Nothing Special   »   [go: up one dir, main page]

JPH0817824A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH0817824A
JPH0817824A JP14634094A JP14634094A JPH0817824A JP H0817824 A JPH0817824 A JP H0817824A JP 14634094 A JP14634094 A JP 14634094A JP 14634094 A JP14634094 A JP 14634094A JP H0817824 A JPH0817824 A JP H0817824A
Authority
JP
Japan
Prior art keywords
layer
tiw
wiring
diffusion
sequentially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14634094A
Other languages
Japanese (ja)
Other versions
JP2590738B2 (en
Inventor
Akira Furuya
晃 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14634094A priority Critical patent/JP2590738B2/en
Publication of JPH0817824A publication Critical patent/JPH0817824A/en
Application granted granted Critical
Publication of JP2590738B2 publication Critical patent/JP2590738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve reliability in fine wiring by increasing migration resistance at a low resistance and improving the adhesion force of Cu layer with a weak adhesion force with a diffusion-prevention layer. CONSTITUTION:A wiring is formed so that a first lamination structure which is subjected to patterning by successively depositing W layer 3, Ti layer 4, and Cu layer 5 is heat-treated in an atmosphere containing nitrogen gas and a second lamination structure consisting of the TiW layer 7, Ti layer 4, Cu-Ti layer 8, and Cu layer 5 and the upper surface and side surface are coated with TiN layer 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and its manufacturing method.

【0002】[0002]

【従来の技術】従来、半導体装置の配線材料としてAl
あるいはAl合金が広く用いられている。しかし、LS
Iの高集積化に伴い今後更に微細化が進むとAl配線あ
るいはAl合金配線では抵抗値の高さによる信号伝達速
度の遅れやマイグレーション耐性の低さによる信頼性の
低下が問題になってくる。それに対して、Cuは低抵
抗、高マイグレーション耐性を実現できるためAlに代
わる配線材料として期待されているが、解決すべき課題
も多い。
2. Description of the Related Art Conventionally, Al has been used as a wiring material for semiconductor devices.
Alternatively, an Al alloy is widely used. But LS
As the integration of I increases, further miniaturization advances in the future, and in the case of Al wiring or Al alloy wiring, a delay in signal transmission speed due to a high resistance value and a decrease in reliability due to low migration resistance become problems. On the other hand, Cu is expected as a wiring material replacing Al because it can realize low resistance and high migration resistance, but there are many problems to be solved.

【0003】Cu配線を用いる場合の課題の一つのCu
の拡散防止がある。そこで、Cu配線に於いてはCu層
の下地に拡散防止層としてTiN層やTiW層を形成し
た構造が用いられている。
One of the problems when using Cu wiring is Cu.
There is diffusion prevention. Therefore, a structure in which a TiN layer or a TiW layer is formed as a diffusion preventing layer under the Cu layer is used for the Cu wiring.

【0004】[0004]

【発明が解決しようとする課題】この従来の半導体装置
は、拡散防止層であるTiN層やTiW層と配線の主体
であるCu層との間の付着力が弱く、エッチングの際に
Cu層の剥がれが生じるため、実用化の障害となってい
た。
In this conventional semiconductor device, the adhesion between the TiN layer or TiW layer which is the diffusion preventing layer and the Cu layer which is the main component of the wiring is weak, and the Cu layer is not formed during etching. Since peeling occurs, it has been an obstacle to practical use.

【0005】本発明の目的は、拡散防止層上に形成する
Cu層の剥れを無くして低抵抗、高マイグレーション耐
性の微細化配線を有する半導体装置を提供することにあ
る。
An object of the present invention is to provide a semiconductor device having a miniaturized wiring having low resistance and high migration resistance by eliminating peeling of a Cu layer formed on a diffusion prevention layer.

【0006】[0006]

【課題を解決するための手段】本発明の半導体装置は、
半導体基板上に形成した絶縁膜の上に順次積層して形成
したTiW層,Ti層,Cu−Ti層,Cu層からなる
積層構造と、前記積層構造の上面および側面を被覆して
形成したTiN層とを有する配線を備えている。
According to the present invention, there is provided a semiconductor device comprising:
A laminated structure composed of a TiW layer, a Ti layer, a Cu—Ti layer, and a Cu layer sequentially laminated on an insulating film formed on a semiconductor substrate, and a TiN layer formed by covering the top and side surfaces of the laminated structure And a wiring having a layer.

【0007】本発明の半導体装置の製造方法は、半導体
基板上に形成した絶縁膜の上にW(又はTiW)層,T
i層,Cu層を順次堆積して積層する工程と、前記Cu
層,Ti層,W(又はTiW)層を選択的に順次異方性
エッチングして配線パターンを有する第1の積層構造を
形成する工程と、前記第1の積層構造を窒素ガスを含む
雰囲気中で熱処理し相互拡散により形成されて基板側か
ら順次積層されたTiW層,Ti層,Cu−Ti層,C
u層からなる第2の積層構造および前記第2の積層構造
の表面に拡散されたTi原子と窒素との反応により形成
され前記第2の積層構造の上面および側面を被覆するT
iN層を形成する工程とを含んで構成される。
According to the method of manufacturing a semiconductor device of the present invention, a W (or TiW) layer, a T
sequentially depositing and laminating an i layer and a Cu layer;
Forming a first laminated structure having a wiring pattern by selectively and sequentially anisotropically etching the layer, the Ti layer, and the W (or TiW) layer; and forming the first laminated structure in an atmosphere containing nitrogen gas. , A TiW layer, a Ti layer, a Cu-Ti layer, and a C
A second laminated structure including a u layer and T formed by a reaction of Ti atoms and nitrogen diffused on the surface of the second laminated structure and covering the upper surface and the side surface of the second laminated structure.
forming an iN layer.

【0008】[0008]

【作用】本発明ではCu層と拡散防止層の間に付着力の
強い材料を挿入した構造となっている。付着力は界面で
の分子の結合エネルギーと界面構造に強く依存する。従
来試みられてきたのは拡散防止層の材料を変えることで
界面での分子の結合エネルギーを強くすることである。
しかし、Cu層と拡散防止層との界面においては結合は
多くの場合分子間力であり、現在のところ実用に十分な
高い付着力を持つ材料は見つかっていない。
According to the present invention, a material having a strong adhesive force is inserted between the Cu layer and the diffusion preventing layer. Adhesion depends strongly on the binding energy of molecules at the interface and the interface structure. It has been attempted in the past to increase the binding energy of molecules at the interface by changing the material of the diffusion prevention layer.
However, at the interface between the Cu layer and the diffusion preventing layer, the bond is often an intermolecular force, and a material having a sufficiently high adhesive force for practical use has not been found at present.

【0009】本発明では、付着力の高いCu−Ti合金
層及びTi層をCu層と拡散防止層であるTiW層との
間に挿入することにより、高い付着力を持ち且つ基板中
へのCuの拡散を防止する配線を得ることが出来る。
In the present invention, a Cu—Ti alloy layer and a Ti layer having a high adhesive force are inserted between a Cu layer and a TiW layer serving as a diffusion preventing layer, so that a Cu—Ti alloy layer having a high adhesive force and Can be obtained.

【0010】また本発明では、Ti層及びCu層を堆積
してパターニングした後にN2 またはN2 +H2 雰囲気
中で熱処理を行い、Cu−Ti層の形成と上面及び側面
へのTiN層の形成を同時に行うことができるので工程
が簡単になる。Cu−Ti層の形成はCu層とTi層と
の界面で若干の相互拡散が生じることにより、また、上
面及び側面のTiN層の形成はTiがCu層の上面及び
側面に拡散することにより生じる。従来の様に拡散防止
層のみが下地である場合、相互拡散が出来ないため付着
力は分子間力のみに頼っていたが、本発明では、付着層
であるTi層に拡散防止という制限がないため、分子の
結合エネルギーだけでなく拡散による界面構造の変化に
よっても付着力の増加を行うことが出来る。
Further, in the present invention, after the Ti layer and the Cu layer are deposited and patterned, heat treatment is performed in an N 2 or N 2 + H 2 atmosphere to form a Cu—Ti layer and a TiN layer on the upper and side surfaces. Since the steps can be performed simultaneously, the process is simplified. The formation of the Cu-Ti layer is caused by slight interdiffusion at the interface between the Cu layer and the Ti layer, and the formation of the TiN layer on the upper surface and side surfaces is caused by the diffusion of Ti to the upper surface and side surfaces of the Cu layer. . When only the diffusion prevention layer is the underlayer as in the prior art, mutual adhesion cannot be performed, and therefore the adhesion force depends only on the intermolecular force, but in the present invention, the Ti layer as the adhesion layer is not limited to diffusion prevention. Therefore, the adhesive force can be increased not only by the binding energy of the molecule but also by the change of the interface structure due to diffusion.

【0011】Tiの拡散による配線の比抵抗の増加が懸
念されるが、TiのCu層の上面及び側面への拡散に関
してはCu粒界中の拡散であるため、またCu−Ti層
の形成に関しては形成される層はCu層に比して薄いた
め、どちらの場合も比抵抗に実用レベルでの影響は及ば
ない。
There is a concern that the specific resistance of the wiring may increase due to the diffusion of Ti. However, the diffusion of Ti into the upper surface and the side surface of the Cu layer is due to the diffusion in the Cu grain boundaries. Since the layer formed is thinner than the Cu layer, in either case, the specific resistance is not affected at a practical level.

【0012】[0012]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0013】図1(a)〜(c)は本発明の第1の実施
例の製造方法を説明するための工程順に示した半導体チ
ップの断面図である。
FIGS. 1A to 1C are sectional views of a semiconductor chip shown in the order of steps for explaining a manufacturing method according to a first embodiment of the present invention.

【0014】まず、図1(a)に示すように、Si基板
1の一主面に熱酸化法又はCVD法によりSiO2 膜2
を10〜1000μmの厚さに形成した後、SiO2
2の上に厚さ10〜100μmのW層3,厚さ10〜2
00μmのTi層4,厚さ10〜500μmのCu層5
をスパッタ法又はCVD法により順次堆積して積層す
る。
First, as shown in FIG. 1A, an SiO 2 film 2 is formed on one main surface of a Si substrate 1 by a thermal oxidation method or a CVD method.
Is formed to a thickness of 10 to 1000 μm, and a W layer 3 having a thickness of 10 to 100 μm 3 is formed on the SiO 2 film 2.
00 μm Ti layer 4, 10-500 μm thick Cu layer 5
Are sequentially deposited and laminated by a sputtering method or a CVD method.

【0015】次に、図1(b)に示すように、Cu層
5,Ti層4およびW層3をイオンミリング法により選
択的に順次エッチングして配線パターンの第1の積層構
造を形成する。
Next, as shown in FIG. 1B, the Cu layer 5, the Ti layer 4 and the W layer 3 are selectively and sequentially etched by an ion milling method to form a first laminated structure of a wiring pattern. .

【0016】次に、図1(c)に示すように、N2 ガス
又はN2 +H2 ガス雰囲気中で600〜1000℃,1
0分〜2時間の熱処理を行うと、Ti層4からCu層
5,W層3の表面まで拡散されたTi原子がN2 ガスと
反応し積層構造の上面および側面を被覆するTiN層6
が形成されると同時にW層3とTi層4の相互拡散によ
りTiW層7が形成され、Ti層4とCu層5との相互
拡散によりCu−Ti層8が形成され、TiN層6で被
覆された内部に基板側から順にTiW層7,Ti層4,
Cu−Ti層8,Cu層5が積層された第2の積層構造
を有する配線が形成され、付着力が高くかつCuの拡散
防止能力の高い微細配線が得られる。
Next, as shown in FIG. 1 (c), in an N 2 gas or N 2 + H 2 gas atmosphere,
When the heat treatment is performed for 0 minutes to 2 hours, Ti atoms diffused from the Ti layer 4 to the surfaces of the Cu layer 5 and the W layer 3 react with N 2 gas to cover the top and side surfaces of the laminated structure.
At the same time as the formation of Ti, a TiW layer 7 is formed by the mutual diffusion of the W layer 3 and the Ti layer 4, and a Cu—Ti layer 8 is formed by the mutual diffusion of the Ti layer 4 and the Cu layer 5, and is covered with the TiN layer 6. The TiW layer 7, Ti layer 4,
A wiring having a second laminated structure in which the Cu—Ti layer 8 and the Cu layer 5 are laminated is formed, and a fine wiring having a high adhesive force and a high Cu diffusion preventing ability can be obtained.

【0017】図2(a)〜(c)は本発明の第2の実施
例の製造方法を説明するための工程順に示した半導体チ
ップの断面図である。
FIGS. 2A to 2C are sectional views of a semiconductor chip shown in the order of steps for explaining a manufacturing method according to a second embodiment of the present invention.

【0018】まず、図2(a)に示すように、第1の実
施例と同様の工程でSi基板1の上に形成した厚さ10
〜1000μmのSiO2 膜2の上にスパッタ法又はC
VD法により厚さ10〜100μmのTiW膜9,厚さ
5〜100μmのTi層4,厚さ100〜500μmの
Cu層5を順次堆積して積層する。
First, as shown in FIG. 2A, the thickness 10 formed on the Si substrate 1 by the same process as in the first embodiment.
Approximately 1000 μm on the SiO 2 film 2 by sputtering or C
A TiW film 9 having a thickness of 10 to 100 μm, a Ti layer 4 having a thickness of 5 to 100 μm, and a Cu layer 5 having a thickness of 100 to 500 μm are sequentially deposited and laminated by the VD method.

【0019】次に、図2(b)に示すように、Cu層
5,Ti層4およびTiW層9を選択的に順次エッチン
グし、配線パターンを有する積層構造を形成する。
Next, as shown in FIG. 2B, the Cu layer 5, the Ti layer 4, and the TiW layer 9 are selectively etched sequentially to form a laminated structure having a wiring pattern.

【0020】次に、図2(c)に示すように、N2 ガス
又はN2 +H2 ガス雰囲気中で500〜1000℃、1
0分〜2時間の熱処理を行うと、第1の実施例と同様に
基板側から順にTiW層9,Ti層4,Cu−Ti層
8,Cu層5が積層され、且つその上面および側面をT
iN層6で被覆された配線が形成され、第1の実施例よ
りも熱処理の下限温度を下げることができるという利点
がある。
Next, as shown in FIG. 2 (c), in an atmosphere of N 2 gas or N 2 + H 2 gas, 500 to 1000 ° C., 1
When the heat treatment is performed for 0 minutes to 2 hours, the TiW layer 9, the Ti layer 4, the Cu—Ti layer 8, and the Cu layer 5 are sequentially stacked from the substrate side in the same manner as in the first embodiment. T
Since the wiring covered with the iN layer 6 is formed, there is an advantage that the lower limit temperature of the heat treatment can be lowered as compared with the first embodiment.

【0021】なお、Si基板1の代りにGaAs,In
P,AlGaAsまたはSiGe等からなる半導体基板
を用いても良く、またSiO2 膜2の代りにSix
1-x 膜,PSG膜,BPSG等の誘電体膜を用いても良
い。
It should be noted that instead of the Si substrate 1, GaAs, In
A semiconductor substrate made of P, AlGaAs, SiGe or the like may be used, and Si x N 2 may be used instead of the SiO 2 film 2.
A dielectric film such as a 1-x film, a PSG film, or a BPSG may be used.

【0022】[0022]

【発明の効果】以上説明したように本発明は、Cu層と
下地の拡散層防止層との間にTi層を介在させ、且つ熱
処理によりCu−Ti層を形成させることでCu層の付
着力を増大させエッチング工程等におけるCu層の剥が
れを防止することができ、また、表面を被覆するTiN
層によりCu層の酸化や層間絶縁膜との反応を防止する
ことができ、低抵抗で信頼性の高い微細配線が得られる
という効果を有する。
As described above, according to the present invention, the adhesion of the Cu layer is achieved by interposing a Ti layer between the Cu layer and the underlying diffusion layer preventing layer and forming a Cu-Ti layer by heat treatment. To prevent the Cu layer from peeling off in the etching step or the like.
The layer can prevent oxidation of the Cu layer and a reaction with the interlayer insulating film, and have an effect that a low-resistance and highly reliable fine wiring can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の製造方法を説明するた
めの工程順に示した半導体チップの断面図。
1A to 1C are cross-sectional views of a semiconductor chip in the order of steps for explaining a manufacturing method according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の製造方法を説明するた
めの工程順に示した半導体チップの断面図。
2A to 2D are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a manufacturing method according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 Si基板 2 SiO2 膜 3 W層 4 Ti層 5 Cu層 6 TiN層 7,9 TiW層 8 Cu−Ti層1 Si substrate 2 SiO 2 film 3 W layer 4 Ti layer 5 Cu layer 6 TiN layer 7, 9 TiW layer 8 Cu-Ti layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 16/34 H01L 23/12 H01L 23/12 N ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C23C 16/34 H01L 23/12 H01L 23/12 N

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成した絶縁膜の上に順
次積層して形成したTiW層,Ti層,Cu−Ti層,
Cu層からなる積層構造と、前記積層構造の上面および
側面を被覆して形成したTiN層とを有する配線を備え
たことを特徴とする半導体装置。
1. A TiW layer, a Ti layer, a Cu—Ti layer, which are sequentially laminated on an insulating film formed on a semiconductor substrate.
A semiconductor device comprising: a wiring having a stacked structure including a Cu layer; and a TiN layer formed by covering an upper surface and side surfaces of the stacked structure.
【請求項2】 半導体基板上に形成した絶縁膜の上にW
(又はTiW)層,Ti層,Cu層を順次堆積して積層
する工程と、前記Cu層,Ti層,W(又はTiW)層
を選択的に順次異方性エッチングして配線パターンを有
する第1の積層構造を形成する工程と、前記第1の積層
構造を窒素ガスを含む雰囲気中で熱処理し相互拡散によ
り形成されて基板側から順次積層されたTiW層,Ti
層,Cu−Ti層,Cu層からなる第2の積層構造およ
び前記第2の積層構造の表面に拡散されたTi原子と窒
素との反応により形成され前記第2の積層構造の上面お
よび側面を被覆するTiN層を形成する工程とを含むこ
とを特徴とする半導体装置の製造方法。
2. The method according to claim 1, wherein the insulating film is formed on a semiconductor substrate.
(Or TiW) layer, a Ti layer, and a Cu layer are sequentially deposited and laminated, and a Cu layer, a Ti layer, and a W (or TiW) layer are selectively anisotropically etched sequentially to form a wiring pattern. Forming a TiW layer and a TiW layer formed by inter-diffusion by heat-treating the first stacked structure in an atmosphere containing nitrogen gas and sequentially stacked from the substrate side.
Layer, a Cu-Ti layer, a second laminated structure composed of a Cu layer, and a top surface and a side surface of the second laminated structure formed by a reaction of Ti atoms and nitrogen diffused on the surface of the second laminated structure. And a step of forming a TiN layer to cover the semiconductor device.
JP14634094A 1994-06-28 1994-06-28 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2590738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14634094A JP2590738B2 (en) 1994-06-28 1994-06-28 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14634094A JP2590738B2 (en) 1994-06-28 1994-06-28 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0817824A true JPH0817824A (en) 1996-01-19
JP2590738B2 JP2590738B2 (en) 1997-03-12

Family

ID=15405491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14634094A Expired - Lifetime JP2590738B2 (en) 1994-06-28 1994-06-28 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2590738B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156910A (en) * 2004-12-01 2006-06-15 Denso Corp Semiconductor device
US7144812B2 (en) 2003-04-18 2006-12-05 Oki Electric Industry Co., Ltd. Method of forming copper wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144812B2 (en) 2003-04-18 2006-12-05 Oki Electric Industry Co., Ltd. Method of forming copper wire
JP2006156910A (en) * 2004-12-01 2006-06-15 Denso Corp Semiconductor device

Also Published As

Publication number Publication date
JP2590738B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
JP3177968B2 (en) Semiconductor device and manufacturing method thereof
JP2590738B2 (en) Semiconductor device and manufacturing method thereof
JP2757796B2 (en) Semiconductor integrated circuit device
JPH0316145A (en) Manufacture of semiconductor device
JPH0629294A (en) Manufacture of semiconductor device
JP2503921B2 (en) Semiconductor device
JPH08250452A (en) Semiconductor device and its manufacture
JPH079935B2 (en) Semiconductor device
JPH05121727A (en) Semiconductor device and manufacturing method thereof
JP3283965B2 (en) Semiconductor device and manufacturing method thereof
JP3413653B2 (en) Semiconductor device
JPH04373175A (en) Semiconductor device
JP3498619B2 (en) Semiconductor device and its manufacturing method.
KR100346596B1 (en) Method for forming bonding pad in semiconductor device
JP3189399B2 (en) Method for manufacturing semiconductor device
JP3045850B2 (en) Manufacturing method of Al-Si based alloy wiring
JP2819640B2 (en) Semiconductor device
JP2945010B2 (en) Semiconductor device
JPS6037150A (en) Manufacture of semiconductor device
JP2845054B2 (en) Method for manufacturing semiconductor device
JPH02111052A (en) Formation of multilayer interconnection
JP2897313B2 (en) Wiring formation method
JPS60214569A (en) Mos type semiconductor device
JP2711530B2 (en) Method for forming metal wiring of semiconductor device
JPH11214513A (en) Wiring structure of integrated circuit, and wiring formation method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 17

EXPY Cancellation because of completion of term