JPH0777979B2 - Carbon-containing refractory - Google Patents
Carbon-containing refractoryInfo
- Publication number
- JPH0777979B2 JPH0777979B2 JP3274898A JP27489891A JPH0777979B2 JP H0777979 B2 JPH0777979 B2 JP H0777979B2 JP 3274898 A JP3274898 A JP 3274898A JP 27489891 A JP27489891 A JP 27489891A JP H0777979 B2 JPH0777979 B2 JP H0777979B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- refractory
- present
- refractories
- magnesium boride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、耐酸化性に優れた炭素
含有耐火物に関する。FIELD OF THE INVENTION The present invention relates to a carbon-containing refractory having excellent oxidation resistance.
【0002】[0002]
【従来の技術】従来から溶銑・溶鋼用の内張り材とし
て、マグネシア−炭素質、アルミナ−炭素質、アルミナ
−炭化珪素−炭素質などの炭素含有耐火物が汎用されて
いる。炭素はスラグに濡れ難く、しかも耐熱衝撃性に優
れた性質を有しており、これにマグネシア、アルミナな
どの高融点の耐火材料と組合せることで、耐用性の高い
耐火物が得られる。2. Description of the Related Art Conventionally, carbon-containing refractories such as magnesia-carbonaceous material, alumina-carbonaceous material, alumina-silicon carbide-carbonaceous material have been widely used as lining materials for hot metal and molten steel. Carbon has a property that it is hard to get wet with slag and has excellent thermal shock resistance. By combining this with a refractory material having a high melting point such as magnesia or alumina, a refractory material having high durability can be obtained.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、炭素含
有耐火物は炭素が酸化消失する欠点がある。炭素の酸化
によって脱炭層が形成されると、耐火物組織の強度劣化
あるいはスラグの浸潤を招き、耐用性が著しく低下す
る。炭素の酸化を防止する手段としては、Al、Al−
Mg合金などの金属粉の添加(特公昭60-2269号公報、特
開昭57-166362号公報)、B2O3の添加(特開昭57-5811号公
報)、ガラス粉の添加(特開平1-141872号公報)などの方
法が知られているが、充分な効果が得られていない。However, the carbon-containing refractory has a drawback that carbon disappears by oxidation. When the decarburized layer is formed by the oxidation of carbon, the strength of the refractory structure is deteriorated or the slag is infiltrated, and the durability is significantly reduced. As a means for preventing the oxidation of carbon, Al, Al-
Addition of metal powder such as Mg alloy (JP-B-60-2269, JP-A-57-166362), addition of B 2 O 3 (JP-A-57-5811), addition of glass powder (JP Methods such as Kaihei 1-141872) are known, but sufficient effects have not been obtained.
【0004】[0004]
【課題を解決するための手段】そこで本発明者らは、炭
素含有耐火物の耐酸化性を向上させるために研究を重ね
たところ、酸化防止剤として硼化マグネシウムまたは硼
化マグネシウムと硼素との混合物を添加すると良好な結
果が得られることを知り、本発明を完成するに至ったも
のである。本発明は、重量割合で炭素3〜40%、残部
が耐火性酸化物材料を主材とした配合物100%に対
し、硼化マグネシウムを0.1〜10%添加してなる炭
素含有耐火物である。また、前記の硼化マグネシウムに
代え、硼化マグネシウムと硼素の混合物をその合量で
0.1〜10%添加してなる炭素含有耐火物である。The inventors of the present invention have conducted extensive research to improve the oxidation resistance of carbon-containing refractory materials. As a result, magnesium boride or magnesium boride and boron are used as antioxidants. The inventors have completed the present invention by knowing that good results can be obtained by adding a mixture. The present invention relates to a carbon-containing refractory material obtained by adding 0.1 to 10% of magnesium boride to 100% by weight of a compound containing 3 to 40% by weight of carbon and the balance being a refractory oxide material. Is. Further, it is a carbon-containing refractory material obtained by adding a mixture of magnesium boride and boron in a total amount of 0.1 to 10% in place of the above magnesium boride.
【0005】硼素あるいは炭化硼素、硼化カルシウム、
硼化ジルコニウムなどの硼化物を炭素含有耐火物の酸化
防止剤として添加することは既に知られている。しか
し、本発明で使用する硼化マグネシウムは、これらの硼
素あるいは硼化物に比べて格段に優れた耐酸化性を示
す。また、硼化マグネシウムは従来使用されている硼素
あるいは硼化物のように耐食性を低下させることもな
い。耐食性にも優れた効果をもつ。その理由は次の作用
によるものと推定される。すなわち、耐火物使用中の高
温下で硼化マグネシウムがB成分とMg成分に分解す
る。このうち、B成分が酸化によってB2O3となる。B
2O3はマトリックス中で溶融し、耐火物組織の気孔中に
ガラス質皮膜を形成して、炭素成分を外気と遮断するこ
とで酸化が抑制される。一方、Mg成分は蒸気として耐
火物組織の内部を移動し、稼働面近傍や気孔中で酸化さ
れてMgOとなり、緻密層を形成し、耐食性の低下がな
い。Boron or boron carbide, calcium boride,
It is already known to add borides such as zirconium boride as antioxidants of carbon-containing refractories. However, the magnesium boride used in the present invention exhibits markedly superior oxidation resistance as compared with these boron or boride. Further, magnesium boride does not lower the corrosion resistance unlike the conventionally used boron or boride. It also has an excellent effect on corrosion resistance. The reason is presumed to be due to the following action. That is, magnesium boride decomposes into a B component and a Mg component at high temperatures during use of the refractory. Of these, the B component becomes B 2 O 3 by oxidation. B
2 O 3 melts in the matrix, forms a glassy film in the pores of the refractory structure, and blocks the carbon component from the outside air, thereby suppressing the oxidation. On the other hand, the Mg component moves as vapor inside the refractory structure, is oxidized in the vicinity of the operating surface and in the pores to become MgO, forms a dense layer, and has no deterioration in corrosion resistance.
【0006】以下本発明をさらに詳しく説明する。な
お、各配合物の割合で示す%は、すべて重量割合であ
る。本発明で使用される炭素の具体的な種類は、りん状
黒鉛、土状黒鉛、人造黒鉛、ピッチコークス、無煙炭、
カーボンブラック、ピッチなどから選ばれる一種または
二種以上である。その割合は、3%未満では炭素が持つ
耐食性および耐スポール性の効果が不充分となる。40%
を超えると強度や耐摩耗性が低下する。粒度は特に限定
するものではないが、好ましくは0.5mm以下である。The present invention will be described in more detail below. The percentages shown in the proportions of the respective blends are all weight proportions. Specific types of carbon used in the present invention include phosphorous graphite, earthy graphite, artificial graphite, pitch coke, anthracite,
One or more selected from carbon black and pitch. If the ratio is less than 3%, the effect of carbon on corrosion resistance and spall resistance becomes insufficient. 40%
If it exceeds, the strength and wear resistance will decrease. The particle size is not particularly limited, but is preferably 0.5 mm or less.
【0007】耐火性酸化物材料としては、マグネシア
質、アルミナ質、シリカ質、カルシア質、ジルコニア
質、クロム質、スピネル質、アルミナ−シリカ質、ドロ
マイト質、ジルコン質等の一種又は二種以上を主材とす
る。粒度は密充填が得られるように粗粒、中粒、微粒に
調整する。As the refractory oxide material, one or more of magnesia, alumina, silica, calcia, zirconia, chrome, spinel, alumina-silica, dolomite, zircon and the like can be used. Use as main material. The particle size is adjusted to coarse particles, medium particles, and fine particles so that close packing can be obtained.
【0008】硼化マグネシウムの具体的な化学組成はM
g2B3、MgB2、MgB4が知られいる。いずれを使用
しても同様の効果が得られるが、生産性の面で入手しや
すいMg2B3が好ましい。粒度は特に限定するものでは
ないが、耐酸化性および耐食性を効率良く発現するには
微粉が望ましく、例えば0.5mm以下とする。その添加割
合は、0.1%未満では硼化マグネシウムがもつ前記効
果が得られず、10%を超えるとB2O3成分の生成量が
多くなり過ぎるためか耐食性が低下する。硼化マグネシ
ウムと硼素の混合物を使用する場合は、この混合物中に
占める硼化マグネシウムの割合を3%以上にすることが
好ましい。3%未満では、前述したMgO緻密層の形成
が不充分であるため、耐食性の低下を招く。The specific chemical composition of magnesium boride is M
g 2 B 3 , MgB 2 , and MgB 4 are known. The same effect can be obtained by using any of them, but Mg 2 B 3 which is easily available in terms of productivity is preferable. The particle size is not particularly limited, but fine powder is desirable in order to efficiently exhibit oxidation resistance and corrosion resistance, and for example, it is 0.5 mm or less. If the addition ratio is less than 0.1%, the above effect of magnesium boride cannot be obtained, and if it exceeds 10%, the amount of B 2 O 3 component produced becomes too large, and the corrosion resistance deteriorates. When a mixture of magnesium boride and boron is used, the proportion of magnesium boride in this mixture is preferably 3% or more. If it is less than 3%, the above-mentioned MgO dense layer is insufficiently formed, resulting in a decrease in corrosion resistance.
【0009】本発明は、以上の配合物および添加物の使
用を必須要件とするが、これ以外にも本発明の効果を損
なわない範囲内において、従来の炭素含有耐火物におい
て知られている添加物を併用してもよい。例えばAl、
Si、Mg、Caなどの金属粉またはその合金粉、B4
C、SiC、Si3N4、B2O3などの炭化物、窒化物ま
たは酸化物、金属ファイバー、セラミックファイバー、
カーボンファイバーなどのファイバー類、ガラス類など
の添加である。The present invention requires the use of the above-mentioned compounds and additives, but in addition to the above, the additions known in conventional carbon-containing refractories within a range not impairing the effects of the present invention. You may use a thing together. For example, Al,
Metal powder such as Si, Mg, Ca or alloy powder thereof, B 4
C, SiC, Si 3 N 4 , B 2 O 3 and other carbides, nitrides or oxides, metal fibers, ceramic fibers,
Addition of fibers such as carbon fiber and glass.
【0010】本発明の炭素含有耐火物は不焼成耐火物、
焼成耐火物または不定形耐火物として製造される。不焼
成耐火物では、フェノール樹脂、ピッチ等の結合剤を添
加し、加圧成形後、必要により炭素が酸化しない温度
域、好ましくは100〜600℃で加熱処理する。焼成
品は加圧成形後、さらに900〜1500℃程度で還元
焼成する。また、不定形耐火物ではフェノール樹脂、ピ
ッチ等の有機結合剤あるいは珪酸ソーダ、燐酸ソーダ、
燐酸アルミニウム等の無機結合剤を添加した混練物とす
る。The carbon-containing refractory material of the present invention is an unfired refractory material,
Manufactured as fired refractory or amorphous refractory. In the case of an unfired refractory, a binder such as a phenol resin or pitch is added, and after pressure molding, if necessary, heat treatment is performed in a temperature range where carbon is not oxidized, preferably 100 to 600 ° C. The fired product is pressure-molded and then reduction-fired at about 900 to 1500 ° C. For amorphous refractories, phenolic resin, organic binders such as pitch, sodium silicate, sodium phosphate,
A kneaded product to which an inorganic binder such as aluminum phosphate is added.
【0011】[0011]
【実施例】以下に本発明の実施例とその比較例を示す。
表1と表3は、不焼成耐火物の実施例および比較例であ
る。その製造は、表に示す配合物を混練後、フリクショ
ンプレスにて並型形状に成形し、さらに230℃×48
時間で加熱処理したものである。表2は焼成耐火物の実
施例および比較例であり、前記の不焼成耐火物と同様に
混練、成形した後、コークスブリーズ中に埋設し、10
00℃×10時間で還元焼成したものである。EXAMPLES Examples of the present invention and comparative examples are shown below.
Tables 1 and 3 are examples and comparative examples of unfired refractories. The production was carried out by kneading the compounds shown in the table, molding them into a normal shape with a friction press, and further 230 ° C. × 48.
It was heat treated for a certain period of time. Table 2 shows examples and comparative examples of fired refractories, which were kneaded and molded in the same manner as the above-mentioned unfired refractories, and then embedded in a coke breeze,
It was reduced and baked at 00 ° C. for 10 hours.
【0012】各表には同時に試験結果を示すが、その試
験方法は次のとおりである。 耐酸化性;50×50×50mmの寸法に切り出した試片
を、電気炉中で1400℃×6時間加熱後、切断し、そ
の酸化で生じた脱炭層の厚さを計測した。 耐食性;回転侵食法により、溶損寸法を測定した。回転
侵食において、表1のマグネシア−炭素質不焼成耐火物
と表2のマグネシア−炭素質焼成耐火物では、侵食剤に
転炉スラグを用い、1700℃×4時間侵食させた。表
3のアルミナ−炭素質不焼成耐火物では侵食剤に高炉ス
ラグを用い、1400℃×4時間侵食させた。The test results are shown in each table at the same time, and the test method is as follows. Oxidation resistance: A test piece cut into a size of 50 × 50 × 50 mm was heated in an electric furnace at 1400 ° C. for 6 hours and then cut, and the thickness of the decarburized layer generated by the oxidation was measured. Corrosion resistance: Melting loss dimension was measured by a rotary erosion method. In the rotary erosion, the magnesia-carbonaceous unburned refractory in Table 1 and the magnesia-carbonaceous fired refractory in Table 2 were eroded at 1700 ° C. for 4 hours using a converter slag as an erosion agent. In the alumina-carbonaceous unfired refractories shown in Table 3, blast furnace slag was used as an erosion agent and eroded at 1400 ° C. for 4 hours.
【0013】実機試験;表1と表3に示す不焼成耐火物
ついて試験した。表1のマグネシア−炭素質不焼成耐火
物は、350t転炉直胴部にライニングし、3000チ
ャージ使用後の損傷速度を測定した。表3のアルミナ−
炭素質不焼成耐火物では、600t混銑車のスラグライ
ンにライニングし、1200チャージ使用後の損傷速度
を測定した。各表の試験結果が示すように、本発明実施
例によって得られた耐火物はいずれも耐酸化性に優れ、
しかも、耐食性の低下が認められない。その結果、実機
試験においても良好な結果が得られた。Actual machine test: Unfired refractories shown in Tables 1 and 3 were tested. The magnesia-carbonaceous unfired refractories shown in Table 1 were lined on the barrel of a 350 ton converter and the damage rate after using 3000 charges was measured. Alumina in Table 3
The carbonaceous non-fired refractory was lined on the slag line of a 600 ton mixed pig car, and the damage rate after using 1200 charges was measured. As the test results of each table show, the refractory materials obtained by the examples of the present invention are all excellent in oxidation resistance,
Moreover, no reduction in corrosion resistance is observed. As a result, good results were obtained in the actual machine test.
【0014】[0014]
【表1A】 [Table 1A]
【0015】[0015]
【表1B】 [Table 1B]
【0016】[0016]
【表2】 [Table 2]
【0017】[0017]
【表3A】 [Table 3A]
【0018】[0018]
【表3B】 [Table 3B]
【0019】[0019]
【発明の効果】本発明の炭素含有耐火物は、以上のとお
り、耐酸化性に優れた効果を発揮する。炭素含有耐火物
の最大の欠点は酸化劣化であり、本発明はこの欠点を解
消したことにより、炭素含有耐火物が本来有している耐
食性、耐スポーリング性の効果をいかんなく発揮させる
ことができる。製鉄産業における各種の窯炉は、その操
業条件の過酷化に伴って炉材として炭素含有耐火物の使
用が多い。例えば、高炉、高炉樋、転炉、取鍋、混銑
車、連続鋳造装置などの殆どは炭素含有耐火物が使用さ
れている。こうした中、炭素含有耐火物の性能を向上さ
せる本発明がもつ価値はきわめて高い。INDUSTRIAL APPLICABILITY As described above, the carbon-containing refractory material of the present invention exhibits an excellent effect of oxidation resistance. The biggest drawback of the carbon-containing refractory is oxidative deterioration, and the present invention eliminates this drawback, so that the carbon-containing refractory originally has the corrosion resistance and spalling resistance effect. it can. Various kilns in the steel industry often use carbon-containing refractory materials as furnace materials due to severer operating conditions. For example, most of blast furnaces, blast furnace gutters, converters, ladles, mixed pig wheels, continuous casting equipment and the like use carbon-containing refractories. Under such circumstances, the value of the present invention for improving the performance of carbon-containing refractories is extremely high.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/10 G (72)発明者 北井 恒雄 兵庫県高砂市荒井町新浜1−3−1 ハリ マセラミック株式会社内 (72)発明者 田中 雅人 兵庫県高砂市荒井町新浜1−3−1 ハリ マセラミック株式会社内 (72)発明者 前川 明慶 兵庫県高砂市荒井町新浜1−3−1 ハリ マセラミック株式会社内Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location C04B 35/10 G (72) Inventor Tsuneo Kitai 1-3-1 Niihama, Arai-cho, Takasago-shi, Hyogo Harima Ceramics Co., Ltd. (72) Inventor Masato Tanaka 1-3-1 Arai-cho Niihama, Takasago, Hyogo Prefecture Harima Ceramic Co., Ltd. (72) Inventor Akiyoshi Maekawa 1-3-1 Niihama, Arai-cho Takasago, Hyogo Prefecture Harima Ceramic Co., Ltd.
Claims (2)
火性酸化物材料を主材とした配合物100%に対し、硼
化マグネシウムを0.1〜10%添加してなる炭素含有
耐火物。1. A carbon content obtained by adding 0.1 to 10% of magnesium boride to 100% by weight of a compound containing 3 to 40% of carbon and the balance being a refractory oxide material as a main component. Refractory.
火性酸化物材料を主材とした配合物100%に対し、硼
化マグネシウムと硼素の混合物をその合量で0.1〜1
0%添加してなる炭素含有耐火物。2. A mixture of magnesium boride and boron in a total amount of 0.1 to 100% by weight of a mixture containing 3 to 40% of carbon and the balance of a refractory oxide material as a main component. 1
Carbon-containing refractory made by adding 0%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3274898A JPH0777979B2 (en) | 1991-09-27 | 1991-09-27 | Carbon-containing refractory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3274898A JPH0777979B2 (en) | 1991-09-27 | 1991-09-27 | Carbon-containing refractory |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0585805A JPH0585805A (en) | 1993-04-06 |
JPH0777979B2 true JPH0777979B2 (en) | 1995-08-23 |
Family
ID=17548066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3274898A Expired - Fee Related JPH0777979B2 (en) | 1991-09-27 | 1991-09-27 | Carbon-containing refractory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0777979B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08295555A (en) * | 1995-04-27 | 1996-11-12 | Kurosaki Refract Co Ltd | High durability magnesia-carbon brick |
KR100305611B1 (en) * | 1998-12-21 | 2001-12-28 | 신승근 | High Oxidation Resistance Fluorine Magnesia-Carbon Brick |
KR100305610B1 (en) * | 1998-12-21 | 2001-10-17 | 신승근 | Low Elastic High Oxidation Magnesia-Carbon Refractory |
KR100515188B1 (en) * | 2000-08-24 | 2005-09-16 | 주식회사 포스코 | High functional ZrO2 C refractory |
-
1991
- 1991-09-27 JP JP3274898A patent/JPH0777979B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0585805A (en) | 1993-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6343342B2 (en) | ||
JPH0777979B2 (en) | Carbon-containing refractory | |
JP2743209B2 (en) | Carbon containing refractories | |
JP2002249371A (en) | Magnesia carbon refractory and furnace utilizing it | |
JP4822192B2 (en) | Non-fired carbon-containing refractories | |
JPH07108804B2 (en) | Process for producing unfired magnesia-carbon brick | |
JP2747734B2 (en) | Carbon containing refractories | |
JP2005139062A (en) | Low carbon unfired brick | |
JP2633018B2 (en) | Carbon containing refractories | |
JP2604002B2 (en) | Carbon containing refractories | |
JPH0412065A (en) | Double structure refractory | |
JP2614115B2 (en) | Basic refractories containing carbon | |
JPH0510299B2 (en) | ||
JP3703104B2 (en) | Magnesia-chromic unfired brick | |
JPH10251055A (en) | Alumina-magnesia-carbon refractory material for heath of electric furnace | |
JPH0676252B2 (en) | Unfired alumina / magnesia brick | |
CA1189093A (en) | Carbon-containing refractory | |
JPH085718B2 (en) | Silicon Carbide for Blast Furnace Wall-Method for Manufacturing Carbonaceous Brick | |
JPH11278940A (en) | Alumina-silicon carbide refractory | |
JP2020032427A (en) | Sliding-gate type plate refractory | |
JPH0283250A (en) | Production of carbon-containing calcined refractory | |
JPH0557231B2 (en) | ||
JPS6114175A (en) | Castable refractories for blast furnace tap hole launder | |
JP2002087889A (en) | Low heat conductive carbon-containing refractory | |
JPH08283064A (en) | Production of basic refractory and the refractory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960206 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100823 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |