Nothing Special   »   [go: up one dir, main page]

JPH0845718A - Magnetic material and its manufacture - Google Patents

Magnetic material and its manufacture

Info

Publication number
JPH0845718A
JPH0845718A JP7121724A JP12172495A JPH0845718A JP H0845718 A JPH0845718 A JP H0845718A JP 7121724 A JP7121724 A JP 7121724A JP 12172495 A JP12172495 A JP 12172495A JP H0845718 A JPH0845718 A JP H0845718A
Authority
JP
Japan
Prior art keywords
magnetic material
component
magnetic
coercive force
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7121724A
Other languages
Japanese (ja)
Other versions
JP3645312B2 (en
Inventor
Nobuyoshi Imaoka
伸嘉 今岡
Atsushi Okamoto
岡本  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP12172495A priority Critical patent/JP3645312B2/en
Publication of JPH0845718A publication Critical patent/JPH0845718A/en
Application granted granted Critical
Publication of JP3645312B2 publication Critical patent/JP3645312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To manufacture rare earth-transition metal-nitrogen base magnetic material having excellent acidproof and temperature characteristics comprising rough particles having large coersive force. CONSTITUTION:This magnetic material is represented by a general formula of RalphaFe(100-alpha-beta-gamma) MbetaNgamma, (provided R: at least one kind out of rare earth elements, M: at least one kind out of Cr, Ti, Zr, Hf, alpha, beta, gamma satisfy the following inequalities in atm%) i.e., 3<=alpha<=20, 1<=beta<=27, 17<=gamma<=25 and the phases thereof are those of rhonbohedral system or hexahedral system crystalline structures using the components of at least said R, Fe, M and N while the mean particle diameter thereof is at least 10mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に小型モーター、ア
クチュエーターなどの用途に最適な、磁気特性、中でも
保磁力に優れた磁性材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic material which is most suitable for applications such as small motors and actuators and which has excellent magnetic properties, and particularly excellent coercive force.

【0002】[0002]

【従来の技術】磁性材料は家庭電化製品、音響製品、自
動車部品やコンピューターの周辺端末機まで、幅広い分
野で使用されており、エレクトロニクス材料としての重
要性は年々増大しつつある。特に最近、各種電気・電子
機器の小型化、高効率化が要求されてきたため、より高
性能の磁性材料が求められている。このような要請に応
え、Sm−Co系(SmCo5系及びSm2Co17系)、
Nd−Fe−B系などの希土類磁性材料の需要が急激に
増大しているが、Sm−Co系は原料供給が不安定で原
料コストが高く、Nd−Fe−B系は耐熱性、耐食性に
劣る問題点がある。
2. Description of the Related Art Magnetic materials are used in a wide range of fields such as home electric appliances, audio products, automobile parts and peripheral terminals of computers, and their importance as electronic materials is increasing year by year. In particular, recently, there has been a demand for miniaturization and high efficiency of various electric / electronic devices, so that a magnetic material with higher performance is required. In response to such a demand, Sm-Co type (SmCo 5 type and Sm 2 Co 17 type),
Demand for rare earth magnetic materials such as Nd-Fe-B system is rapidly increasing, but Sm-Co system has unstable supply of raw material and high raw material cost, and Nd-Fe-B system has high heat resistance and corrosion resistance. There are inferior problems.

【0003】一方、新しい希土類系磁性材料として、希
土類−鉄−窒素系磁性材料が提案されている(例えば特
開平2−57663号公報)。この材料は、磁化、異方
性磁界、キュリー点が高く、Sm−Co系、Nd−Fe
−B系の欠点を補う磁性材料として期待されている。し
かしながら、前述の公報に開示された希土類−鉄−窒素
系材料は10μm以下に細かく粉砕して使用しなけれ
ば、高い保磁力が達成されないが、10μm以下に粉砕
すると、表面が酸化されて保磁力が低下するという問題
点があった。さらに、これらの材料の保磁力の温度変化
率βも−0.45と実用物性を充分満足するものではな
かった。
On the other hand, as a new rare earth magnetic material, a rare earth-iron-nitrogen magnetic material has been proposed (for example, Japanese Patent Laid-Open No. 2-57663). This material has high magnetization, anisotropic magnetic field, and high Curie point, and is Sm-Co based, Nd-Fe
It is expected as a magnetic material that supplements the drawbacks of the -B type. However, the rare earth-iron-nitrogen-based material disclosed in the above-mentioned publication cannot achieve a high coercive force unless it is finely pulverized to 10 μm or less and used, but when pulverized to 10 μm or less, the surface is oxidized and the coercive force is reduced. However, there was a problem that Further, the temperature change rate β of the coercive force of these materials was −0.45, which was not sufficient for practical physical properties.

【0004】この対策として、菱面体晶の結晶構造を有
した希土類−鉄−窒素系材料にM成分を含ませることに
より保磁力及び保磁力の安定性を向上させることが考え
られ、この材料は特開平3−16102号公報、特開平
6−96918号公報に開示されているが、保磁力の安
定性の抜本的な改善には至らず、特に保磁力の温度変化
率βはほとんど改善されない。
As a countermeasure against this, it is considered to improve the coercive force and the stability of the coercive force by including an M component in a rare earth-iron-nitrogen-based material having a rhombohedral crystal structure. Although disclosed in JP-A-3-16102 and JP-A-6-96918, the stability of the coercive force is not radically improved, and the temperature change rate β of the coercive force is hardly improved.

【0005】なおここで保磁力の安定性とは、表面が酸
化されても保磁力が低下しない特性(保磁力の耐酸化性
能という)と温度変化率βの2つの特性を総称してい
う。以上の材料が、110℃を越える高温用途や偏平材
料用途など、より広い実用範囲で好ましく用いられるた
めには、保磁力の安定性がさらに改善された希土類−鉄
−窒素系材料とすることが望まれている。
Here, the stability of coercive force is a general term for two characteristics: coercive force does not decrease even if the surface is oxidized (coercive force oxidation resistance) and temperature change rate β. In order to preferably use the above materials in a wider practical range such as high temperature applications exceeding 110 ° C. and flat material applications, it is preferable to use a rare earth-iron-nitrogen-based material with further improved coercive force stability. Is desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は、菱面体晶又
は六方晶の結晶構造を有した希土類−鉄−窒素系材料に
金属元素Mを共存させ、かつ、窒素量を高窒化領域に限
定することにより、10μm以上の大粒径においても高
い保磁力を有し、前述の保磁力の安定性などの問題点を
解決した希土類−鉄−M−窒素組成の磁性材料を提供す
ることを目的とする。
DISCLOSURE OF THE INVENTION According to the present invention, a metal element M is allowed to coexist in a rare earth-iron-nitrogen based material having a rhombohedral or hexagonal crystal structure, and the amount of nitrogen is limited to a highly nitrided region. By doing so, it is an object of the present invention to provide a magnetic material having a rare earth-iron-M-nitrogen composition, which has a high coercive force even with a large particle size of 10 μm or more and solves the above-mentioned problems such as stability of the coercive force. And

【0007】[0007]

【課題を解決するための手段】高い保磁力と保磁力の安
定性を有する10μm以上の希土類−鉄−窒素系磁性材
料を得るために、母合金に種々の元素(M)を添加した
系について鋭意検討した結果、保磁力及び保磁力の安定
性が高くなる結晶構造および組成、さらに微構造を有し
た希土類(R)−鉄(Fe)−M−窒素(N)系磁性材
料とその製造法を見いだし、本発明を成すに至った。
[Means for Solving the Problems] In order to obtain a rare earth-iron-nitrogen based magnetic material of 10 μm or more having high coercive force and stability of coercive force, a system in which various elements (M) are added to a master alloy is used. As a result of diligent studies, a rare earth (R) -iron (Fe) -M-nitrogen (N) -based magnetic material having a crystal structure and a composition with which the coercive force and the stability of the coercive force are improved, and a microstructure, and a method for producing the same The present invention has been completed and the present invention has been completed.

【0008】即ち、本発明は (1)一般式RαFe(100- α- β- γ) MβNγで表
わされる磁性材料であり、(但し、Rは希土類元素のう
ち少なくとも一種、MはCr、Ti、Zr、Hfのうち
少なくとも一種、α、β、γは原子%で、下式を満た
す) 3≦α≦20 1≦β≦25 17≦γ≦25 その主相が、少なくとも前記R、Fe、M及びNを成分
とする菱面体晶又は六方晶の結晶構造を有した相である
とともに、平均粒径が10μm以上であることを特徴と
する磁性材料、及び、(2)上記(1)に記載の磁性材
料の窒素濃度分布が微細な濃淡を有することを特徴とす
る磁性材料、及び、(3)上記(1)または(2)に記
載の磁性材料の成分であるFeの0.01〜50原子%
をCoで置換した組成を有することを特徴とする磁性材
料、及び、(4)上記(1)〜(3)に記載の磁性材料
の成分であるRの50原子%以上がSmである組成を有
することを特徴とする磁性材料、及び、(5)上記
(1)〜(4)に記載の磁性材料の成分であるMがCr
であることを特徴とする磁性材料であり、(6)実質的
にR、Fe、Mからなる合金を、アンモニアガスを含む
雰囲気下で、200〜650℃の範囲で熱処理すること
を特徴とする上記(1)〜(5)に記載の磁性材料の製
造法、及び、(7)実質的にR−Fe−Mからなる合金
を、不活性ガス及び水素ガスのうち少なくとも一種を含
む雰囲気中、または真空中で、600〜1300℃の範
囲で熱処理したのち、アンモニアガスを含む雰囲気下
で、200〜650℃の範囲で熱処理して窒素を導入す
ることを特徴とする上記(1)〜(4)に記載の磁性材
料の製造法である。
That is, the present invention is (1) a magnetic material represented by the general formula RαFe (100- α - β - γ ) MβNγ (where R is at least one of rare earth elements, M is Cr, Ti, At least one of Zr and Hf, α, β, and γ is atomic% and satisfies the following formula) 3 ≦ α ≦ 20 1 ≦ β ≦ 25 17 ≦ γ ≦ 25 The main phase is at least the above R, Fe, and M. And a magnetic material having a rhombohedral or hexagonal crystal structure containing N as a component and having an average particle size of 10 μm or more, and (2) the above (1) The magnetic material, wherein the nitrogen concentration distribution of the magnetic material has a fine gradation, and (3) 0.01 to 50 of Fe which is a component of the magnetic material described in (1) or (2) above. atom%
A magnetic material characterized by having Co replaced by Co, and (4) a composition in which 50 atomic% or more of R, which is a component of the magnetic material described in (1) to (3) above, is Sm. And (5) M is Cr, which is a component of the magnetic material described in (1) to (4) above.
And (6) heat treating an alloy consisting essentially of R, Fe, and M in the range of 200 to 650 ° C. in an atmosphere containing ammonia gas. The method for producing a magnetic material as described in (1) to (5) above, and (7) an alloy consisting essentially of R-Fe-M in an atmosphere containing at least one of an inert gas and a hydrogen gas, Alternatively, after heat treatment in a range of 600 to 1300 ° C. in a vacuum, nitrogen is introduced by heat treatment in a range of 200 to 650 ° C. in an atmosphere containing ammonia gas. The method for producing a magnetic material as described in (1) above.

【0009】以下本発明について詳細に説明する。希土
類元素(R)としては、Y、La、Ce、Pr、Nd、
Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、YbおよびLuのうち少なくとも一種を含めば良
く、従って、ミッシュメタルやジジム等の二種以上の希
土類元素の混合物を用いても良いが、好ましい希土類と
しては、Y、Ce、Pr、Nd、Sm、Gd、Dy、E
rである。さらに好ましくは、Y、Ce、Pr、Nd、
Smである。特に、SmをR成分全体の50原子%以上
含むと、保磁力が際立って高い材料が得られる。さら
に、Smを70原子%以上含むことが好ましい。
The present invention will be described in detail below. As the rare earth element (R), Y, La, Ce, Pr, Nd,
Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
It suffices to include at least one of m, Yb and Lu. Therefore, a mixture of two or more kinds of rare earth elements such as misch metal and didymium may be used, but preferable rare earth elements are Y, Ce, Pr, Nd, Sm, Gd, Dy, E
r. More preferably, Y, Ce, Pr, Nd,
It is Sm. In particular, if Sm is contained in an amount of 50 atomic% or more of the entire R component, a material having a significantly high coercive force can be obtained. Furthermore, it is preferable to contain Sm in an amount of 70 atomic% or more.

【0010】ここで用いる希土類元素は工業的生産によ
り入手可能な純度でよく、製造上混入が避けられない不
純物、例えばO、H、C、Al、Si、F、Na、M
g、Ca、Liなどが存在しているものであっても差し
支えない。本発明の磁性粉体中において、R成分は、3
〜20原子%含有する。R成分が3原子%未満のとき、
鉄成分を多く含む軟磁性相が母合金鋳造・焼鈍後も許容
量を越えて分離し、このような種類の軟磁性相は窒化物
の保磁力に悪影響を及ぼすので実用的な永久磁石材料と
して好ましくない。またR成分が20原子%を越える
と、残留磁束密度が低下して好ましくない。特に好まし
いRの範囲は6〜12原子%である。
The rare earth element used here may be of a purity which can be obtained by industrial production, and impurities such as O, H, C, Al, Si, F, Na and M which cannot be avoided in production are inevitable.
It does not matter even if g, Ca, Li, etc. are present. In the magnetic powder of the present invention, the R component is 3
~ 20 atomic% content. When the R component is less than 3 atom%,
The soft magnetic phase containing a large amount of iron component separates beyond the allowable amount even after casting and annealing of the master alloy.Since this kind of soft magnetic phase adversely affects the coercive force of the nitride, it is a practical permanent magnet material. Not preferable. On the other hand, if the R component exceeds 20 atomic%, the residual magnetic flux density decreases, which is not preferable. A particularly preferred range of R is 6 to 12 atom%.

【0011】鉄(Fe)は、強磁性を担う本磁性材料の
基本組成であり、30原子%以上含むことが好ましい。
30原子%未満であると磁化が小さくなる傾向がある。
鉄成分の組成範囲が50〜77原子%の領域にあれば、
粗粉体の保磁力と磁化のバランスが取れた材料となり、
特に好ましい。Feのうち0.01〜50原子%を、C
oで置換することができ、Coの導入により、キュリー
点と磁化とが上昇するとともに、耐酸化性も向上でき
る。(以下においては、”Fe成分”、”鉄成分”と表
記した場合、または”R−Fe−M−N系”などの式の
中でFeと表記した場合、Feの0.01〜50原子%
をCoで置換したものを含むものとする。) CoのFe置換量の特に好ましい範囲は1〜30原子%
である。Coが30原子%を越えると、原料コストが上
昇する割りに上記の効果が小さく不安定となり、逆に1
原子%未満であると、置換効果がほとんど見られない。
CoのFe置換量の特に好ましい範囲は2〜20原子%
である。
Iron (Fe) is a basic composition of the present magnetic material that is responsible for ferromagnetism, and it is preferable that iron (Fe) is contained in an amount of 30 atomic% or more.
If it is less than 30 atomic%, the magnetization tends to be small.
If the composition range of the iron component is in the range of 50 to 77 atom%,
It becomes a material that balances the coercive force and magnetization of coarse powder,
Particularly preferred. 0.01 to 50 atomic% of Fe is C
O can be substituted, and the introduction of Co raises the Curie point and the magnetization and also improves the oxidation resistance. (In the following, when expressed as "Fe component", "iron component" or expressed as Fe in the formula such as "R-Fe-MN system", 0.01 to 50 atoms of Fe are included. %
Are replaced by Co. ) A particularly preferable range of the Fe substitution amount of Co is 1 to 30 atom%.
Is. When Co exceeds 30 atomic%, the above effect is small and unstable, even if the raw material cost rises.
If it is less than atomic%, the substitution effect is hardly seen.
A particularly preferable range of the Fe substitution amount of Co is 2 to 20 atom%.
Is.

【0012】本発明のおいては、さらにCr、Ti、Z
r、Hf、Crから選ばれるM成分のうち一種を含む必
要がある。R−Fe−N系磁性材料に対するM成分の添
加効果は、粗粉体で大きな保磁力を発現させることであ
る。この中でCrは母合金の均一性の点で優れており、
特にCoと共添することで保磁力の大きさは非常に高く
なる。
In the present invention, Cr, Ti and Z are further added.
It is necessary to include one of M components selected from r, Hf, and Cr. The effect of adding the M component to the R—Fe—N-based magnetic material is to exhibit a large coercive force in the coarse powder. Among them, Cr is excellent in uniformity of the mother alloy,
In particular, the coercive force is greatly increased by co-adding with Co.

【0013】M成分の含有量は、1〜25原子%の範囲
とする。25原子%を越えると飽和磁化が低下して好ま
しくない。M成分の含有量は15原子%以下に押さえた
方が特に好ましい。1原子%未満の場合は粉体粒径10
μm以上での保磁力が低いので好ましくない。M成分に
加えて、Mn、Ga、Al、Zn、Sn、、Ni、V、
Nb、Ta、Mo、W、Pd、C、Si、Geの元素の
うち1種または2種以上(M’成分)を添加しても良い
が、これらの含有量はM成分の量を越えないで、しかも
M成分との合計量が1〜25原子%の範囲にある様にす
る。M’成分のうちで本発明の効果を際立たせるために
共添加する元素として好ましいのはMnである。(以
下、M成分またはMという場合は、その中に上記M’成
分を含有している場合も含むこととする。) 前記の組成に導入される窒素(N)量は、17〜25原
子%とされる。25原子%を越えると、磁化が低くなり
磁石材料用途としての実用性はあまり高くなくなる。1
7原子%未満では粗粉体の保磁力をあまり向上させる
(3.5kOe以下)ことができず、好ましくない。
The content of the M component is in the range of 1 to 25 atomic%. If it exceeds 25 atom%, the saturation magnetization is lowered, which is not preferable. It is particularly preferable that the content of the M component is suppressed to 15 atomic% or less. If the content is less than 1 atomic%, the powder particle size is 10
It is not preferable because the coercive force at μm or more is low. In addition to the M component, Mn, Ga, Al, Zn, Sn, Ni, V,
One or more of the elements of Nb, Ta, Mo, W, Pd, C, Si and Ge (M ′ component) may be added, but their content does not exceed the amount of M component. In addition, the total amount with the M component is in the range of 1 to 25 atomic%. Of the M ′ components, Mn is preferable as an element to be co-added in order to enhance the effect of the present invention. (Hereinafter, when referring to the M component or M, the case where the M ′ component is contained therein is also included.) The amount of nitrogen (N) introduced into the above composition is 17 to 25 atom%. It is said that If it exceeds 25 atom%, the magnetization becomes low and the practicality as a magnet material application becomes not so high. 1
If it is less than 7 atomic%, the coercive force of the coarse powder cannot be improved so much (3.5 kOe or less), which is not preferable.

【0014】窒素量の好ましい範囲は、目的とするR−
Fe−M成分−N系磁性材料のR−Fe−M成分組成比
や副相の量比さらに結晶構造などによって、最適な窒素
量は異なるので、その量によるが、例えば菱面体構造を
有するSm10.5Fe76.1Co 8.9Cr4.5を原料合金とし
て選ぶと、17〜23原子%付近が最適な窒素量とな
る。
The preferred range of nitrogen content is the desired R-
Fe-M component-R-Fe-M component composition ratio of N-based magnetic material
The optimum nitrogen content depends on the amount ratio of
Since the amount is different, depending on the amount, for example, a rhombohedral structure
Have Sm10.5Fe76.1Co 8.9Cr4.5As the raw material alloy
The optimum nitrogen content is around 17-23 atom%.
It

【0015】このときの最適な窒素量とは、目的に応じ
て異なるが材料の耐酸化性及び磁気特性のうち少なくと
も一項目が最適となる窒素量であり、磁気特性が最適と
は磁気異方性比、減磁率及び保磁力の温度変化率の絶対
値は極小、その他は極大となることである。本発明にお
けるR−Fe−M−N系磁性材料の各組成は、希土類成
分が3〜20原子%、鉄成分が30〜79原子%、M成
分が1〜25原子%、Nが17〜25原子%の範囲と
し、これらを同時に満たすものである。
The optimum amount of nitrogen at this time is the amount of nitrogen for which at least one of the oxidation resistance and magnetic properties of the material is optimum although it varies depending on the purpose, and the magnetic properties are not anisotropic. The absolute value of the temperature change rate of the sex ratio, demagnetization rate, and coercive force is minimum, and the others are maximum. Each composition of the R-Fe-MN magnetic material in the present invention has a rare earth component of 3 to 20 atom%, an iron component of 30 to 79 atom%, an M component of 1 to 25 atom%, and an N of 17 to 25. The range is atomic% and these are satisfied at the same time.

【0016】さらに本発明で得られるR−Fe−M−N
系磁性材料には水素(H)が0.01〜10原子%含ま
れてもよい。特に好ましい本発明のR−Fe−M−N系
磁性材料の組成は、一般式RαFe(100- α- β- γ-
δ) MβNγHδで表わしたとき、α、β、γ、δは原
子%で、 3≦α/(1−δ/100)≦20 1≦β/(1−δ/100)≦25 17≦γ/(1−δ/100)≦25 0.01≦δ≦10 の範囲である。但し、Fe成分は30原子%以上、及び
上記4式とが同時に成り立つようにα、β、γ、δが選
ばれる。
Further, R-Fe-M-N obtained by the present invention
The magnetic material may contain hydrogen (H) in an amount of 0.01 to 10 atom%. Particularly preferred compositions of the R-Fe-M-N based magnetic material of the present invention have the general formula RαFe (100- α - β - γ -
δ ) MβNγHδ, α, β, γ, δ are atomic% and 3 ≦ α / (1−δ / 100) ≦ 20 1 ≦ β / (1−δ / 100) ≦ 25 17 ≦ γ / The range is (1-δ / 100) ≤ 25 0.01 ≤ δ ≤ 10. However, α, β, γ, and δ are selected so that the Fe component is 30 atomic% or more, and the above four expressions are simultaneously established.

【0017】さらに製造法によっては、酸素(O)が1
〜10原子%含まれることがあり、その場合には磁石の
成形性、磁気特性等の高い材料とすることができる。本
発明の磁性材料中には、菱面体晶又は六方晶の結晶構造
を有する相を含有することが必要である。本発明では、
これらの結晶構造を作り、少なくともR、Fe、M、N
を含む相を主相といい、該結晶構造を作らないか、また
は他の結晶構造を作る組成を有する相を副相と呼ぶ。主
相にはR、Fe成分、M成分、Nに加え、HやOを含む
ことがある。但し、O成分は主相に含まれていても、極
めて少量で0.01〜1原子%程度である。
Further, depending on the manufacturing method, oxygen (O) is 1
It may be contained in an amount of from 10 to 10 atomic%, and in that case, a material having high moldability and magnetic properties of the magnet can be obtained. The magnetic material of the present invention needs to contain a phase having a rhombohedral or hexagonal crystal structure. In the present invention,
These crystal structures are made, and at least R, Fe, M, N
A phase containing a is referred to as a main phase, and a phase having a composition not forming the crystal structure or having another crystal structure is called a subphase. The main phase may contain H and O in addition to R, Fe component, M component and N. However, even if the O component is contained in the main phase, it is about 0.01 to 1 atomic% in a very small amount.

【0018】好ましい主相の結晶構造の例としては、T
2Zn17などと同様な結晶構造を有する菱面体晶、ま
たは、Th2Ni17、TbCu7、CaZn5 などと同様
な結晶構造を有する六方晶が挙げられ、これらのうち少
なくとも1種を含むことが必要である。この中でTh2
Zn17などと同様な結晶構造を有する菱面体晶が最も好
ましい。
As an example of a preferred main phase crystal structure, T
Examples include rhombohedral crystals having the same crystal structure as h 2 Zn 17 or the like, or hexagonal crystals having the same crystal structure as Th 2 Ni 17 , TbCu 7 , CaZn 5, etc., and at least one of them is included. It is necessary. In this Th 2
The rhombohedral crystal having the same crystal structure as Zn 17 is most preferable.

【0019】例えば、磁性材料中に副相として、RFe
12-XXy相といった正方晶を取る磁性の高い窒化物相
を含んでいても良いが、本発明の効果を充分に発揮させ
るためには、その体積分率は主相の含有量より低く押さ
える必要があり、主相の含有量が75体積%を越えるこ
とが実用上極めて好ましい。R−Fe−M−N系材料の
主相は、主原料相であるR−Fe−M合金の格子間に窒
素が侵入し、結晶格子が多くの場合膨張することによっ
て得られるが、その結晶構造は、主原料相とほぼ同じ対
称性を有する。
For example, RFe as a subphase in the magnetic material
A high-magnetism nitride phase having a tetragonal structure such as a 12-X M X N y phase may be contained, but in order to fully exert the effect of the present invention, the volume fraction thereof is the content of the main phase. It is necessary to keep it lower, and it is extremely preferable in practice that the content of the main phase exceeds 75% by volume. The main phase of the R-Fe-M-N-based material is obtained by the intrusion of nitrogen between the lattices of the R-Fe-M alloy, which is the main raw material phase, and the crystal lattice often expands. The structure has almost the same symmetry as the main raw material phase.

【0020】ここにいう主原料相とは、少なくともR、
Fe、Mを含みかつNを含まず、かつ菱面体晶又は六方
晶の結晶構造を作る相のことである。(なお、それ以外
の組成または結晶構造を有し、かつNの含まない相を副
原料相と呼ぶ。) 窒素の侵入による結晶格子の膨張に伴い、耐酸化性能ま
たは磁気特性の各特性のうち一特性以上が向上し、実用
上好適な磁性材料となる。なおここにいう磁気特性と
は、材料の飽和磁化(4πIs)、残留磁束密度(B
r)、磁気異方性磁界(Ha)、磁気異方性エネルギー
(Ea)、磁気異方性比、キュリー点(Tc)、固有保
磁力(iHc)、角形比(Br/4πIs)、最大エネ
ルギー積[(BH)max]、熱減磁率(α、磁化の可
逆温度係数と同義)、保磁力の温度変化率(β、保磁力
の可逆温度係数と同義)のうち少なくとも一つを言う。
但し、磁気異方性比とは、外部磁場を15kOe印加し
た時の困難磁化方向の磁化(a)と容易磁化方向の磁化
(b)の比(a/b)であり、磁気異方性比が小さいも
の程、磁気異方性エネルギーが高いと評価される。
The main raw material phase here means at least R,
It is a phase containing Fe and M but not N and forming a rhombohedral or hexagonal crystal structure. (Note that a phase having a composition or crystal structure other than that and not containing N is referred to as an auxiliary material phase.) Among the characteristics of the oxidation resistance performance or the magnetic characteristics, the expansion of the crystal lattice due to the penetration of nitrogen One or more characteristics are improved, and the magnetic material is suitable for practical use. The magnetic properties referred to here are the saturation magnetization (4πIs) of the material and the residual magnetic flux density (B
r), magnetic anisotropy magnetic field (Ha), magnetic anisotropy energy (Ea), magnetic anisotropy ratio, Curie point (Tc), intrinsic coercive force (iHc), squareness ratio (Br / 4πIs), maximum energy At least one of the product [(BH) max], thermal demagnetization rate (α, synonymous with reversible temperature coefficient of magnetization), and temperature change rate of coercive force (β, synonymous with reversible temperature coefficient of coercive force).
However, the magnetic anisotropy ratio is the ratio (a / b) of the magnetization (a) in the difficult magnetization direction and the magnetization (b) in the easy magnetization direction when an external magnetic field of 15 kOe is applied. The smaller the value, the higher the magnetic anisotropy energy.

【0021】例えば、希土類−鉄−M母合金の主原料相
として、菱面体構造を有するSm10 .5Fe85.0Cr4.5
を選んだ場合、窒素を導入することによって、結晶磁気
異方性が面内異方性から硬磁性材料として好適な一軸異
方性に変化し、磁気異方性エネルギーを初めとする磁気
特性と耐酸化性が向上する。本発明の磁性材料は、平均
粒径10μmを越える値の粗粉体であり、好ましくは1
0〜200μmである。平均粒径が10μm以下である
と、保磁力の低下や磁粉の凝集が著しくなり、本来材料
が持っている磁気特性を充分発揮しえないので好ましく
ない。ここで平均粒径とは特に断らない限り、通常用い
られる粒子径分布測定装置で得られた体積相当径分布曲
線をもとにして求めたメジアン径のことをいう。
[0021] For example, rare earth - as the main raw material phase iron -M master alloy, Sm 10 .5 Fe 85.0 Cr 4.5 with rhombohedral
In the case of selecting, by introducing nitrogen, the crystal magnetic anisotropy changes from in-plane anisotropy to uniaxial anisotropy suitable for a hard magnetic material, and magnetic properties such as magnetic anisotropy energy are obtained. Oxidation resistance is improved. The magnetic material of the present invention is a coarse powder having an average particle size of more than 10 μm, preferably 1
It is 0 to 200 μm. If the average particle size is 10 μm or less, the coercive force is lowered and the magnetic particles are remarkably aggregated, and the magnetic properties originally possessed by the material cannot be sufficiently exhibited, which is not preferable. Here, unless otherwise specified, the average particle diameter means a median diameter obtained based on a volume equivalent diameter distribution curve obtained by a commonly used particle diameter distribution measuring device.

【0022】本発明の材料のうち、菱面体晶を有するS
2 ([Fe,Co],Cr)17母合金を窒化した材料
を例として以下に詳しく述べる。Sm2Fe17に窒素を
導入した場合、Sm2Fe17あたり窒素が3個であるS
2Fe173であると、磁気異方性エネルギー、磁化、
キュリー温度など多くの磁気特性が最適となる(例え
ば、IEEE Trans. Magn.,28,23
26(1992))ことが知られている。さらに、この
導入窒素量をSm2 Fe17あたり5〜5.5個程度まで
増やすと、粗粉体の状態での保磁力が最大となる。
Among the materials of the present invention, S having a rhombohedral crystal
m2([Fe, Co], Cr)17Material obtained by nitriding mother alloy
Will be described in detail below as an example. Sm2Fe17Nitrogen
If introduced, Sm2Fe17S with 3 nitrogens per
m 2Fe17N3, Magnetic anisotropy energy, magnetization,
Many magnetic properties such as the Curie temperature are optimized (eg
For example, IEEE Trans. Magn. ,28, 23
26 (1992)). Furthermore, this
The amount of introduced nitrogen is Sm2Fe17About 5 to 5.5 per
When it is increased, the coercive force in the state of coarse powder becomes maximum.

【0023】しかし、NがSm2 ([Fe,Co],C
r)17あたり3個を越えて増加すると、Nは格子間に侵
入するため結晶格子が広がり、不安定な状態を経て、つ
いに、N濃度分布に濃淡が生じたり、結晶格子が崩れた
或いは崩れかけた部分が生じる。さらに、合金組成や窒
素量、窒化条件や窒化後の焼鈍条件によっては、菱面体
晶又は六方晶の結晶構造を有する強磁性相の周りをN濃
度の高い結晶格子の崩れた或いは崩れかけた部分が取り
囲む、セルのような構造(この構造を以降セル構造と呼
ぶ)が生じる場合もある。
However, N is Sm 2 ([Fe, Co], C
r) When the number exceeds 17 per 17, the crystal lattice expands because N penetrates into the interstitial lattice and becomes unstable, and finally, the N concentration distribution becomes shaded, or the crystal lattice collapses or collapses. The crossed part occurs. Further, depending on the alloy composition, the amount of nitrogen, the nitriding conditions and the annealing conditions after nitriding, the collapsed or nearly collapsed part of the crystal lattice with a high N concentration around the ferromagnetic phase having a rhombohedral or hexagonal crystal structure. In some cases, a cell-like structure (this structure is hereinafter referred to as a cell structure) that surrounds is generated.

【0024】Sm−Fe−N3元系でも、NがSm2
17あたり3個を越えて4個まで増加すると、同様な微
構造を生じることが知られている(日本応用磁気学会
誌、18巻、201ページ、1994年)。このとき、
Crが共存した場合、高窒化領域での保磁力が大きく増
加する。例えば30μm程度の粗粉体Sm−Fe−N3
元系では、上述のように保磁力の最大値が2kOe程度
であるのに対して、Crが共存すると、保磁力は9〜1
2kOeまで増加する。Crの役割については不明であ
るが、N濃度の高い部分、または、結晶格子の崩れた或
いは崩れかけた部分にCrが存在することにより、磁化
反転をくい止める効果が生じるものと考える。
Even in the Sm-Fe-N ternary system, N is Sm 2 F.
It is known that a similar microstructure occurs when the number exceeds 3 per e 17 and increases to 4 (Journal of Applied Magnetics, Vol. 18, p. 201, 1994). At this time,
When Cr coexists, the coercive force in the high nitriding region greatly increases. For example, coarse powder Sm-Fe-N3 of about 30 μm
In the original system, the maximum value of the coercive force is about 2 kOe as described above, whereas when Cr coexists, the coercive force is 9 to 1
Increase to 2 kOe. Although the role of Cr is unknown, it is considered that the presence of Cr in a portion having a high N concentration or a portion where the crystal lattice is broken or is about to collapse has an effect of suppressing magnetization reversal.

【0025】また、Crの組成比にもよるが、Sm
2 ([Fe,Co],Cr)17あたりのNの数が4個あ
たりから6個あたりまでの本発明の材料について、磁気
曲線の立ち上がりや保磁力の着磁磁場依存性などを調べ
た結果、この材料の磁化反転機構はピンニング型である
ことがわかった。この傾向はCoを含む、含まないにか
かわらず同様に見られる。
Further, depending on the composition ratio of Cr, Sm
2 Results of investigating the rising of the magnetic curve and the dependence of the coercive force on the magnetizing magnetic field of the material of the present invention in which the number of N per 4 ([Fe, Co], Cr) 17 is from 4 to 6. , The magnetization reversal mechanism of this material was found to be pinning type. This tendency is similarly observed with and without Co.

【0026】磁粉体の表面付近が酸化劣化して、逆磁区
の芽となりうる軟磁性な部分が生じた場合を考える。ニ
ュークリエーション型の材料は磁壁の移動が容易に起こ
るため、逆磁区が発生すると容易に成長して、保磁力が
劣化する。このタイプの材料として、前述のSm2Fe
173材料が挙げられる。一方ピンニング型の材料は、
表面付近に逆磁区が生じても磁壁の移動が起こりづら
く、高い保磁力を維持する。さらに、保磁力の温度変化
率βも磁化反転の機構が異なることにより、大きく改善
される可能性がある。
Let us consider a case where the vicinity of the surface of the magnetic powder is oxidatively deteriorated to generate a soft magnetic portion which can become a bud of the reverse magnetic domain. Since the domain wall of the nucleation type material easily moves, it grows easily when the reverse magnetic domain occurs and the coercive force deteriorates. As this type of material, the above-mentioned Sm 2 Fe is used.
17 N 3 material may be mentioned. On the other hand, the pinning type material is
Even if a reverse magnetic domain occurs near the surface, the domain wall is unlikely to move and maintains a high coercive force. Furthermore, the temperature change rate β of the coercive force may be greatly improved due to the different mechanism of magnetization reversal.

【0027】ところで、既存のSm2 Co17系材料は、
セル型の微構造を持った2相分離型磁石となるが、その
製造工程の中で、溶体化及び時効処理工程の制御が非常
に重要である。この材料の成分はSm、Co、Cuを必
須成分として、この外にFe、Zr、Ti、Hf、Ce
などを含んでおり、これらの金属元素を溶解したのち、
900〜1250℃程度の高温で熱処理する。以上の成
分を有するSm2Co1 7合金には、高温では均一に固溶
しているが、室温付近の低温では相分離するような、固
溶限の広い高温安定相が主相として存在する。この高温
で安定な相を保ったまま室温まで冷却させるため、溶体
化ののち、一般的に水中や油中にクエンチしたり、ガス
を吹き付けて急冷処理を行う。この溶体化工程で得た合
金を、400〜900℃の温度で1段若しくは多段の時
効処理を行い、組成が均一な状態を保っていた合金主相
内にCuなどのM''成分濃度が大きな相を微細に析出さ
せ、熱力学的に安定な方向である2相分離型の構造を調
整する。この微細に析出したM成分濃度の大きな低磁性
相がピニング点となり、既存のSm2 Co17系材料はピ
ンニング型の磁化反転機構を持つことになる。なお、以
上の溶体化−時効工程では、熱処理温度、時間、冷却速
度の精密な制御が極めて大切で、例えば溶体化ののち急
冷するか、徐冷するかで最終的な保磁力の大きさは全く
異なったものとなる。
By the way, the existing Sm 2 Co 17 type material is
The two-phase separation type magnet has a cell type microstructure, but in the manufacturing process thereof, control of solution treatment and aging treatment process is very important. The components of this material are Sm, Co, and Cu as essential components, and in addition to these, Fe, Zr, Ti, Hf, and Ce.
Etc., and after melting these metal elements,
Heat treatment is performed at a high temperature of 900 to 1250 ° C. The Sm 2 Co 1 7 alloy having the above components, but are uniformly dissolved at elevated temperatures, such as phase separation at a low temperature of around room temperature, a wide solid solution limit high temperature stable phase is present as a main phase . In order to cool to room temperature while maintaining a stable phase at this high temperature, after solution treatment, quenching is generally carried out in water or oil or by blowing gas. The alloy obtained in this solution heat treatment is subjected to one-step or multi-step aging treatment at a temperature of 400 to 900 ° C., and the concentration of M ″ component such as Cu is increased in the alloy main phase which maintains a uniform composition. A large phase is finely precipitated to adjust a thermodynamically stable two-phase separated structure. This finely precipitated low magnetic phase having a large M component concentration serves as a pinning point, and the existing Sm 2 Co 17 system material has a pinning type magnetization reversal mechanism. In the solution treatment-aging step described above, precise control of heat treatment temperature, time, and cooling rate is extremely important. For example, the final coercive force depends on whether solution treatment is followed by rapid cooling or slow cooling. It will be completely different.

【0028】これに対し、本発明の範囲において、母合
金となるSm−Fe−Cr合金の主原料相の結晶構造は
常温で2−17組成を有した菱面体晶であり、高温にお
いても固溶限の低いほぼラインフェイズとなるため、F
e成分及びCrは主原料相中に均一に固溶していて、溶
体化や時効処理によってCrやCr化合物がFe主体の
主原料相内に微細析出することはない。従って、時効処
理は必要でなく、冷却速度にも保磁力は依存しない。こ
の主原料相にNをSm2Fe17あたり約3個(約13.
6原子%)となるよう導入した場合、全ての窒素が結晶
格子間に入って均一な微構造となり、前述のようなニュ
ークリエーション型の磁性材料となる。NをSm
2([Co、Fe]、Cr)17あたり4個(17.4原
子%)を越えて導入した場合にはじめて、不均一な微構
造が得られ充分なピンニング点となり得る窒素濃度の高
い部分が主相内に生じる。この事実は、CrやCr化合
物の析出によりピンニング型微構造が誘導されるのでは
なく、微細なN濃度の濃淡によりピンニング型微構造が
得られるのであることを示している。
On the other hand, within the scope of the present invention, the crystal structure of the main raw material phase of the Sm-Fe-Cr alloy, which is the mother alloy, is a rhombohedral crystal having a 2-17 composition at room temperature and is solid even at high temperatures. Since it is almost a line phase with a low melting limit, F
The e component and Cr are uniformly solid-dissolved in the main raw material phase, and Cr and Cr compounds are not finely precipitated in the main raw material phase mainly composed of Fe by solution treatment or aging treatment. Therefore, the aging treatment is not necessary, and the coercive force does not depend on the cooling rate. About 3 per the N Sm 2 Fe 17 on the main raw material phase (approximately 13.
(6 atomic%), all the nitrogen enters between the crystal lattices to form a uniform microstructure, and the above-mentioned nucleation type magnetic material is obtained. N for Sm
2 ([Co, Fe], Cr) The introduction of more than 4 (17.4 atom%) per 17 only causes the non-uniform microstructure to be obtained, and the portion with a high nitrogen concentration that can serve as a sufficient pinning point. It occurs in the main phase. This fact indicates that the pinning type microstructure is not induced by the precipitation of Cr and Cr compounds, but the pinning type microstructure is obtained by the fine density of N concentration.

【0029】微細なN濃度の不均一性、即ちN濃度の濃
淡の周期は、10〜200nm程度であることが、TE
M観察(図3など)により明かになっている。Cuなど
のM’’成分(M'';Cu、Zr、Hf、Nb、Ta、
W、Mo、Ti、V、Cr、Mn)を希土類−鉄−窒素
系材料に添加して溶体化や時効処理を行い、M''成分や
M''化合物を主相中に微細析出させ粗粉体の保磁力を高
めるという試みが具体的に例示されている(特開平4−
216601号公報、特開平6−20813号公報)
が、これらの材料はNの含有量が13〜15原子%と低
い値に留まっているため、充分なピンニング点を発生さ
せるだけのN濃度分布の濃淡を生じさせることはできな
い。
The fine non-uniformity of the N concentration, that is, the period of the density of the N concentration is about 10 to 200 nm.
It is revealed by M observation (Fig. 3 etc.). M '' component such as Cu (M ''; Cu, Zr, Hf, Nb, Ta,
(W, Mo, Ti, V, Cr, Mn) is added to the rare earth-iron-nitrogen-based material for solution treatment and aging treatment, and the M ″ component and M ″ compound are finely precipitated in the main phase for coarse precipitation. An attempt to increase the coercive force of the powder has been concretely exemplified (Japanese Patent Laid-Open No. Hei 4-
(216601, JP-A-6-20813)
However, since the N content of these materials is as low as 13 to 15 atom%, it is not possible to generate the density of the N concentration distribution enough to generate a sufficient pinning point.

【0030】従って本発明の材料は、Crの微細析出で
はなくNの不均一によりピンニング型微構造を生ずるの
であるから、上述の公報で開示された磁性材料とは全く
異なった磁性材料となる。以下、本発明の製造法につい
て例示する。 (1)母合金の調製 本発明の磁性材料は、過剰のNを導入することによりR
−Fe−M合金中にピンニング点が微分散する微構造、
例示すればセル構造の境界にピンニング点が存在する微
構造をとったとき、ピンニング点にMが共存すると保磁
力の値が極めて大きくなる。従って、M成分の添加は母
合金調整の段階で行う。
Therefore, since the material of the present invention produces a pinning type microstructure due to non-uniformity of N, not to fine precipitation of Cr, the magnetic material is completely different from the magnetic material disclosed in the above-mentioned publication. Hereinafter, the production method of the present invention will be exemplified. (1) Preparation of Master Alloy The magnetic material of the present invention has an R content by introducing excess N.
A microstructure in which pinning points are finely dispersed in a -Fe-M alloy,
For example, when a microstructure having a pinning point at the boundary of the cell structure is adopted, the coercive force value becomes extremely large when M coexists at the pinning point. Therefore, the M component is added at the stage of adjusting the mother alloy.

【0031】R−Fe−M合金の製造法としては、イ)
R、Fe成分、M金属を高周波により溶解し、鋳型など
に鋳込む高周波溶解法、ロ)銅などのボートに金属成分
を仕込み、アーク放電により溶かし込むアーク溶解法、
ハ)高周波溶解した溶湯を、回転させた銅ロール上に落
しリボン状の合金を得る超急冷法、ニ)高周波溶解した
溶湯をガスで噴霧して合金粉体を得るガスアトマイズ
法、ホ)Fe成分及びまたはMの粉体またはFe−M合
金粉体、R及びまたはMの酸化物粉体、及び還元剤を高
温下で反応させ、RまたはR及びMを還元しながら、R
またはR及びMを、Fe成分及びまたはFe−M合金粉
末中に拡散させるR/D法、ヘ)各金属成分単体及びま
たは合金をボールミルなどで微粉砕しながら反応させる
メカニカルアロイング法、ト)上記何れかの方法で得た
合金を水素雰囲気下で加熱し、一旦R及びまたはMの水
素化物と、Fe成分及びまたはMまたはFe−M合金に
分解し、この後高温下で低圧として水素を追い出しなが
ら再結合させ合金化するHDDR法のいずれを用いても
よい。
As a method for producing the R-Fe-M alloy, a)
R, Fe components, M high-frequency melting method of melting metal by high frequency and casting into a mold, (b) arc melting method of charging metal components into a boat such as copper and melting by arc discharge,
C) A super-quenching method in which a high-frequency melt is dropped onto a rotating copper roll to obtain a ribbon-shaped alloy, d) A gas atomization method in which the high-frequency melt is sprayed with gas to obtain an alloy powder, and e) Fe component And / or M powder or Fe-M alloy powder, R and / or M oxide powder, and a reducing agent are reacted at high temperature to reduce R or R and M while R
Or R / D method of diffusing R and M into Fe component and / or Fe-M alloy powder, f) Mechanical alloying method of reacting each metal component and / or alloy while finely pulverizing with a ball mill, etc. The alloy obtained by any of the above methods is heated in a hydrogen atmosphere, and once decomposed into a hydride of R and / or M and an Fe component and / or an M or Fe-M alloy. Any of the HDDR methods of recombining while alloying and alloying may be used.

【0032】高周波溶解法、アーク溶解法を用いた場
合、溶融状態から、合金が凝固する際にFe主体の軟磁
性成分が析出しやすく、特に窒化工程を経た後も保磁力
の低下をひきおこす。そこで、この軟磁性成分を消失さ
せたり、菱面体晶や六方晶の結晶構造を増大させたりす
る目的で、アルゴン、ヘリウムなどの不活性ガス、水素
ガスのうち少なくとも1種を含むガス中もしくは真空
中、600℃〜1300℃の温度範囲で焼鈍を行うこと
が有効である。この方法で作製した合金は、超急冷法な
どを用いた場合に比べ、結晶粒径が大きく結晶性が良好
であり、高い残留磁束密度を有している。従って、この
合金は均質な主原料相を多量に含んでおり、本発明の磁
性材料を得る母合金として最も好ましい。 (2)粗粉砕及び分級 上記方法で作製した合金インゴットを直接窒化すること
も可能であるが、結晶粒径が500μmより大きいと窒
化処理時間が長くなり、粗粉砕を行ってから窒化する方
が効率的である。200μm以下とすれば、窒化効率が
さらに向上し、特に好ましい。
When the high frequency melting method or the arc melting method is used, a soft magnetic component mainly composed of Fe is likely to precipitate from the molten state when the alloy is solidified, and particularly the coercive force is lowered even after the nitriding step. Therefore, for the purpose of eliminating this soft magnetic component or increasing the rhombohedral or hexagonal crystal structure, an inert gas such as argon or helium, or a gas containing at least one of hydrogen gas or a vacuum is used. It is effective to anneal in the temperature range of 600 ° C to 1300 ° C. The alloy produced by this method has a large crystal grain size, good crystallinity, and high residual magnetic flux density, as compared with the case of using the ultra-quenching method. Therefore, this alloy contains a large amount of homogeneous main raw material phases and is most preferable as a master alloy for obtaining the magnetic material of the present invention. (2) Coarse crushing and classification It is also possible to directly nitride the alloy ingot produced by the above method, but if the crystal grain size is larger than 500 μm, the nitriding time will be longer, and it is better to carry out coarse crushing before nitriding. It is efficient. When the thickness is 200 μm or less, the nitriding efficiency is further improved, which is particularly preferable.

【0033】粗粉砕はジョ−クラッシャー、ハンマー、
スタンプミル、ローターミル、ピンミル、コーヒーミル
などを用いて行う。また、ボールミルやジェットミルな
どのような粉砕機を用いても、条件次第では窒化に適当
な、合金粉末の調製が可能である。母合金に水素を吸蔵
させたのち上記粉砕機で粉砕する方法、水素の吸蔵・放
出を繰り返し粉化する方法を用いても良い。
For coarse crushing, a jaw crusher, a hammer,
It is performed by using a stamp mill, a rotor mill, a pin mill, a coffee mill, or the like. Further, even if a crusher such as a ball mill or a jet mill is used, it is possible to prepare an alloy powder suitable for nitriding depending on the conditions. A method in which hydrogen is absorbed by the mother alloy and then crushed by the crusher, or a method in which hydrogen is repeatedly occluded and released may be used.

【0034】さらに、粗粉砕の後、ふるい、振動式ある
いは音波式分級機、サイクロンなどを用いて粒度調整を
行うことも、より均質な窒化を行うために有効である。
粗粉砕、分級の後、不活性ガスや水素中で焼鈍を行うと
構造の欠陥を除去することができ、場合によっては効果
がある。以上で、本発明の製造法における希土類−鉄成
分−M成分合金の粉体原料またはインゴット原料の調製
法を例示したが、これらの原料の結晶粒径、粉砕粒径、
表面状態などにより、以下に示す窒化の最適条件に違い
が見られる。 (3)窒化・焼鈍 窒化はアンモニアガス、窒素ガスなどの窒素源を含むガ
スを、上記(1)または、(1)及び(2)で得たR−
Fe−M成分合金粉体またはインゴットに接触させて、
結晶構造内に窒素を導入する工程である。
Further, after coarse pulverization, it is effective to adjust the grain size by using a sieve, a vibration type or a sonic type classifier, a cyclone, etc. for more uniform nitriding.
After coarse pulverization and classification, annealing in an inert gas or hydrogen can remove structural defects, which is effective in some cases. In the above, the preparation method of the powder raw material or the ingot raw material of the rare earth-iron component-M component alloy in the production method of the present invention has been illustrated, but the crystal grain size, pulverized grain size of these raw materials,
The optimum nitriding conditions shown below differ depending on the surface condition. (3) Nitriding / annealing Nitriding is performed by using a gas containing a nitrogen source such as ammonia gas or nitrogen gas obtained in the above (1) or (1) and (2).
By contacting with Fe-M component alloy powder or ingot,
This is a step of introducing nitrogen into the crystal structure.

【0035】このとき、窒化雰囲気ガス中に水素を共存
させると、窒化効率が高いうえに、結晶構造が安定なま
ま窒化できる点で好ましい。また反応を制御するため
に、アルゴン、ヘリウム、ネオンなどの不活性ガスなど
を共存させる場合もある。最も好ましい窒化雰囲気とし
ては、アンモニアと水素の混合ガスであり、特にアンモ
ニア分圧を0.1〜0.7の範囲に制御すれば、窒化効
率が高い上に本発明の窒素量範囲全域の磁性材料を作製
することができる。
At this time, coexistence of hydrogen in the nitriding atmosphere gas is preferable because the nitriding efficiency is high and the nitriding can be performed while the crystal structure is stable. In addition, in order to control the reaction, an inert gas such as argon, helium, or neon may coexist. The most preferable nitriding atmosphere is a mixed gas of ammonia and hydrogen. Particularly, if the ammonia partial pressure is controlled in the range of 0.1 to 0.7, the nitriding efficiency is high and the magnetic properties in the entire nitrogen amount range of the present invention are high. The material can be made.

【0036】窒化反応は、ガス組成、加熱温度、加熱処
理時間、加圧力で制御し得る。このうち加熱温度は、母
合金組成、窒化雰囲気によって異なるが、200〜65
0℃の範囲で選ばれるのが望ましい。200℃未満であ
ると窒化が進まず、650℃を越えると主原料相が分解
して、菱面体晶または六方晶の結晶構造を保ったまま窒
化することができない。窒化効率と主相の含有率を高く
するために、さらに好ましい温度範囲は250〜600
℃である。
The nitriding reaction can be controlled by the gas composition, heating temperature, heat treatment time, and pressure. Of these, the heating temperature varies depending on the composition of the mother alloy and the nitriding atmosphere, but is 200 to 65
It is desirable to select in the range of 0 ° C. If the temperature is lower than 200 ° C., nitriding does not proceed, and if the temperature exceeds 650 ° C., the main raw material phase decomposes, and it is impossible to perform nitriding while maintaining the rhombohedral or hexagonal crystal structure. In order to increase the nitriding efficiency and the content of the main phase, a more preferable temperature range is 250 to 600.
° C.

【0037】また窒化を行った後、不活性ガス及び又は
水素ガス中で焼鈍することは磁気特性を向上させる点で
好ましい。窒化・焼鈍装置としては、横型、縦型の管状
炉、回転式反応炉、密閉式反応炉などが挙げられる。何
れの装置においても、本発明の磁性材料を調整すること
が可能であるが、特に窒素組成分布の揃った粉体を得る
ためには回転式反応炉を用いるのが好ましい。
After nitriding, it is preferable to anneal in an inert gas and / or hydrogen gas in order to improve magnetic properties. Examples of the nitriding / annealing device include horizontal and vertical tubular furnaces, rotary reaction furnaces, and closed reaction furnaces. It is possible to adjust the magnetic material of the present invention in any of the apparatuses, but it is preferable to use a rotary reactor in order to obtain a powder having a uniform nitrogen composition distribution.

【0038】反応に用いるガスは、ガス組成を一定に保
ちながら1気圧以上の気流を反応炉の送り込む気流方
式、ガスを容器に加圧力0.01〜70気圧の領域で封
入する封入方式、或いはそれらの組合せなどで供給す
る。本磁性材料の製造方法としては、(1)又は、
(1)及び(2)に例示した方法でR−Fe−M組成の
母合金を調製してから、(3)で示した方法で窒化する
工程を用いるのが最も好ましい。特に(1)で得られた
合金又はこれを(2)の方法で粉砕、分級した合金を、
不活性ガス及び水素ガスのうち少なくとも一種を含む雰
囲気下で、600〜1300℃で熱処理したのち、アン
モニアガスを含む雰囲気下で、200〜650℃の範囲
で熱処理することによる、焼鈍処理を行ったのち窒化を
行うと、酸化による保磁力の劣化が極めて小さい磁性材
料を得ることができる。
The gas used for the reaction is a gas flow system in which a gas flow of 1 atm or more is sent to the reactor while keeping the gas composition constant, a gas sealing system in which the gas is sealed in a container at a pressure of 0.01 to 70 atm, or Supply them in combination. The manufacturing method of the present magnetic material includes (1) or
It is most preferable to use a step of preparing a master alloy having an R-Fe-M composition by the method illustrated in (1) and (2) and then nitriding it by the method described in (3). In particular, the alloy obtained in (1) or the alloy obtained by pulverizing and classifying the alloy by the method of (2)
Annealing was performed by performing heat treatment at 600 to 1300 ° C. in an atmosphere containing at least one of an inert gas and hydrogen gas, and then performing heat treatment in the range of 200 to 650 ° C. in an atmosphere containing ammonia gas. If nitriding is then carried out, a magnetic material having extremely small deterioration of coercive force due to oxidation can be obtained.

【0039】以上が本発明のR−Fe−M−N系磁性材
料の製造法に関する説明であるが、特に実用的な硬磁性
材料として本発明の磁性材料を応用する際には、(4)
再粉砕、(5)磁場成形、(6)着磁を行う場合があ
る。この中で(4)再粉砕工程でO成分を導入し、より
成形性、磁石特性の高い材料とする方法は有効である。
以下、その例を簡単に示す。 (4)再粉砕 再粉砕工程は、上記のR−Fe−M−N系材料より細か
い微粉体まで粉砕する場合や、R−Fe−M−N−H−
O系材料を得るために、上述のR−Fe−M−N系磁性
材料にO及びH成分を導入する目的で行われる工程であ
る。
The above is a description of the method for producing the R—Fe—M—N magnetic material of the present invention. In particular, when the magnetic material of the present invention is applied as a practical hard magnetic material, (4)
Regrinding, (5) magnetic field molding, and (6) magnetization may be performed. Among them, the method (4) of introducing the O component in the re-grinding step to obtain a material having higher moldability and magnet characteristics is effective.
The example will be briefly described below. (4) Re-grinding In the re-grinding step, fine powder finer than the above R-Fe-M-N-based material is crushed, or R-Fe-M-N-H-
This is a process performed for the purpose of introducing O and H components into the above-mentioned R—Fe—M—N magnetic material in order to obtain an O-based material.

【0040】再粉砕の方法としては(2)で挙げた方法
のほか、回転ボールミル、振動ボールミル、遊星ボール
ミル、ウエットミル、ジェットミル、カッターミル、ピ
ンミル、自動乳鉢及びそれらの組合せなどが用いられ
る。O成分やH成分を導入する際、その導入量を本発明
の範囲に調整する方法としては、再粉砕雰囲気中の水分
量や酸素濃度を制御する方法が挙げられる。
As the re-grinding method, in addition to the method mentioned in (2), a rotary ball mill, a vibrating ball mill, a planetary ball mill, a wet mill, a jet mill, a cutter mill, a pin mill, an automatic mortar and a combination thereof are used. As a method of adjusting the introduced amount of the O component or the H component within the range of the present invention, a method of controlling the water content or oxygen concentration in the re-grinding atmosphere can be mentioned.

【0041】例えば、ジェットミル等の乾式粉砕機を用
いる場合は、粉砕ガス中の水分量を1ppm〜1%、酸
素濃度を0.01〜5%の範囲の所定濃度に保ったり、
またボールミル等の湿式粉砕機を用いる場合は、エタノ
ールや他の粉砕溶媒中の水分量を0.1重量ppm〜8
0重量%、溶存酸素量を0.1重量ppm〜10重量p
pmの範囲に調整するなどで酸素量を適当な範囲に制御
する。
For example, when a dry mill such as a jet mill is used, the amount of water in the milling gas is kept at a predetermined concentration in the range of 1 ppm to 1% and the oxygen concentration is in the range of 0.01 to 5%.
When a wet mill such as a ball mill is used, the amount of water in ethanol or other milling solvent is 0.1 wtppm to 8 wt%.
0 wt%, dissolved oxygen amount 0.1 wtppm ~ 10 wtp
The oxygen amount is controlled in an appropriate range by adjusting the range to pm.

【0042】また、再粉砕した粒子の取扱い操作をさま
ざまな酸素分圧に制御されたグローブボックス中で行う
ことにより、酸素量を調節することもできる。再粉砕に
より、10μm未満の粒径となった微粉体は、若干耐酸
化性能に劣るが、後述のように、本発明の10μm以上
の粗粉体と組み合わせて用いると、磁気特性を高めるこ
とができ、むしろ好ましい場合がある。
It is also possible to control the amount of oxygen by carrying out the handling operation of the re-ground particles in a glove box controlled to various oxygen partial pressures. The fine powder having a particle size of less than 10 μm by re-grinding is slightly inferior in oxidation resistance performance, but as described later, when used in combination with the coarse powder of 10 μm or more of the present invention, magnetic properties can be improved. Yes, but rather preferred.

【0043】本発明の磁性材料は、粉砕粒径によって、
ほとんど保磁力が変化せず、また磁化の低下も著しくな
い。従って、10μm以上の本発明の粗粉体と上記の方
法で粉砕した微粉体を混合して成形すると、充填率が高
まるので、磁化や最大エネルギー積の高い成形体が作製
でき、実用上好ましい磁石材料となる。但し、粗粉体と
微粉体の配合比、即ち粒子径分布によって、角形比が低
下する場合があるので注意を要する。 (5)磁場成形 例えば、(3)又は、(3)及び(4)で得た磁性粉体
を異方性ボンド磁石に応用する場合、熱硬化性樹脂や金
属バインダーと混合したのち磁場中で圧縮成形したり、
熱可塑性樹脂と共に混練したのち磁場中で射出成形を行
ったりして、磁場成形する。
The magnetic material of the present invention is
Almost no change in coercive force and no significant decrease in magnetization. Therefore, when the coarse powder of the present invention having a size of 10 μm or more and the fine powder pulverized by the above method are mixed and molded, the packing rate is increased, so that a molded body having high magnetization and maximum energy product can be produced, and a practically preferable magnet. It becomes a material. However, it should be noted that the squareness ratio may decrease depending on the compounding ratio of the coarse powder and the fine powder, that is, the particle size distribution. (5) Magnetic field molding For example, when the magnetic powder obtained in (3) or (3) and (4) is applied to an anisotropic bonded magnet, it is mixed with a thermosetting resin or a metal binder and then in a magnetic field. Compression molding,
After kneading with a thermoplastic resin, injection molding is performed in a magnetic field to perform magnetic field molding.

【0044】磁場成形は、R−Fe−M−N系磁性材料
を充分に磁場配向せしめるため、好ましくは10kOe
以上、さらに好ましくは15kOe以上の磁場中で行
う。 (6)着磁 (5)で得た異方性ボンド磁石材料や焼結磁石材料、
(3)または、(3)及び(4)で得た粉体を樹脂や金
属バインダーとともに成形した等方性ボンド磁石や焼結
磁石材料については、磁石性能を高めるために、通常着
磁が行われる。
The magnetic field shaping is preferably 10 kOe in order to sufficiently orient the R-Fe-M-N magnetic material in the magnetic field.
Above, more preferably in a magnetic field of 15 kOe or more. (6) Magnetization Anisotropic bonded magnet material or sintered magnet material obtained in (5),
The isotropic bonded magnet or sintered magnet material obtained by molding the powder obtained in (3) or (3) and (4) together with a resin or a metal binder is usually magnetized in order to improve the magnet performance. Be seen.

【0045】着磁は、例えば静磁場を発生する電磁石、
パルス磁場を発生するコンデンサー着磁器などによって
行う。充分着磁を行わしめるための、磁場強度は、好ま
しくは15kOe以上、さらに好ましくは30kOe以
上である。 (7)M’成分の添加 (3)又は、(3)及び(4)で得た磁性粉体にZnな
どのM’成分をさらに添加し、(5)の工程前或は後に
熱処理を行って各種磁石材料とする方法は、角形比を向
上させる点で有効な方法である。
The magnetization is, for example, an electromagnet that generates a static magnetic field,
It is performed by a condenser magnetizer that generates a pulsed magnetic field. The magnetic field strength for sufficiently magnetizing is preferably 15 kOe or more, more preferably 30 kOe or more. (7) Addition of M ′ component (3) or M ′ component such as Zn is further added to the magnetic powder obtained in (3) and (4), and heat treatment is performed before or after the step (5). The method of using various magnetic materials as a magnet is an effective method in improving the squareness ratio.

【0046】[0046]

【実施例】以下、実施例により本発明を具体的に説明す
る。評価方法は以下のとおりである。 (1)磁気特性 平均粒径約30〜36μmの粗粉体または約2μmの微
粉体であるR−Fe−M−N系磁性材料またはR−Fe
−N系磁性材料に銅粉を混ぜ、外部磁場15kOe中、
2ton/cm2で成形し、室温中80kOeの磁場で
パルス着磁した後、振動試料型磁力計(VSM)を用い
て、室温の固有保磁力(iHc/kOe)及び磁化(e
mu/g)を測定した。
The present invention will be described below in detail with reference to examples. The evaluation method is as follows. (1) Magnetic characteristics R-Fe-MN magnetic material or R-Fe which is a coarse powder having an average particle size of about 30 to 36 μm or a fine powder having an average particle size of about 2 μm.
-Copper powder is mixed with N-based magnetic material in an external magnetic field of 15 kOe,
After molding at 2 ton / cm 2 and pulse-magnetizing in a magnetic field of 80 kOe at room temperature, an intrinsic coercive force (iHc / kOe) and a magnetization (e) at room temperature were measured using a vibrating sample magnetometer (VSM).
mu / g) was measured.

【0047】成形磁石については、室温中80kOeの
磁場でパルス着磁した後、室温の固有保磁力(iHc/
kOe)、磁化(kG)、(BH)max[MGOe]を
測定した。 (2)窒素量、酸素量及び水素量 Si34(SiO2を定量含む)を標準試料として、不
活性ガス融解法により窒素量を定量した。 (3)平均粒径 レーザー回折式粒度分布計を用いて、体積相当径分布を
測定し、その分布曲線より求めたメジアン径にて評価し
た。 (4)耐酸化性能 平均粒径約30〜36μmまたは約2μmの粉体を、1
10℃の恒温槽に入れ、200時間後の固有保磁力を
(1)と同様にして測定し、(1)の結果と比較して固
有保磁力の保持率(%)を求めた。成形磁石も同様にし
て評価した。保持率の高いものほど、耐酸化性能が高
い。特に、本試験では各種バインダーを添加せず評価し
ているため、保持率90%を越えるものは、例えばボン
ド磁石とした時の実用物性として充分使用可能で、保持
率95%を越えるものは実用上極めて好適な材料と判定
できる。 (5)温度特性試験 VSMを用い、室温〜150℃までの温度範囲にて、
(1)で調製した試料の固有保磁力を測定した。室温と
150℃の固有保磁力の値から、1℃あたりの保磁力の
低下率を計算し、保磁力の温度変化率β[固有保磁力の
可逆温度係数](%/℃)を求めた。保磁力の温度変化
率の小さいものほど実用的に優れた材料である。このよ
うな材料はパーミアンスの小さな永久磁石材料に応用す
る際、室温での保磁力がさほど高くなくても、一般に不
可逆温度係数が小さくなり、より高温用途、偏平材料用
途に好ましく用いられる。
The molded magnet was pulse-magnetized in a magnetic field of 80 kOe at room temperature and then subjected to room temperature intrinsic coercive force (iHc /
kOe), magnetization (kG), and (BH) max [MGOe] were measured. (2) Nitrogen amount, oxygen amount and hydrogen amount Si 3 N 4 (including quantitative amount of SiO 2 ) was used as a standard sample, and the nitrogen amount was quantified by the inert gas fusion method. (3) Average Particle Size The volume equivalent diameter distribution was measured using a laser diffraction type particle size distribution meter, and the median diameter obtained from the distribution curve was evaluated. (4) Oxidation resistance performance A powder having an average particle size of about 30 to 36 μm or about 2 μm is
The sample was placed in a constant temperature bath at 10 ° C., and the intrinsic coercive force after 200 hours was measured in the same manner as in (1), and the retention rate (%) of the intrinsic coercive force was determined by comparing with the result of (1). The molded magnet was evaluated in the same manner. The higher the retention rate, the higher the oxidation resistance performance. In particular, in this test, since various binders were evaluated without addition, those having a retention rate of more than 90% can be used sufficiently as practical physical properties when used as a bonded magnet, and those having a retention rate of more than 95% are practical. It can be determined that the material is extremely suitable. (5) Temperature characteristic test Using VSM, in the temperature range from room temperature to 150 ° C,
The intrinsic coercive force of the sample prepared in (1) was measured. From the values of the intrinsic coercive force at room temperature and 150 ° C., the decrease rate of the coercive force per 1 ° C. was calculated, and the temperature change rate β of the coercive force [reversible temperature coefficient of the intrinsic coercive force] (% / ° C.) was obtained. A material having a smaller coercive force change rate with temperature is a practically superior material. When applied to a permanent magnet material having a small permeance, such a material generally has a small irreversible temperature coefficient even if the coercive force at room temperature is not so high, and is preferably used for higher temperature applications and flat material applications.

【0048】[0048]

【実施例1】純度99.9%のSm、純度99.9%の
Fe及び純度99.9%のCrを用いてアルゴンガス雰
囲気下高周波溶解炉で溶解混合し、さらにアルゴン雰囲
気中、1150℃で20時間焼鈍し徐冷することによ
り、Sm10.5Fe85.0Cr4.5組成の合金を調製した。
Example 1 Sm having a purity of 99.9%, Fe having a purity of 99.9% and Cr having a purity of 99.9% were melt-mixed in a high frequency melting furnace under an argon gas atmosphere, and further, at 1150 ° C. in an argon atmosphere. An alloy having a composition of Sm 10.5 Fe 85.0 Cr 4.5 was prepared by annealing for 20 hours and slowly cooling.

【0049】この合金をジョークラッシャーにより粉砕
し、次いで窒素雰囲気中ローターミルでさらに粉砕した
後、ふるいで粒度を調整して、平均粒径約50μmの粉
体を得た。このSm−Fe−Cr合金粉体を横型管状炉
に仕込み、465℃において、アンモニア分圧0.35
atm、水素ガス0.65atmの混合気流中で1.7
5時間加熱処理し、続いてアルゴン気流中で1時間焼鈍
したのち、平均粒径約30μmに調整した。
This alloy was crushed with a jaw crusher and then further crushed with a rotor mill in a nitrogen atmosphere, and the particle size was adjusted with a sieve to obtain a powder having an average particle size of about 50 μm. This Sm-Fe-Cr alloy powder was charged into a horizontal tubular furnace, and the ammonia partial pressure was 0.35 at 465 ° C.
1.7 in a mixed gas flow of atm and hydrogen gas of 0.65 atm
After heat treatment for 5 hours and subsequent annealing in an argon stream for 1 hour, the average particle size was adjusted to about 30 μm.

【0050】得られたSm−Fe−Cr−N系粉体の組
成、磁気特性、耐酸化性能、温度特性試験結果を表1に
示した。なお、X線回折法により解析した結果、主に菱
面体晶を示す回折線が認められ、更に、2θ=44゜
(Cu、Kα線)付近にも回折線が認められた。
Table 1 shows the composition, magnetic characteristics, oxidation resistance and temperature characteristic test results of the obtained Sm-Fe-Cr-N-based powder. As a result of analysis by the X-ray diffraction method, diffraction lines mainly showing rhombohedral crystals were recognized, and further, diffraction lines were recognized near 2θ = 44 ° (Cu, Kα line).

【0051】[0051]

【実施例2】母合金の組成を、表1に示す組成に変更す
る以外は実施例1と同様な操作によって、平均粒径約3
0μmのR−Fe−Co−Cr−N系粉体を得た。その
結果を表1に示す。なお、X線回折法により解析した結
果、主に菱面体晶を示す回折線が観測されたほか、2θ
=44゜(Cu、Kα線)付近に比較的大きな回折線が
認められた。
Example 2 An average particle diameter of about 3 was obtained by the same operation as in Example 1 except that the composition of the mother alloy was changed to the composition shown in Table 1.
An R-Fe-Co-Cr-N-based powder of 0 μm was obtained. The results are shown in Table 1. As a result of analysis by the X-ray diffraction method, diffraction lines mainly showing rhombohedral crystals were observed and 2θ
A relatively large diffraction line was recognized around = 44 ° (Cu, Kα line).

【0052】さらに、実施例2の粉体を、ボールミルに
より平均粒径約2μmまで粉砕した。この材料のiHc
は8.5kOeであった。この結果は、実施例2の粉体
において、固有保磁力iHcに粒径依存性がないことを
示している。なお、平均粒径約2μmの粉体の評価結果
を表1(参考例1)に併せて示した。
Further, the powder of Example 2 was pulverized with a ball mill to an average particle size of about 2 μm. IHc of this material
Was 8.5 kOe. This result shows that in the powder of Example 2, the intrinsic coercive force iHc has no particle size dependency. The evaluation results of the powder having an average particle size of about 2 μm are also shown in Table 1 (Reference Example 1).

【0053】[0053]

【実施例3〜10】母合金の組成を、表1に示す組成に
変更する以外は、実施例1とほぼ同様な操作によって、
平均粒径約30μmの希土類−鉄成分−M成分−窒素系
粉体を得た。その結果を表1に示す。
Examples 3 to 10 By substantially the same operation as in Example 1, except that the composition of the mother alloy was changed to the composition shown in Table 1.
A rare earth-iron component-M component-nitrogen-based powder having an average particle size of about 30 μm was obtained. The results are shown in Table 1.

【0054】[0054]

【比較例1】Crを加えず、窒化時間を2時間とする以
外は実施例1と同様にして、表1に示した組成のSm−
Fe−N系粉体を得た。この材料のiHcは0.5kO
eであった。さらに、この材料をボールミルで約2μm
まで微粉砕した。これらの結果を表1に示す。
Comparative Example 1 Sm-having the composition shown in Table 1 was prepared in the same manner as in Example 1 except that Cr was not added and the nitriding time was 2 hours.
Fe-N type powder was obtained. IHc of this material is 0.5 kO
It was e. Furthermore, this material is about 2 μm in a ball mill.
Finely ground. Table 1 shows the results.

【0055】[0055]

【比較例2】窒化条件を420℃、アンモニア分圧0.
30atm、水素分圧0.70atm、2.5時間とす
る以外は実施例1と同様にして、表1に示した組成のS
m−Fe−Cr−N系粉体を得た。この材料のiHcは
0.35kOeであった。さらに、この材料をボールミ
ルで約2μmまで微粉砕した。これらの結果を表1に示
す。
[Comparative Example 2] Nitriding conditions were set to 420 ° C and ammonia partial pressure was set to 0.
S of the composition shown in Table 1 was prepared in the same manner as in Example 1 except that the hydrogen partial pressure was 30 atm, the hydrogen partial pressure was 0.70 atm, and the time was 2.5 hours.
An m-Fe-Cr-N-based powder was obtained. The iHc of this material was 0.35 kOe. Further, this material was finely ground to about 2 μm with a ball mill. Table 1 shows the results.

【0056】[0056]

【比較例3】実施例1で得た粒径約30μmのSm−F
e−Cr−N系粉体を、2ton/cm2 、15kOe
の条件で磁場成形したあと、アルゴン雰囲気下、110
0℃、1時間の条件で熱処理を行った。これを急冷した
ときの成形体のiHcは0.1kOe以下であった。こ
の成形体を再び約30μmに粉砕した粉体のiHcは
0.1kOe以下であった。なおこの材料の結晶構造を
X線回折により解析した結果、α−鉄、窒化鉄に対応す
る回折線が主に検出された。このものは本発明における
菱面体晶または六方晶の結晶構造を含有しないものであ
った。
Comparative Example 3 Sm-F having a particle size of about 30 μm obtained in Example 1
The e-Cr-N powder was 2 ton / cm 2 , 15 kOe.
Magnetic field molding under the conditions
The heat treatment was performed at 0 ° C. for 1 hour. The iHc of the molded body when cooled rapidly was 0.1 kOe or less. The iHc of the powder obtained by pulverizing the compact again to about 30 μm was 0.1 kOe or less. As a result of analyzing the crystal structure of this material by X-ray diffraction, diffraction lines mainly corresponding to α-iron and iron nitride were detected. This did not contain the rhombohedral or hexagonal crystal structure of the present invention.

【0057】[0057]

【比較例4】Sm11.0Fe85.0Zr1.0Mn3.0の組成と
なるよう高周波誘導炉を用いて溶解、鋳造し、合金イン
ゴットを得た。この合金をアルゴン雰囲気中で1100
℃、24時間溶体化処理し、次いで800℃1時間の時
効処理を行った。溶体化処理は室温までガス急冷、時効
処理は炉冷とした。また、XRDにより、溶体化処理後
の母合金はほとんどSm2Fe17単相であるが、僅かに
Smリッチ相が存在することを確認した。
Comparative Example 4 An alloy ingot was obtained by melting and casting in a high frequency induction furnace so that the composition was Sm 11.0 Fe 85.0 Zr 1.0 Mn 3.0 . 1100 this alloy in an argon atmosphere
The solution was subjected to solution treatment at 24 ° C. for 24 hours, and then subjected to aging treatment at 800 ° C. for 1 hour. The solution treatment was gas quenching to room temperature, and the aging treatment was furnace cooling. Further, it was confirmed by XRD that the mother alloy after the solution treatment had almost a single phase of Sm 2 Fe 17 , but a slight Sm rich phase was present.

【0058】得られた合金をアルゴン雰囲気中でジョー
クラッシャーとコーヒーミルを用いて粉砕し、45〜1
50μmに分級して得た合金粉末をアルミナボートに入
れ、窒化処理炉内に保持した。窒化処理は1atmの純
窒素中で500℃、24時間の条件で行った。次いで窒
化した合金は窒化処理炉内で炉冷してから取りだした。
The obtained alloy was crushed by using a jaw crusher and a coffee mill in an argon atmosphere, and then 45-1.
The alloy powder obtained by classification to 50 μm was put in an alumina boat and held in a nitriding furnace. The nitriding treatment was performed in 1 atm of pure nitrogen at 500 ° C. for 24 hours. The nitrided alloy was then cooled in the nitriding furnace before being taken out.

【0059】得られたSm−Fe−M’’成分−N系材
料の窒素含有量は5.0原子%、飽和磁化114emu
/g、固有保磁力0.09kOeであった。
The obtained Sm-Fe-M '' component-N-based material had a nitrogen content of 5.0 atom% and a saturation magnetization of 114 emu.
/ G, and the intrinsic coercive force was 0.09 kOe.

【0060】[0060]

【比較例5】Sm11.0Fe65.0Co20.0Ti1.0Mn3.0
の組成となるように、高周波溶解炉を用いて溶解鋳造
し、合金インゴットを得た。これを比較例4と同様に処
理し、Sm−Fe−M’’成分−N系材料粉体を得た。
得られた磁性粉体の窒素含有量は4.6原子%、飽和磁
化132emu/g、固有保磁力0.08kOeであっ
た。
[Comparative Example 5] Sm 11.0 Fe 65.0 Co 20.0 Ti 1.0 Mn 3.0
The alloy ingot was obtained by melting and casting using a high-frequency melting furnace so that the composition of This was treated in the same manner as in Comparative Example 4 to obtain Sm-Fe-M '' component-N-based material powder.
The nitrogen content of the obtained magnetic powder was 4.6 atomic%, the saturation magnetization was 132 emu / g, and the intrinsic coercive force was 0.08 kOe.

【0061】[0061]

【比較例6】Sm10.0Ce2.0Fe64.0Co20.0Ti1.0
Mn3.0 の組成となるように、高周波溶解炉を用いて溶
解鋳造し、合金インゴットを得た。これを比較例4と同
様に処理し、Sm−Fe−M’’成分−N系材料粉体を
得た。得られた磁性粉体の窒素含有量は7.3原子%、
飽和磁化131emu/g、保磁力0.1kOeであっ
た。
Comparative Example 6 Sm 10.0 Ce 2.0 Fe 64.0 Co 20.0 Ti 1.0
An alloy ingot was obtained by melting and casting using a high-frequency melting furnace so that the composition was Mn 3.0 . This was treated in the same manner as in Comparative Example 4 to obtain Sm-Fe-M '' component-N-based material powder. The nitrogen content of the obtained magnetic powder was 7.3 atomic%,
The saturation magnetization was 131 emu / g and the coercive force was 0.1 kOe.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【発明の効果】以上説明した様に、本発明によれば、1
0μm以上の粗粉体で保磁力の高く、優れた耐酸化性能
と温度特性を有した希土類−鉄成分−M成分−窒素(−
水素−酸素)系磁性材料を提供することができる。
As described above, according to the present invention, 1
Rare earth-iron component-M component-nitrogen (-) with a coarse powder of 0 μm or more, high coercive force, and excellent oxidation resistance and temperature characteristics
A hydrogen-oxygen) type magnetic material can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 303 D 38/28 C23C 8/24 H01F 1/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C22C 38/00 303 D 38/28 C23C 8/24 H01F 1/06

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】一般式RαFe(100- α- β- γ) MβN
γで表わされる磁性材料であり、(但し、Rは希土類元
素のうち少なくとも一種、MはCr、Ti、Zr、Hf
のうち少なくとも一種、α、β、γは原子%で、下式を
満たす) 3≦α≦20 1≦β≦25 17≦γ≦25 その主相が、少なくとも前記R、Fe、M及びNを成分
とする菱面体晶又は六方晶の結晶構造を有した相である
とともに、平均粒径が10μm以上であることを特徴と
する磁性材料。
1. A general formula RαFe (100- α - β - γ ) MβN
a magnetic material represented by γ, where R is at least one of rare earth elements, M is Cr, Ti, Zr, Hf
At least one of them, α, β, γ is atomic% and satisfies the following formula) 3 ≦ α ≦ 20 1 ≦ β ≦ 25 17 ≦ γ ≦ 25 The main phase is at least the above R, Fe, M and N. A magnetic material, which is a phase having a rhombohedral or hexagonal crystal structure as a component and has an average particle size of 10 μm or more.
【請求項2】窒素濃度分布が微細な濃淡を有する請求項
1の磁性材料。
2. The magnetic material according to claim 1, wherein the nitrogen concentration distribution has a fine gradation.
【請求項3】Fe成分の0.01〜50原子%をCoで
置換した組成を有する請求項1または2の磁性材料。
3. The magnetic material according to claim 1, which has a composition in which 0.01 to 50 atomic% of the Fe component is replaced with Co.
【請求項4】R成分の50原子%以上がSmである請求
項1ないし3のいずれかの磁性材料。
4. The magnetic material according to claim 1, wherein 50 atom% or more of the R component is Sm.
【請求項5】M成分がCrである請求項1ないし4のい
ずれかの磁性材料。
5. The magnetic material according to claim 1, wherein the M component is Cr.
【請求項6】実質的にR、Fe、Mからなる合金を、ア
ンモニアガスを含む雰囲気下で、200〜650℃の範
囲で熱処理することを特徴とする請求項1ないし5のい
ずれかに記載の磁性材料の製造法。
6. The alloy according to claim 1, wherein the alloy consisting essentially of R, Fe and M is heat-treated in the range of 200 to 650 ° C. in an atmosphere containing ammonia gas. Manufacturing method of magnetic material.
【請求項7】実質的にR−Fe−Mからなる合金を、不
活性ガス及び水素ガスのうち少なくとも一種を含む雰囲
気中、または真空中で、600〜1300℃の範囲で熱
処理したのち、アンモニアガスを含む雰囲気下で、20
0〜650℃の範囲で熱処理して窒素を導入することを
特徴とする請求項1なしい5のいすれかに記載の磁性材
料の製造法。
7. An alloy consisting essentially of R—Fe—M is heat-treated at 600 to 1300 ° C. in an atmosphere containing at least one of an inert gas and hydrogen gas or in vacuum, and then ammonia is added. 20 in an atmosphere containing gas
The method for producing a magnetic material according to any one of claims 1 to 5, wherein the heat treatment is performed in the range of 0 to 650 ° C to introduce nitrogen.
JP12172495A 1994-05-25 1995-05-19 Magnetic materials and manufacturing methods Expired - Lifetime JP3645312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12172495A JP3645312B2 (en) 1994-05-25 1995-05-19 Magnetic materials and manufacturing methods

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11101994 1994-05-25
JP6-111019 1994-05-25
JP12172495A JP3645312B2 (en) 1994-05-25 1995-05-19 Magnetic materials and manufacturing methods

Publications (2)

Publication Number Publication Date
JPH0845718A true JPH0845718A (en) 1996-02-16
JP3645312B2 JP3645312B2 (en) 2005-05-11

Family

ID=26450505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12172495A Expired - Lifetime JP3645312B2 (en) 1994-05-25 1995-05-19 Magnetic materials and manufacturing methods

Country Status (1)

Country Link
JP (1) JP3645312B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187118A (en) * 1997-09-01 1999-03-30 Toshiba Corp Material and manufacture of magnet and bond magnet using the same
JP2005243883A (en) * 2004-02-26 2005-09-08 Shin Etsu Chem Co Ltd Rare earth permanent magnet
US7713360B2 (en) 2004-02-26 2010-05-11 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
CN109982791A (en) * 2016-11-28 2019-07-05 国立大学法人东北大学 Rare earth, iron nitrogen based magnetic powder and its manufacturing method
WO2021085521A1 (en) * 2019-10-29 2021-05-06 Tdk株式会社 Sm-Fe-N RARE EARTH MAGNET, PRODUCTION METHOD THEREFOR, AND RARE EARTH MAGNET POWDER

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187118A (en) * 1997-09-01 1999-03-30 Toshiba Corp Material and manufacture of magnet and bond magnet using the same
JP2005243883A (en) * 2004-02-26 2005-09-08 Shin Etsu Chem Co Ltd Rare earth permanent magnet
US7713360B2 (en) 2004-02-26 2010-05-11 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
CN109982791A (en) * 2016-11-28 2019-07-05 国立大学法人东北大学 Rare earth, iron nitrogen based magnetic powder and its manufacturing method
WO2021085521A1 (en) * 2019-10-29 2021-05-06 Tdk株式会社 Sm-Fe-N RARE EARTH MAGNET, PRODUCTION METHOD THEREFOR, AND RARE EARTH MAGNET POWDER

Also Published As

Publication number Publication date
JP3645312B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP3560387B2 (en) Magnetic material and its manufacturing method
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JPH01219143A (en) Sintered permanent magnet material and its production
JP4170468B2 (en) permanent magnet
WO2004030000A1 (en) Method for producing r-t-b based rare earth element permanent magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP3784085B2 (en) Magnetic material having stable coercive force and method for producing the same
JPH0620813A (en) Rare earth anisotropic permanent magnet powder and manufacture thereof
JPH06112019A (en) Nitride magnetic material
JPH045739B2 (en)
JPH0931608A (en) High performance rare earth-iron-boron-carbon magnet material excellent in corrosion resistance
JP3209291B2 (en) Magnetic material and its manufacturing method
JP3294645B2 (en) Nitride magnetic powder and its production method
JPH10312918A (en) Magnet and bonded magnet
JPH04260302A (en) Magnetic powder and its manufacture and bonded magnet
JP3209292B2 (en) Magnetic material and its manufacturing method
JP3157302B2 (en) Nitride magnetic materials
JP3295674B2 (en) Method for producing rare earth-iron-cobalt-nitrogen based magnetic material
JP3200201B2 (en) Nitride magnetic powder and method for producing the same
JPH06112027A (en) Manufacture of high-quality magnet material
JPH11121215A (en) Manufacture of rare-earth magnetic powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term