して、
NOx浄化率を測定し、結果を表1に示す。尚、耐久処
理触媒とは、希薄燃焼エンジン(1.6リットル)の排
気通路に上記触媒を設置し、エンジンをA/F=18、
入ガス温度650度で50時間運転したものである。
Emission evaluation The above catalyst is installed in the waste passage of a vehicle equipped with a lean burn engine (1.6 liters), and the vehicle is run in the suburban running mode.
The NOx purification rate was measured, and the results are shown in Table 1. The endurance-treated catalyst is the lean-burn engine (1.6 liters) with the catalyst installed in the exhaust passage, and the engine has an A / F = 18,
It was operated for 50 hours at an inlet gas temperature of 650 degrees.

【0022】[0022]

【表1】 [Table 1]

【0023】表1より、比較例2〜4の酸化物粉末をア
ルミナ粉末と物理的に混合した担体を用いた触媒では、
比較例1の酸化物を含まない触媒に対してNOx浄化率
の差がほとんど見られない。しかし金属アルコキシドと
して含浸担持させた酸化物をもつ実施例の触媒では、比
較例に比べて初期のNOx浄化性能に優れ、耐久後の浄
化性能の低下も小さいことが明らかである。
From Table 1, it can be seen that in the catalysts using the carrier obtained by physically mixing the oxide powder of Comparative Examples 2 to 4 with the alumina powder,
Almost no difference is found in the NOx purification rate with respect to the catalyst containing no oxide of Comparative Example 1. However, it is clear that the catalyst of the example having the oxide impregnated and supported as the metal alkoxide is superior to the comparative example in the initial NOx purification performance and the deterioration of the purification performance after the durability is small.

【0024】[0024]

【発明の効果】すなわち本発明の排気ガス浄化用触媒に
よれば、初期のNOx浄化性能を従来と同等以上に維持
しつつ、NOx吸収材の硫黄被毒の防止により耐久後に
も高いNOx浄化率を維持することができ、リーン側に
おける排気ガス中のNOxを効率良く浄化することがで
きる。
[Effects of the Invention] That is, according to the exhaust gas purifying catalyst of the present invention, the initial NOx purifying performance is maintained at a level equal to or higher than that of the conventional one, and the sulfur poisoning of the NOx absorbent is prevented so that the NOx purifying rate is high even after the endurance. Can be maintained, and NOx in the exhaust gas on the lean side can be efficiently purified.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ担体上に、金属アルコキシドを
含浸後焼成することにより担持されたシリカ,チタニア
及びジルコニアから選ばれる酸化物と、アルカリ金属,
アルカリ土類金属及び希土類元素から選ばれるNOx吸
収材と、触媒貴金属と、を担持してなることを特徴とす
る排気ガス浄化用触媒。
1. An oxide selected from silica, titania, and zirconia, which is supported by impregnating a metal alkoxide on an alumina carrier and then calcining the alkali alkoxide,
An exhaust gas purifying catalyst comprising a NOx absorbent selected from alkaline earth metals and rare earth elements and a catalytic precious metal.
JP6196598A 1994-08-22 1994-08-22 Catalyst for purification of exhaust gas Pending JPH0857314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6196598A JPH0857314A (en) 1994-08-22 1994-08-22 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6196598A JPH0857314A (en) 1994-08-22 1994-08-22 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH0857314A true JPH0857314A (en) 1996-03-05

Family

ID=16360412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6196598A Pending JPH0857314A (en) 1994-08-22 1994-08-22 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH0857314A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838255A2 (en) * 1996-10-25 1998-04-29 Hitachi, Ltd. Catalyst for purifying exhaust gas from internal combustion engine and purifying method thereof
JPH10156145A (en) * 1996-11-29 1998-06-16 Ford Global Technol Inc Nitrogen oxides trap using zirconia and sulfate improved in capturing property and sulfur allowance
JP2003210987A (en) * 2002-01-28 2003-07-29 Toyota Motor Corp Method for manufacturing exhaust gas cleaning catalyst
KR100446599B1 (en) * 1997-10-30 2004-10-14 삼성전기주식회사 Catalyst for purifying exhaust gas of automobiles
US7093432B2 (en) 1996-06-10 2006-08-22 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7093432B2 (en) 1996-06-10 2006-08-22 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
EP0838255A2 (en) * 1996-10-25 1998-04-29 Hitachi, Ltd. Catalyst for purifying exhaust gas from internal combustion engine and purifying method thereof
EP0838255A3 (en) * 1996-10-25 1998-07-01 Hitachi, Ltd. Catalyst for purifying exhaust gas from internal combustion engine and purifying method thereof
JPH10156145A (en) * 1996-11-29 1998-06-16 Ford Global Technol Inc Nitrogen oxides trap using zirconia and sulfate improved in capturing property and sulfur allowance
KR100446599B1 (en) * 1997-10-30 2004-10-14 삼성전기주식회사 Catalyst for purifying exhaust gas of automobiles
JP2003210987A (en) * 2002-01-28 2003-07-29 Toyota Motor Corp Method for manufacturing exhaust gas cleaning catalyst

Similar Documents

Publication Publication Date Title
JP4098835B2 (en) Exhaust gas purification catalyst
JP3328318B2 (en) Exhaust gas purification method
JP3363564B2 (en) Exhaust gas purification catalyst
JP3291086B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
WO2000000283A1 (en) Catalyst for exhaust gas purification, process for producing the same, and method of purifying exhaust gas
JP3328322B2 (en) Exhaust gas purification method
JPH09215922A (en) Catalyst for purifying exhaust gas
JP3409894B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3433956B2 (en) Exhaust gas purification method
JP3798727B2 (en) Exhaust gas purification catalyst
JP3216858B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3303486B2 (en) Method for producing exhaust gas purifying catalyst
JP7288331B2 (en) Exhaust gas purification catalyst device
JPH09313938A (en) Catalyst for cleaning exhaust gas
JP2000015101A (en) Catalyst for purifying exhaust gas
JP3224054B2 (en) Exhaust gas purification method
JP3378096B2 (en) Exhaust gas purification catalyst
JPH0751544A (en) Purification of exhaust gas
JP3835436B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JPH0857314A (en) Catalyst for purification of exhaust gas
JP3496348B2 (en) Exhaust gas purification catalyst
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP3551346B2 (en) Exhaust gas purification equipment
JPH10216514A (en) Catalyst for exhaust gas purification
JP2001079405A (en) Exhaust gas cleaning catalyst, exhaust gas cleaning catalyst carrying honeycomb structure and exhaust gas cleaning method