Nothing Special   »   [go: up one dir, main page]

JP3294645B2 - Nitride magnetic powder and its production method - Google Patents

Nitride magnetic powder and its production method

Info

Publication number
JP3294645B2
JP3294645B2 JP30852192A JP30852192A JP3294645B2 JP 3294645 B2 JP3294645 B2 JP 3294645B2 JP 30852192 A JP30852192 A JP 30852192A JP 30852192 A JP30852192 A JP 30852192A JP 3294645 B2 JP3294645 B2 JP 3294645B2
Authority
JP
Japan
Prior art keywords
magnetic material
magnetic
atomic
gas
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30852192A
Other languages
Japanese (ja)
Other versions
JPH06163228A (en
Inventor
伸嘉 今岡
淑男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP30852192A priority Critical patent/JP3294645B2/en
Publication of JPH06163228A publication Critical patent/JPH06163228A/en
Application granted granted Critical
Publication of JP3294645B2 publication Critical patent/JP3294645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高磁気特性で耐酸化性
に優れた希土類−鉄−窒素系磁性材料で、特に小型モー
ター、アクチュエーターなどの用途に最適な磁性材料に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-iron-nitrogen based magnetic material having high magnetic properties and excellent oxidation resistance, and particularly to a magnetic material most suitable for use in small motors and actuators.

【0002】[0002]

【従来の技術】磁性材料は家庭電化製品、音響製品、自
動車部品やコンピューターの周辺端末機まで、幅広い分
野で使用されており、エレクトロニクス材料としての重
要性は年々増大しつつある。特に最近、各種電気・電子
機器の小型化、高効率化が要求されてきたため、より高
性能の磁性材料が求められている。
2. Description of the Related Art Magnetic materials are used in a wide range of fields from home appliances, audio products, automobile parts and peripheral devices of computers, and their importance as electronic materials is increasing year by year. In particular, recently, there has been a demand for miniaturization and high efficiency of various electric and electronic devices, so that a magnetic material with higher performance is required.

【0003】この時代の要請に応え、Sm−Co系、N
d−Fe−B系などの希土類磁性材料の需要が急激に増
大している。しかし、Sm−Co系は原料供給が不安定
で原料コストが高く、Nd−Fe−B系は耐熱性、耐食
性に劣る問題点がある。一方、新しい希土類系磁性材料
として、希土類−鉄−窒素系磁性材料が発明されてい
る。(例えば特開平2−57663)この材料は、磁
化、異方性磁界、キュリー点が高く、Sm−Co系、N
d−Fe−B系の欠点を補う磁性材料として期待されて
いる。
[0003] In response to the demands of this era, Sm-Co based, N
The demand for rare earth magnetic materials such as d-Fe-B is rapidly increasing. However, the Sm-Co system has a problem that the supply of the material is unstable and the cost of the material is high, and the Nd-Fe-B system has a problem in that the heat resistance and the corrosion resistance are inferior. On the other hand, as a new rare earth magnetic material, a rare earth-iron-nitrogen magnetic material has been invented. This material has a high magnetization, an anisotropic magnetic field, and a high Curie point.
It is expected as a magnetic material that compensates for the drawbacks of the d-Fe-B system.

【0004】しかし、希土類−鉄−窒素系磁性材料を細
かく粉砕して使用する場合、表面が酸化されて保磁力が
低下し、この材料が本来有している高磁気特性を充分発
揮することができない。従って、より耐酸化に優れ、高
い磁気特性を有した希土類−鉄−窒素系磁性材料の出現
が強く望まれている。
However, when a rare earth-iron-nitrogen based magnetic material is used after being finely pulverized, the surface is oxidized and the coercive force is reduced, so that the high magnetic properties inherent to this material can be sufficiently exhibited. Can not. Therefore, the appearance of rare earth-iron-nitrogen based magnetic materials which are more excellent in oxidation resistance and have high magnetic properties is strongly desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、菱面体晶ま
たは六方晶の結晶構造を有した希土類−鉄−窒素系材料
に金属元素Mを共存させて、高い磁気特性と優れた耐酸
化性を合わせ持つ希土類−鉄−M−窒素組成の磁性材料
とその製造法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention relates to a rare-earth-iron-nitrogen-based material having a rhombohedral or hexagonal crystal structure in which a metal element M coexists to provide high magnetic properties and excellent oxidation resistance. The present invention provides a rare earth-iron-M-nitrogen composition magnetic material having the following characteristics:

【0006】[0006]

【課題を解決するための手段】高い磁気特性と耐酸化性
を有する希土類−鉄−窒素系磁性材料を得るために、母
合金に種々の元素(M)を添加した系について鋭意検討
した結果、磁気特性が高く耐酸化性の優れた組成、希土
類(R)−鉄(Fe)−M−窒素(N)組成を有する磁
性材料を見いだし、本発明を成すに至った。
In order to obtain a rare earth-iron-nitrogen based magnetic material having high magnetic properties and oxidation resistance, the present inventors have conducted intensive studies on a system obtained by adding various elements (M) to a mother alloy. The present inventors have found a magnetic material having a composition having high magnetic properties and excellent oxidation resistance, and a rare earth (R) -iron (Fe) -M-nitrogen (N) composition, and have accomplished the present invention.

【0007】即ち、本発明は (1)一般式Rα(Fe(1-γ)γ
(100-α-β―δ―ε)βδεで表される磁性材料
であり、RはSm、Ndのうち少なくとも一種MはP、
As、Sb、Beの元素のうち少なくとも一種、α、
β、δ、εは原子百分率で 2.4≦α≦20 2.4≦β≦30 0.1≦δ≦10 0.1≦ε≦10 γは原子比で 0.001≦γ≦0.5 であって、かつ主相が菱面体晶または六方晶の結晶構造
を含有することを特徴とする磁性材料、及び (2)(1)に記載の一般式中のFeの0.01〜50
原子%がCoで置換されていることを特徴とする(1)
に記載の磁性材料であり、 (3)一般式Rα/(100-β―δ―ε)(Fe
(1-γ)γ(100-α-β―δ-ε)/(100-β―δ―ε)
表される合金を、窒素ガス、アンモニアガスのうち少な
くとも一種を含む雰囲気下で、200〜650℃の範囲
で熱処理した後、粉砕ガス中の酸素及び水素濃度を制御
して、または粉砕溶媒中の溶存酸素量や水分量を調整し
て粉砕することを特徴とする(1)または(2)に記載
の磁性材料の製造方法である。ただし上記一般式中のR
はSm、Ndのうち少なくとも一種であり、MはP、A
s、Sb、Beの元素のうち少なくとも一種であって、
α、β、δ、εは原子百分率で 2.4≦α≦20 2.4≦β≦30 0.1≦δ≦10 0.1≦ε≦10 γは原子比で 0.001≦γ≦0.5
That is, the present invention relates to (1) a general formula R α (Fe (1-γ) M γ )
A magnetic material represented by (100-α-β-δ -ε) N β H δ O ε, R is Sm, at least one M of Nd is P,
At least one of the elements As, Sb and Be , α,
β, δ, ε are atomic percentages, 2.4 ≦ α ≦ 20 2.4 ≦ β ≦ 30 0.1 ≦ δ ≦ 10 0.1 ≦ ε ≦ 10 γ is an atomic ratio of 0.001 ≦ γ ≦ 0. 5, wherein the main phase contains a rhombohedral or hexagonal crystal structure, and (2) 0.01 to 50 of Fe in the general formula described in (1).
Characterized in that atomic% is replaced by Co (1)
(3) a general formula R α / (100-β-δ-ε) (Fe
(1-γ) M γ ) An alloy represented by (100-α-β-δ-ε) / (100-β-δ-ε) is mixed in an atmosphere containing at least one of nitrogen gas and ammonia gas. After the heat treatment in the range of 200 to 650 ° C., the pulverization is performed by controlling the oxygen and hydrogen concentrations in the pulverization gas or adjusting the dissolved oxygen and water contents in the pulverization solvent (1). Or a method for producing a magnetic material according to (2). However, R in the above general formula
Is at least one of Sm and Nd, M is P and A
at least one of the elements s, Sb and Be ,
α, β, δ, ε are atomic percentages 2.4 ≦ α ≦ 20 2.4 ≦ β ≦ 30 0.1 ≦ δ ≦ 10 0.1 ≦ ε ≦ 10 γ is an atomic ratio of 0.001 ≦ γ ≦ 0.5

【0008】以下本発明について詳細に説明する。希土
類(R)としては、Y、La、Ce、Pr、Nd、P
m、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、YbおよびLuが挙げられるが、この中でSm又は
Ndのうち一種以上を主として含有しなくてはならな
い。
Hereinafter, the present invention will be described in detail. As the rare earth (R), Y, La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
m, Yb and Lu , among which Sm or
Must contain mainly one or more of Nd
No.

【0009】また、このRは工業的生産により入手可能
な純度でよく、製造上不可避の不純物、例えばO、H、
C、Al、Si、F、Na、Mg、Ca、Liなどが存
在していても差し支えない。鉄(Fe)は、強磁性を担
う本磁性材料の基本組成であるが、Feのうち0.01
〜50原子%を、Coで置換しても良く、この場合キュ
リー点、磁化の上昇、耐酸化性の向上が期待される。以
下、鉄成分と表記した場合、Coで最大50原子%まで
置換した場合も含むものとする。本発明の効果を発揮す
るために必須な成分であるP、As、Sb、Beの各元
素(M)については、Mのうち1種または2種以上を鉄
成分及びMの合計量に対して、原子比で0.001〜
0.5の範囲で共存させる。
[0009] The R may have a purity that can be obtained by industrial production, and impurities unavoidable in production, such as O, H,
C, Al, Si, F, Na, Mg, Ca, Li and the like may be present. Iron (Fe) is the basic composition of the present magnetic material that is responsible for ferromagnetism.
Up to 50 atomic% may be replaced by Co, in which case the Curie point, increase in magnetization, and improvement in oxidation resistance are expected. Hereinafter, when it is described as an iron component, it includes a case where Co is replaced by a maximum of 50 atomic%. With respect to each element (M) of P, As, Sb, and Be, which are essential components for exhibiting the effects of the present invention, one or more of M are added to the total amount of the iron component and M. , In atomic ratio 0.001 to
Coexist in the range of 0.5.

【0010】本発明におけるR−Fe−M−N系磁性材
料の組成は、希土類が3〜20原子%、鉄が25〜9
3.91原子%、M成分が0.05〜47原子%、Nが
3〜30原子%の範囲にあることが必要である。R成分
が3原子%未満のとき、鉄成分を多く含む軟磁性相が分
離し、窒化物の保磁力が低下して実用的な永久磁石とな
らない。またR成分が20原子%を越えると、残留磁束
密度が低下して好ましくない。
[0010] The composition of the R-Fe-MN-based magnetic material in the present invention is such that the content of the rare earth element is 3 to 20 atomic%, and
3.91 at%, M component must be within the range of 0.05 to 47 at%, and N must be within the range of 3 to 30 at%. When the R component is less than 3 atomic%, a soft magnetic phase containing a large amount of iron component is separated, and the coercive force of the nitride is reduced, so that a practical permanent magnet cannot be obtained. On the other hand, if the R component exceeds 20 atomic%, the residual magnetic flux density is undesirably reduced.

【0011】M成分が47原子%を越えると飽和磁化が
低下して好ましくなく、0.05原子%未満の場合は耐
酸化性に対するMの添加効果がほとんどない。また、M
成分量の好ましい範囲としては、0.1〜30原子%で
ある。M成分としてのP、As、Sb、Beに加えて、
Li、Na、K、Mg、Ca、Sr、Ba、Zr、T
i、Hf、V、Nb、Ta、Cr、Mo、W、Mn、N
i、Pd、Cu、Ag、Zn、B、Al、Ga、In、
C、Sn、Pb、Biの元素のうち1種または2種以上
(M’成分)を添加しても良いが、これらの含有量は
P、As、Sb、Beの合計量を超えないで、しかも
P、As、Sb、Beとの合計量がγ値の範囲にある様
にしなければならない。
If the content of the M component exceeds 47 atomic%, the saturation magnetization decreases, which is not preferable. If the content of the M component is less than 0.05 atomic%, there is almost no effect of adding M on the oxidation resistance. Also, M
A preferable range of the component amount is 0.1 to 30 atomic%. In addition to P, As, Sb, and Be as M components,
Li, Na, K, Mg, Ca, Sr, Ba, Zr, T
i, Hf, V, Nb, Ta, Cr, Mo, W, Mn, N
i, Pd, Cu, Ag, Zn, B, Al, Ga, In,
One or more of the elements C, Sn, Pb, and Bi (M ′ component) may be added, but their contents do not exceed the total amount of P, As, Sb, and Be. In addition, the total amount of P, As, Sb, and Be must be within the range of the γ value.

【0012】M’成分のうち、特にM成分と混合添加効
果が高いのはIn、Cu、Znで、これらの元素をM成
分とともに適量添加することにより、本磁性材料の保磁
力の酸化に対する安定性がさらに高まる。本発明におけ
るR−Fe−M−N系磁性材料は、主相が体積分率で全
体の50%以上含むと高い耐酸化性を発揮する。
Of the M ′ components, In, Cu, and Zn are particularly effective in mixing and adding the M component. By adding an appropriate amount of these elements together with the M component, the coercive force of the present magnetic material is stabilized against oxidation. Sex is further enhanced. The R-Fe-MN-based magnetic material according to the present invention exhibits high oxidation resistance when the main phase contains 50% or more of the entire volume fraction.

【0013】ここにいう主相とは、少なくともR、Fe
及びNを含み、かつ菱面体晶又は六方晶の結晶構造を有
する相のことであり、それ以外の組成、結晶構造を有す
る相を副相と呼ぶ。例えば、副相としてRFe12-XX
y 相、RFe12-XM’Ny 相といった正方晶を取る磁
性の高い窒化物相を含んでいても良いが、本発明の耐酸
化性の効果を充分発揮させるためには、その体積分率は
本発明の磁性材料の体積分率を越えない方が望ましい。
さらに、主相の体積分率が75%を越えると、実用上極
めて好ましい材料となるが、本発明の磁性材料は上記の
体積分率範囲に限定されるものではない。
The main phase referred to here is at least R, Fe
And a phase containing N and a rhombohedral or hexagonal crystal structure, and a phase having another composition and crystal structure is called a subphase. For example, RFe 12-X M X
It may contain a highly magnetic nitride phase that takes a tetragonal form, such as an N y phase and an RFe 12-x M′N y phase. It is desirable that the fraction does not exceed the volume fraction of the magnetic material of the present invention.
Further, when the volume fraction of the main phase exceeds 75%, the material becomes extremely preferable for practical use. However, the magnetic material of the present invention is not limited to the above volume fraction range.

【0014】但し、M=Geの場合に限り、主相が菱面
体晶または六方晶の結晶構造を有し、主相の体積分率が
全体の50%を越えなくてはならない。R−Fe−M原
料合金の結晶格子間に窒素を導入することによって、耐
酸化性及び磁気特性の各項目のうち一項目以上が向上
し、実用上好適な磁性材料となる。
However, only when M = Ge, the main phase must have a rhombohedral or hexagonal crystal structure, and the volume fraction of the main phase must exceed 50% of the whole. By introducing nitrogen between the crystal lattices of the R-Fe-M material alloy, one or more of the items of the oxidation resistance and the magnetic properties are improved, and the magnetic material becomes practically suitable.

【0015】ここにいう磁気特性とは、材料の飽和磁化
(4πIs)、残留磁束密度(Br)、磁気異方性磁界
(Ha)、磁気異方性エネルギー(Ea)、磁気異方性
比、キュリー点(Tc)、固有保磁力(iHc)、角形
比(Br/4πIs)、最大エネルギー積[(BH)m
ax]、熱減磁率(α)、保磁力の温度変化率(β)の
うち少なくとも一つを言う。但し、磁気異方性比とは、
外部磁場を15kOe印加した時の困難磁化方向の磁化
(a)と容易磁化方向の磁化(b)の比(a/b)であ
り、磁気異方性比が小さいもの程、磁気異方性エネルギ
ーが高いと評価される。
The magnetic characteristics referred to herein include the saturation magnetization (4πIs), residual magnetic flux density (Br), magnetic anisotropic magnetic field (Ha), magnetic anisotropic energy (Ea), magnetic anisotropy ratio, Curie point (Tc), intrinsic coercive force (iHc), squareness ratio (Br / 4πIs), maximum energy product [(BH) m
ax], the thermal demagnetization rate (α), and the temperature change rate (β) of the coercive force. However, the magnetic anisotropy ratio is
The ratio (a / b) of the magnetization (a) in the difficult magnetization direction and the magnetization (b) in the easy magnetization direction when an external magnetic field of 15 kOe is applied. Is evaluated as high.

【0016】[0016]

【0017】導入される窒素(N)量は、3〜30原子
%の範囲にする必要がある。30原子%を越えると磁化
が低く、磁石材料用途としては実用性が小さい。3原子
%未満では原料合金の性能をあまり向上させることがで
きず、好ましくない。窒素量としてさらに好ましくは、
5〜25原子%、特に好ましくは10〜17原子%であ
る。
The amount of nitrogen (N) to be introduced must be in the range of 3 to 30 atomic%. If it exceeds 30 atomic%, the magnetization is low, and its practicality is small as a magnet material. If it is less than 3 atomic%, the performance of the raw material alloy cannot be improved much, which is not preferable. More preferably as the amount of nitrogen,
It is 5 to 25 at%, particularly preferably 10 to 17 at%.

【0018】本発明により得られたR−Fe−M−N系
磁性材料には、水素(H)が0.01〜15原子%、さ
らに酸素(O)が0.01〜15原子%含まれることが
好ましい。更に好ましい水素量及び酸素量は、0.1〜
10原子%及び0.1〜10原子%である。従って、特
に好ましい本発明のR−Fe−M−N系材料の組成は、
一般式Rα(Fe(1- γ) Mγ)(100- α- β- δ- ε
) NβHδOεで表わしたとき、α、β、δ、εは原子
%で、 2.4≦α≦20 2.4≦β≦30 0.1≦δ≦10 0.1≦ε≦10 γは原子比で、 0.001≦γ≦0.5 の範囲にある。
The R-Fe-MN magnetic material obtained by the present invention contains 0.01 to 15 atomic% of hydrogen (H) and 0.01 to 15 atomic% of oxygen (O). Is preferred. More preferred amounts of hydrogen and oxygen are 0.1 to
10 at% and 0.1 to 10 at%. Therefore, a particularly preferred composition of the R-Fe-MN-based material of the present invention is:
General formula Rα (Fe (1- γ ) Mγ) (100- α - β - δ - ε
) When expressed as NβHδOε, α, β, δ, and ε are atomic%, and 2.4 ≦ α ≦ 20 2.4 ≦ β ≦ 30 0.1 ≦ δ ≦ 10 0.1 ≦ ε ≦ 10 γ is an atom The ratio is in the range of 0.001 ≦ γ ≦ 0.5.

【0019】R−Fe−N系磁性材料に対するM成分の
添加効果としては、主に耐酸化性の向上である。特に、
R−Fe−N系磁性材料の酸化による劣化では、磁化の
低下に比べ、保磁力の低下が問題となり、本発明の磁性
材料は酸化に対する保磁力の安定性に優れる特徴を有す
る。また本発明は、粒界近傍、或はRFe3 相などのR
リッチの窒化物相並びにα−Fe相またはその窒化物相
の様なR−Fe−N組成の材料では軟磁性を示す副相に
M成分が凝縮されて、非磁性相化されることにより、窒
化物の角形比や保磁力を向上させる効果もある。
The effect of adding the M component to the R-Fe-N-based magnetic material is mainly to improve the oxidation resistance. In particular,
In the deterioration of an R-Fe-N-based magnetic material due to oxidation, a decrease in coercive force is more problematic than a decrease in magnetization, and the magnetic material of the present invention is characterized by having excellent stability of coercive force against oxidation. The invention, R, such as near grain boundary, or RFe 3 phase
In a material having an R-Fe-N composition such as a rich nitride phase and an α-Fe phase or a nitride phase thereof, the M component is condensed into a subphase exhibiting soft magnetism and is converted into a nonmagnetic phase. It also has the effect of improving the squareness ratio and coercive force of the nitride.

【0020】以下、本発明の製造法について例示する。 (1)母合金の調製 本発明の磁性材料において、窒化原料となるR−Fe−
M合金の主原料相は、R−Fe合金結晶中の鉄成分サイ
トにM成分が置き替わる構造、或は主原料相や副原料相
がMの添加によりR−Feの2成分系とは異なる組成、
構造を取り、本発明の効果を発揮する。従って、Mの添
加は母合金調整の段階で行うことが望ましい。
Hereinafter, the production method of the present invention will be exemplified. (1) Preparation of master alloy In the magnetic material of the present invention, R-Fe-
The main material phase of the M alloy has a structure in which the M component replaces the iron component site in the R-Fe alloy crystal, or the main material phase and the sub-material phase are different from the R-Fe two-component system due to the addition of M. composition,
It has a structure and exhibits the effects of the present invention. Therefore, it is desirable to add M at the stage of master alloy adjustment.

【0021】ここにいう主原料相とは、少なくともR及
びFeを含んでしかもNを含まず、かつ菱面体晶又は六
方晶の結晶構造を有する相のことであり、それ以外の組
成、結晶構造を有し、かつNを含まない相を副原料相と
呼ぶ。R−Fe−M合金の製造法としては、R、Fe、
M成分を高周波により溶解し、鋳型などに鋳込む高周波
溶解法、銅などのボートに各成分を仕込み、アーク放電
により溶かし込むアーク溶解法、高周波溶解した溶湯
を、回転させた銅ロール上に落しリボン状の合金を得る
超急冷法、高周波溶解した溶湯をガスで噴霧して合金粉
体を得るガスアトマイズ法、Fe及びまたはMの粉体ま
たはFe−M合金粉体、R及びまたはMの酸化物粉体、
及び還元剤を高温下で反応させ、RまたはR及びMを還
元しながら、RまたはR及びMを、Fe及びまたはFe
−M合金粉末中に拡散させるR/D法、各金属成分単体
及びまたは合金をボールミルなどで微粉砕しながら反応
させるメカニカルアロイング法、上記何れかの方法で得
た合金を水素雰囲気下で加熱し、一旦R及びまたはMの
水素化物と、Fe及びまたはMまたはFe−M合金に分
解し、この後高温下で低圧として水素を追い出しながら
再結合させ合金化するHDDR法のいずれを用いてもよ
い。
The main raw material phase referred to herein is a phase containing at least R and Fe but not containing N and having a rhombohedral or hexagonal crystal structure. And a phase containing no N is referred to as an auxiliary raw material phase. As a method for producing an R-Fe-M alloy, R, Fe,
M component is melted by high frequency, high frequency melting method for casting into molds, etc., each component is charged to a boat such as copper, arc melting method for melting by arc discharge, and high frequency melt is dropped on a rotated copper roll. A super-quenching method for obtaining a ribbon-shaped alloy, a gas atomizing method for spraying a high-frequency molten metal with a gas to obtain an alloy powder, an Fe and / or M powder or an Fe-M alloy powder, and an R and / or M oxide powder,
And reducing agent at a high temperature to reduce R or R and M, while converting R or R and M to Fe and or Fe
R / D method for diffusing into -M alloy powder, mechanical alloying method in which each metal component alone and / or alloy is reacted while finely pulverized with a ball mill or the like, or alloy obtained by any of the above methods is heated in a hydrogen atmosphere. However, any of the HDDR methods of decomposing into hydrides of R and / or M and Fe and / or M or Fe-M alloys and then recombining and alloying while purging hydrogen at a low pressure at high temperature is used. Good.

【0022】高周波溶解法、アーク溶解法を用いた場
合、溶融状態から、合金が凝固する際にFe主体の軟磁
性成分が析出しやすく、特に窒化工程を経た後も保磁力
の低下をひきおこす。そこで、この軟磁性成分を消失さ
せたり、結晶性を向上させる目的として、アルゴン、ヘ
リウムなどの不活性ガス中もしくは真空中、800℃〜
1300℃の温度範囲で焼鈍を行うことが有効である。
この方法で作製した合金は、超急冷法などを用いた場合
に比べ、結晶粒径が大きく結晶性が良好であり、高い残
留磁束密度を有している。
When the high frequency melting method or the arc melting method is used, a soft magnetic component mainly composed of Fe tends to precipitate from the molten state when the alloy is solidified, which causes a decrease in coercive force even after the nitriding step. Therefore, in order to eliminate the soft magnetic component or to improve the crystallinity, the temperature is set to 800 ° C. or less in an inert gas such as argon or helium or in a vacuum.
It is effective to perform annealing in a temperature range of 1300 ° C.
The alloy produced by this method has a large crystal grain size and good crystallinity, and has a high residual magnetic flux density, as compared with the case where a super-quenching method or the like is used.

【0023】また超急冷法を用いた場合は、微細な結晶
粒が得られ、条件によってはサブミクロンの粒子も調製
できる。但し、冷却速度が大きい場合には、合金の非晶
質化が起こり、窒化後においても磁化などの磁気特性が
低下する。この場合も合金調製後の焼鈍は有効である。
ガスアトマイズ法で得た合金は、球状の形態を取ること
が多く、微粉体から粗粉体まで調製することが可能であ
る。この場合も条件によっては焼鈍を行い、結晶性を良
好にすることが必要となる。この方法に加えてR/D
法、メカニカルアロイング法、HDDR法により調製し
た合金は、微細な結晶粒を調整したり、M成分の組成に
分布を持たしたりすることが可能であるため、本発明の
効果をより顕著にすることが可能である。
When the ultra-quenching method is used, fine crystal grains are obtained, and submicron particles can be prepared depending on conditions. However, when the cooling rate is high, the alloy becomes amorphous, and magnetic properties such as magnetization are reduced even after nitriding. Also in this case, annealing after alloy preparation is effective.
The alloy obtained by the gas atomization method often takes a spherical form, and can be prepared from a fine powder to a coarse powder. Also in this case, depending on the conditions, it is necessary to perform annealing to improve the crystallinity. In addition to this method, R / D
The alloy prepared by the method, the mechanical alloying method, or the HDDR method can adjust fine crystal grains or have a distribution in the composition of the M component. It is possible to

【0024】ところで、焼鈍条件によっては、合金の結
晶相が異なる場合がある。例えば、R成分によっては、
焼鈍した場合と急冷した場合で、菱面体晶をとる場合と
六方晶をとる場合がある。従って、焼鈍の条件は充分注
意を要するし、また焼鈍条件を制御することで目的とす
る結晶相を選ぶことができる。 (2)粗粉砕及び分級 上記方法で作製した合金インゴットを直接窒化すること
も可能であるが、結晶粒径が500μmより大きいと窒
化処理時間が長くなり、粗粉砕を行ってから窒化する方
が効率的である。
Incidentally, the crystal phase of the alloy may be different depending on the annealing conditions. For example, depending on the R component,
Depending on the case of annealing and the case of rapid cooling, there are cases where rhombohedral crystals are formed and cases where hexagonal crystals are formed. Therefore, the conditions for annealing require careful attention, and the desired crystal phase can be selected by controlling the annealing conditions. (2) Coarse pulverization and classification It is possible to directly nitride the alloy ingot produced by the above method. However, if the crystal grain size is larger than 500 μm, the nitriding treatment time becomes longer. It is efficient.

【0025】粗粉砕はジョ−クラッシャー、ハンマー、
スタンプミル、ローターミル、ピンミル、コーヒーミル
などを用いて行う。また、ボールミルやジェットミルな
どのような粉砕機を用いても、条件次第では窒化に適当
な、合金粉末の調製が可能である。また、粗粉砕の後、
ふるい、振動式あるいは音波式分級機、サイクロンなど
を用いて粒度調整を行うことも、より均質な窒化を行う
ために有効である。
The coarse crushing is performed by using a jaw crusher, a hammer,
This is performed using a stamp mill, a rotor mill, a pin mill, a coffee mill, or the like. Further, even if a pulverizer such as a ball mill or a jet mill is used, an alloy powder suitable for nitriding can be prepared depending on conditions. Also, after coarse grinding,
Adjusting the particle size using a sieve, a vibratory or sonic classifier, a cyclone, or the like is also effective for performing more uniform nitriding.

【0026】粗粉砕、分級の後、不活性ガスや水素中で
焼鈍を行うと構造の欠陥を除去することができ、場合に
よっては効果がある。以上で、本発明の磁性材料の原料
となる希土類−鉄合金の粉体原料またはインゴット原料
の調製法を例示したが、これらの原料の結晶粒径、粉砕
粒径、微構造、表面状態などにより、以下に示す窒化の
最適条件に違いが見られる。 (3)窒化・焼鈍 窒化はアンモニアガス、窒素ガスのうち少なくとも一種
を含むガスを、上記(1)または、(1)及び(2)で
得たR−Fe−M合金粉体またはインゴットに接触させ
て、結晶構造内に窒素を導入する工程である。
Annealing in an inert gas or hydrogen after coarse pulverization and classification can remove structural defects, which is effective in some cases. In the above, the preparation method of the powder material or the ingot material of the rare earth-iron alloy as the material of the magnetic material of the present invention has been exemplified, but depending on the crystal grain size, crushed grain size, microstructure, surface state, etc. of these materials. There is a difference in the following optimum conditions for nitriding. (3) Nitriding and annealing Nitriding involves contacting a gas containing at least one of ammonia gas and nitrogen gas with the R-Fe-M alloy powder or ingot obtained in the above (1) or (1) and (2). Then, nitrogen is introduced into the crystal structure.

【0027】このとき、窒化雰囲気ガス中に水素ガスを
共存させると、窒化効率が高いうえに、結晶構造が安定
なまま窒化できる点で好ましい。また反応を制御するた
めにアルゴン、ヘリウム、ネオンなどの不活性ガスなど
を共存させる場合もある。窒化反応は、ガス組成、加熱
温度、加熱処理時間、加圧力で制御し得る。このうち加
熱温度は、母合金組成、窒化雰囲気によって異なるが、
200〜650℃の範囲で選ばれる。200℃以下では
窒素の侵入速度は遅く、反応に時間がかかり過ぎ好まし
くなく、650℃以上では主相を初めとする高磁気特性
相が分解して磁気特性が劣化する。さらに好ましい加熱
温度範囲は250〜600℃である。
At this time, it is preferable to coexist a hydrogen gas in the nitriding atmosphere gas since nitriding efficiency is high and nitriding can be performed with a stable crystal structure. In addition, an inert gas such as argon, helium, or neon may be allowed to coexist in order to control the reaction. The nitriding reaction can be controlled by gas composition, heating temperature, heat treatment time, and pressure. The heating temperature varies depending on the mother alloy composition and the nitriding atmosphere.
It is selected in the range of 200 to 650 ° C. At 200 ° C. or lower, the rate of nitrogen penetration is low, and the reaction takes too much time, which is not preferable. At 650 ° C. or higher, the high magnetic property phase including the main phase is decomposed and the magnetic properties deteriorate. A more preferred heating temperature range is 250 to 600 ° C.

【0028】また窒化を行った後、不活性ガス及び又は
水素ガス中で焼鈍することは磁気特性を向上させる点で
好ましい。窒化・焼鈍装置としては、横型、縦型の管状
炉、回転式反応炉、密閉式反応炉などが挙げられる。何
れの装置においても、本発明の磁性材料を調整すること
が可能であるが、特に窒素組成分布の揃った粉体を得る
ためには回転式反応炉を用いるのが好ましい。
After nitriding, annealing in an inert gas and / or hydrogen gas is preferable from the viewpoint of improving magnetic properties. Examples of the nitriding / annealing apparatus include horizontal and vertical tubular furnaces, rotary reactors, and closed reactors. In any of the apparatuses, the magnetic material of the present invention can be adjusted. However, in order to obtain a powder having a uniform nitrogen composition distribution, it is preferable to use a rotary reactor.

【0029】反応に用いるガスは、ガス組成を一定に保
ちながら1気圧以上の気流を反応炉の送り込む気流方
式、ガスを容器に加圧力0.01〜70気圧の領域で封
入する封入方式、或いはそれらの組合せなどで供給す
る。本磁性材料の製造方法としては、(1)、(2)で
例示した方法でR−Fe−M組成の母合金を調製してか
ら、(3)に示した方法で窒化する工程を用いるのが最
も好ましく、この方法によればM成分を本磁性材料の所
望の領域や結晶格子位置に共存させることが可能とな
り、耐酸化性向上に対して特に効果的である。
The gas used for the reaction may be a gas flow system in which a gas stream of 1 atm or more is fed into the reaction furnace while keeping the gas composition constant, a gas sealing system in which the gas is sealed in a container at a pressure of 0.01 to 70 atm, or Supplied in combination. As a method for producing the magnetic material, a step of preparing a master alloy having an R-Fe-M composition by the method exemplified in (1) and (2) and then nitriding by the method shown in (3) is used. According to this method, the M component can coexist in a desired region or crystal lattice position of the present magnetic material, which is particularly effective for improving oxidation resistance.

【0030】以上が本発明のR−Fe−M−N系磁性材
料の製造法に関する説明であるが、特に実用的な硬磁性
材料として本発明の磁性材料を応用する際には、(4)
微粉砕、(5)磁場成形、(6)着磁を行う場合があ
る。以下、その例を簡単に示す。 (4)微粉砕 例えば、単磁区粒子型のR−Fe−M−N系磁性材料の
うち、特に、窒化処理後も大きな結晶粒径を保っていて
かつ大きな保磁力を発現させたい場合、窒化処理後も多
結晶粒体を保っていてかつ異方性の硬磁性材料としたい
場合などに微粉砕を行う。
The above is the description of the method for producing the R—Fe—M—N magnetic material of the present invention. In particular, when the magnetic material of the present invention is applied as a practical hard magnetic material, (4)
Fine grinding, (5) magnetic field shaping, and (6) magnetization may be performed. Hereinafter, the example is shown simply. (4) Pulverization For example, among R-Fe-MN-based magnetic materials of a single magnetic domain type, particularly when a large crystal grain size is to be maintained and a large coercive force is desired to be developed after nitriding, Fine grinding is performed, for example, when the polycrystalline grains are kept after the treatment and anisotropic hard magnetic material is desired.

【0031】微粉砕の方法としては、回転ボールミル、
振動ボールミル、遊星ボールミル、ウエットミル、ジェ
ットミル、カッターミル、ピンミル、自動乳鉢及びそれ
らの組合せなどが用いられる。水素や酸素の量の調整及
び目標とする粉砕粒径に応じて、微粉砕方法が選ばれ
る。
As a method of pulverization, a rotary ball mill,
A vibration ball mill, a planetary ball mill, a wet mill, a jet mill, a cutter mill, a pin mill, an automatic mortar and a combination thereof are used. The pulverization method is selected according to the adjustment of the amount of hydrogen or oxygen and the target pulverized particle size.

【0032】水素や酸素の量を本発明の特に好ましい範
囲に制御する方法としては、例えばジェットミルを用い
る場合、粉砕ガス中酸素及び水蒸気濃度を所定の濃度
に保ったり、またアトライターなどの湿式粉砕を用いる
場合は、溶媒中の溶存酸素や水分量を調整するなどの
方法が挙げられる。 (5)磁場成形 例えば、(3)又は(4)で得た磁性粉体を異方性ボン
ド磁石に応用する場合、熱硬化性樹脂や金属バインダー
と混合したのち磁場中で圧縮成形したり、熱可塑性樹脂
と共に混練したのち磁場中で射出成形を行ったりして、
磁場成形する。
As a method for controlling the amounts of hydrogen and oxygen within the particularly preferred ranges of the present invention, for example, when a jet mill is used, the oxygen and water vapor concentrations in the pulverized gas are maintained at a predetermined concentration, and an attritor or the like is used. When wet pulverization is used, a method of adjusting the amount of dissolved oxygen or the amount of water in the solvent may be used. (5) Magnetic field molding For example, when the magnetic powder obtained in (3) or (4) is applied to an anisotropic bonded magnet, compression molding is performed in a magnetic field after mixing with a thermosetting resin or a metal binder, After kneading with thermoplastic resin, injection molding is performed in a magnetic field,
Form a magnetic field.

【0033】磁場成形は、R−Fe−M−N系磁性材料
を充分に磁場配向せしめるため、好ましくは10kOe
以上、さらに好ましくは15kOe以上の磁場中で行
う。 (6)着磁 (5)で得た異方性ボンド磁石材料や、焼結磁石材料に
ついては、磁石性能を高めるために、通常着磁が行われ
る。
The magnetic field shaping is preferably performed at 10 kOe in order to sufficiently orient the R-Fe-MN-based magnetic material in a magnetic field.
Above, more preferably in a magnetic field of 15 kOe or more. (6) Magnetization The anisotropic bonded magnet material and sintered magnet material obtained in (5) are usually magnetized to enhance magnet performance.

【0034】着磁は、例えば静磁場を発生する電磁石、
パルス磁場を発生するコンデンサー着磁器などによって
行う。充分着磁を行わしめるための、磁場強度は、好ま
しくは15kOe以上、さらに好ましくは30kOe以
上である。
Magnetization is performed, for example, by an electromagnet that generates a static magnetic field,
This is performed by a condenser magnetizer that generates a pulse magnetic field. The magnetic field strength for sufficiently magnetizing is preferably 15 kOe or more, more preferably 30 kOe or more.

【0035】[0035]

【実施例】以下、実施例により本発明を具体的に説明す
る。評価方法は以下のとおりである。 (1)磁気特性 平均粒径約3μmのR−Fe−M−N系磁性材料を、外
部磁場15kOe中、12ton/cm2 で5mm×1
0mm×2mm程度に成形し、室温で60kOeの磁場
でパルス着磁した後、振動試料型磁力計(VSM)を用
いて、固有保磁力(iHc/kOe)を測定した。 (2)窒素量、窒素量及び水素量 Si3 4 (SiO2 を定量含む)を標準試料として、
不活性ガス融解法により窒素及び酸素量を定量した。水
素量は、高純度水素ガス(99.999%以上)を標準
ガスとして、不活性ガス融解法により定量した。 (3)平均粒径 リー・ナース比表面積計を用いて、評価した。 (4)耐酸化性能 (1)で評価した平均粒径3μmの粉体の成形品を、1
10℃の恒温槽に入れ、200時間後の固有保磁力を
(1)と同様にして測定し、(1)の結果と比較して固
有保磁力の保持率(%)を求めた。保持率の高いものほ
ど、耐酸化性能が高い。なお、本試験では、バインダー
を含まない圧粉体で評価しているので、保持率が70%
を越える材料であるなら、例えばボンド磁石材料用途な
どに充分実用可能な耐酸化性能を有した材料であると判
断できる。 (5)酸化試験 平均粒径15μmに調整した粗粉体試料10mgを熱天
秤に入れ、50ml/minの空気気流中、昇温速度1
0℃/minの条件で50℃から250℃までの重量変
化率(重量%)を測定した。重量変化率の小さいものほ
ど酸化されにくい。
The present invention will be described below in detail with reference to examples. The evaluation method is as follows. (1) Magnetic properties An R-Fe-MN-based magnetic material having an average particle size of about 3 μm was prepared by subjecting an external magnetic field of 15 kOe to 12 ton / cm 2 at 5 mm × 1.
After shaping to about 0 mm × 2 mm and pulse magnetizing at room temperature with a magnetic field of 60 kOe, the intrinsic coercive force (iHc / kOe) was measured using a vibrating sample magnetometer (VSM). (2) Nitrogen amount, nitrogen amount and hydrogen amount Si 3 N 4 (including SiO 2 quantified) as a standard sample,
The amounts of nitrogen and oxygen were determined by an inert gas melting method. The amount of hydrogen was determined by an inert gas melting method using high-purity hydrogen gas (99.999% or more) as a standard gas. (3) Average particle size It was evaluated using a Lee Nurse specific surface area meter. (4) Oxidation resistance The powder molded product having an average particle size of 3 μm evaluated in (1) was
It was placed in a thermostat at 10 ° C., and the intrinsic coercive force after 200 hours was measured in the same manner as in (1), and the retention rate (%) of the intrinsic coercive force was determined by comparing with the result of (1). The higher the retention, the higher the oxidation resistance. In addition, in this test, since the evaluation was performed using a green compact containing no binder, the retention was 70%.
If the material exceeds, for example, it can be determined that the material has oxidation resistance enough to be practically used for a bonded magnet material or the like. (5) Oxidation test 10 mg of a coarse powder sample adjusted to an average particle size of 15 μm was placed in a thermobalance and heated in a 50 ml / min air stream at a heating rate of 1 μm.
The rate of weight change (% by weight) from 50 ° C. to 250 ° C. was measured at 0 ° C./min. The smaller the rate of weight change, the less likely it is to be oxidized.

【0036】[0036]

【参考例1】 純度99.9%のSm、純度99.9%の
Fe及び純度99.9%のSiを用いてアルゴンガス雰
囲気下高周波溶解炉で溶解混合し、次いで溶湯を純鉄の
鋳型中に流し込んで冷却し、さらにアルゴン雰囲気で、
1050℃、30時間焼鈍することにより、Sm
9.5(Fe0.9Si0.190.5組成の合金を調製した。
REFERENCE EXAMPLE 1 Sm of 99.9% purity, Fe of 99.9% purity and Si of 99.9% purity were melt-mixed in a high-frequency melting furnace under an argon gas atmosphere, and then the molten metal was cast into a pure iron mold. Pour it in, cool it, and in an argon atmosphere,
By annealing at 1050 ° C. for 30 hours, Sm
An alloy having a composition of 9.5 (Fe 0.9 Si 0.1 ) 90.5 was prepared.

【0037】この合金をジョークラッシャーにより粉砕
し、次いで窒素雰囲気中ローターミルでさらに粉砕した
後、ふるいで粒度を調整して、平均粒径約50μmの粉
体を得た。このSm−Fe−Si合金粉体を横型管状炉
に仕込み、465℃において、アンモニア分圧0.3a
tm、水素ガス0.7atmの混合気流中で2.5時間
加熱処理し、続いてアルゴン気流中で30分間焼鈍した
のち、平均粒径約15μmに調整した。次いでジェット
ミルにより、窒素を主体とし一部酸素及び水蒸気を混入
させたガスを用いて、該粉体を平均粒径約3μmに粉砕
した。
This alloy was pulverized by a jaw crusher and then further pulverized by a rotor mill in a nitrogen atmosphere, and the particle size was adjusted by a sieve to obtain a powder having an average particle diameter of about 50 μm. This Sm-Fe-Si alloy powder was charged into a horizontal tubular furnace, and at 465 ° C, an ammonia partial pressure of 0.3 a.
Heat treatment was performed for 2.5 hours in a mixed gas flow of tm and 0.7 atm of hydrogen gas, followed by annealing for 30 minutes in a flow of argon, and then adjusted to an average particle size of about 15 μm. Next, the powder was pulverized to a mean particle size of about 3 μm by a jet mill using a gas mainly containing nitrogen and partially mixed with oxygen and water vapor.

【0038】得られたSm−Fe−Si−N系粉体の組
成、耐酸化性能、酸化試験結果を表1に示した。また、
3μmに粉砕したSm−Fe−Si−N系磁性材料の成
形体の保磁力は6.5kOe、残留磁束密度は8.3k
Gであった。なお、X線回折法により解析した結果、こ
の材料の結晶構造は主として菱面体晶であり、Si単体
に対応する回折線は見られなかった。
Table 1 shows the composition, oxidation resistance and oxidation test results of the obtained Sm-Fe-Si-N powder. Also,
The coercive force of the compact of the Sm—Fe—Si—N-based magnetic material pulverized to 3 μm is 6.5 kOe, and the residual magnetic flux density is 8.3 k.
G. As a result of analysis by the X-ray diffraction method, the crystal structure of this material was mainly rhombohedral, and no diffraction line corresponding to Si alone was found.

【0039】[0039]

【参考例2〜4、実施例1〜7】 母合金の組成を、表1
に示す組成比に変更する以外は参考例1と同様な操作に
よって、R−Fe−M−N系粉体を得た。その結果を表
1に示す。X線回折の結果、参考例2の材料は菱面体晶
の物質が主成分で、一部正方晶の物質が混在している材
料であった。さらに、参考例3の材料の結晶構造は主と
して菱面体晶であった。
Reference Examples 2 to 4 and Examples 1 to 7
R-Fe-MN-based powder was obtained by the same operation as in Reference Example 1 except that the composition ratio was changed to the composition shown in Table 1 . Table 1 shows the results. As a result of X-ray diffraction, the material of Reference Example 2 was a material in which a rhombohedral substance was a main component and a tetragonal substance was partially mixed. Further, the crystal structure of the material of Reference Example 3 was mainly rhombohedral.

【0040】[0040]

【比較例1】Siを加えないで、その分量(原子%)だ
けFeを加える以外は参考例1と同様にして、Sm−F
e−N系粉体を得た。その結果を表1に示す。
Comparative Example 1 Sm-F was prepared in the same manner as in Reference Example 1 except that Fe was added by the amount (atomic%) without adding Si.
An eN powder was obtained. Table 1 shows the results.

【0041】Geを加えないで、その分量(原子%)だ
けFeを加える以外は参考例2と同様にして、Nd−F
e−N系粉体を得た。その結果を表1に示す。
Nd-F was prepared in the same manner as in Reference Example 2 except that Fe was added by the amount (atomic%) without adding Ge.
An eN powder was obtained. Table 1 shows the results.

【0042】[0042]

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】以上説明した様に、本発明によれば、優
れた耐酸化性を有し、磁気特性の高い希土類−鉄−M−
窒素系磁性材料を提供することができる。
As described above, according to the present invention, rare earth-iron-M- has excellent oxidation resistance and high magnetic properties.
A nitrogen-based magnetic material can be provided.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式Rα(Fe(1-γ)γ
(100-α-β―δ―ε)βδεで表される磁性材料
であり、 RはSm、Ndのうち少なくとも一種MはP、As、S
b、Beの元素のうち少なくとも一種、 α、β、δ、εは原子百分率で 2.4≦α≦20 2.4≦β≦30 0.1≦δ≦10 0.1≦ε≦10 γは原子比で 0.001≦γ≦0.5 であって、かつ主相が菱面体晶または六方晶の結晶構造
を含有することを特徴とする磁性材料。
1. The general formula R α (Fe (1-γ) M γ )
A magnetic material represented by (100-α-β-δ -ε) N β H δ O ε, R is Sm, at least one M of Nd is P, As, S
At least one of the elements b and Be, α, β, δ, and ε are represented by atomic percentages: 2.4 ≦ α ≦ 20 2.4 ≦ β ≦ 30 0.1 ≦ δ ≦ 10 0.1 ≦ ε ≦ 10 γ Is a magnetic material having an atomic ratio of 0.001 ≦ γ ≦ 0.5 and a main phase having a rhombohedral or hexagonal crystal structure.
【請求項2】 請求項1に記載の一般式中のFeの0.
01〜50原子%がCoで置換されていることを特徴と
する請求項1に記載の磁性材料。
2. The amount of Fe in the general formula according to claim 1.
2. The magnetic material according to claim 1, wherein 01 to 50 atomic% is substituted by Co.
【請求項3】 一般式Rα/(100-β―δ―ε)(Fe
(1-γ)γ(100-α-β―δ-ε)/(100-β―δ―ε)
表される合金を、窒素ガス、アンモニアガスのうち少な
くとも一種を含む雰囲気下で、200〜650℃の範囲
で熱処理した後、粉砕ガス中の酸素及び水素濃度を制御
して、または粉砕溶媒中の溶存酸素量や水分量を調整し
て粉砕することを特徴とする上記請求項1または2に記
載の磁性材料の製造方法。ただし上記一般式中のRはS
m、Ndのうち少なくとも一種であり、MはP、As、
Sb、Beの元素のうち少なくとも一種であって、 α、β、δ、εは原子百分率で 2.4≦α≦20 2.4≦β≦30 0.1≦δ≦10 0.1≦ε≦10 γは原子比で 0.001≦γ≦0.5
3. The method of claim 1, wherein R α / (100-β-δ-ε) (Fe
(1-γ) M γ ) An alloy represented by (100-α-β-δ-ε) / (100-β-δ-ε) is mixed in an atmosphere containing at least one of nitrogen gas and ammonia gas. After heat treatment in the range of 200 to 650 ° C., pulverizing by controlling the oxygen and hydrogen concentrations in the pulverizing gas or adjusting the amount of dissolved oxygen and water in the pulverizing solvent. 3. The method for producing a magnetic material according to 1 or 2. Where R in the above general formula is S
m, at least one of Nd, M is P, As,
At least one element of Sb and Be , wherein α, β, δ, and ε are represented by atomic percentages: 2.4 ≦ α ≦ 20 2.4 ≦ β ≦ 30 0.1 ≦ δ ≦ 10 0.1 ≦ ε ≦ 10 γ is atomic ratio 0.001 ≦ γ ≦ 0.5
JP30852192A 1992-11-18 1992-11-18 Nitride magnetic powder and its production method Expired - Lifetime JP3294645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30852192A JP3294645B2 (en) 1992-11-18 1992-11-18 Nitride magnetic powder and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30852192A JP3294645B2 (en) 1992-11-18 1992-11-18 Nitride magnetic powder and its production method

Publications (2)

Publication Number Publication Date
JPH06163228A JPH06163228A (en) 1994-06-10
JP3294645B2 true JP3294645B2 (en) 2002-06-24

Family

ID=17982033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30852192A Expired - Lifetime JP3294645B2 (en) 1992-11-18 1992-11-18 Nitride magnetic powder and its production method

Country Status (1)

Country Link
JP (1) JP3294645B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235408A (en) * 1994-02-24 1995-09-05 Mazda Motor Corp Rare earth element-iron nitride permanent magnet material and manufacture thereof
WO2023142563A1 (en) * 2022-01-25 2023-08-03 赵远云 Spherical iron alloy powder material as well as preparation method therefor and use thereof

Also Published As

Publication number Publication date
JPH06163228A (en) 1994-06-10

Similar Documents

Publication Publication Date Title
EP0101552B2 (en) Magnetic materials, permanent magnets and methods of making those
US5164104A (en) Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen and bonded magnet containing the same
JP2005527989A (en) Nanocrystalline rare earth permanent magnet materials, nanocomposite rare earth permanent magnet materials, and methods for producing these magnet materials
JPH11186016A (en) Rare-earth element-iron-boron permanent magnet and its manufacture
JP2705985B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JPH1041116A (en) R-t-m-n permanent magnetic powder and manufacture of anisotropic bond magnet
JP2003193208A (en) Magnet material and production method therefor
JPH09190909A (en) Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JP3560387B2 (en) Magnetic material and its manufacturing method
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP3294645B2 (en) Nitride magnetic powder and its production method
JP2000003808A (en) Hard magnetic material
JP2857476B2 (en) Permanent magnet consisting of single domain particles
JPH07130522A (en) Manufacture of permanent magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP3784085B2 (en) Magnetic material having stable coercive force and method for producing the same
JPH0620813A (en) Rare earth anisotropic permanent magnet powder and manufacture thereof
JPH06112019A (en) Nitride magnetic material
JP3209291B2 (en) Magnetic material and its manufacturing method
JP3157302B2 (en) Nitride magnetic materials
JP3200201B2 (en) Nitride magnetic powder and method for producing the same
JP3209292B2 (en) Magnetic material and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11