Nothing Special   »   [go: up one dir, main page]

JPH0283250A - Production of carbon-containing calcined refractory - Google Patents

Production of carbon-containing calcined refractory

Info

Publication number
JPH0283250A
JPH0283250A JP63234337A JP23433788A JPH0283250A JP H0283250 A JPH0283250 A JP H0283250A JP 63234337 A JP63234337 A JP 63234337A JP 23433788 A JP23433788 A JP 23433788A JP H0283250 A JPH0283250 A JP H0283250A
Authority
JP
Japan
Prior art keywords
carbon
refractory
chromium oxide
oxide
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63234337A
Other languages
Japanese (ja)
Inventor
Akihiro Tsuchinari
昭弘 土成
Toshiyuki Hogii
利之 保木井
Masahito Tanaka
雅人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP63234337A priority Critical patent/JPH0283250A/en
Publication of JPH0283250A publication Critical patent/JPH0283250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a refractory useful as an inner lining material for molten metal container, showing oxidation preventing function even at low temperature by blending an oxide mixture containing specific amounts of carbon and chromium oxide, molding and calcining in an oxidizing atmosphere. CONSTITUTION:A mixture comprising 3-30wt.% carbon (e.g., natural graphite, artificial graphite and pitch coke), 0.1-20wt.%, preferably 0.0-10wt.% chromium oxide (<=0.05mm particle size) and the rest of oxide such as silica rock, agalmatolite, sintered alumina or electrofused magnesia, molded and heat-treated at >=1,2500 deg.C in an oxidizing atmosphere to give carbon-containing calcined refractory.

Description

【発明の詳細な説明】 産業上の利用分野: 本発明は、溶融金属容器の内張材に用いられる炭素含有
焼成耐火物の製造法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application: The present invention relates to a method for producing a carbon-containing fired refractory used as a lining material for molten metal containers.

従来技術: 溶銑鍋、溶鋼鍋、混銑車又は転炉等の溶融金属容器の内
張材として、炭素を含有した耐火物が多用されている。
Prior Art: Carbon-containing refractories are often used as lining materials for molten metal containers such as hot metal pots, molten steel pots, pig iron mixers, and converters.

炭素はスラグに非常に濡れ難く、耐熱衝性がすぐれてお
り、アルミナ又はマグネシア等の耐火物原料と組合せる
ことにより耐用性に富んだ耐火物が得られている。しか
し、炭素は酸化消失する欠点を有し、−皮酸化された脱
炭組織は脆弱化し、スラグ等の侵入による溶損が急速に
進行する。
Carbon is very difficult to wet with slag and has excellent thermal shock resistance, and by combining it with refractory raw materials such as alumina or magnesia, a highly durable refractory can be obtained. However, carbon has the disadvantage that it disappears by oxidation, and the oxidized decarburized structure becomes brittle, and erosion due to penetration of slag etc. progresses rapidly.

この原因となる含有炭素の酸化を抑制するためたとえば
特開昭54−47712号公報、特開昭54−1639
13号公報、特開昭59−12823号公報及び特開昭
59−110713号公報にみるごとく種種の手段が開
示されているが、これらの酸化抑制手段は以下の4点に
集約できる。すなわち、 (1)炭化ケイ素、炭化ホウ素、窒素ケイ素、窒化ホウ
素等の炭化物や窒化物を添加する、(2)  アルミニ
ウム等の易酸化物を添加する、(3)  ホウ・ケイ酸
ガラス等の低融点物を添加する、(4)  ホウ・ケイ
酸ガラス等を煉瓦表面に塗付する、等の手段である。
In order to suppress the oxidation of the contained carbon, which causes this, for example, Japanese Patent Application Laid-Open No. 54-47712, Japanese Patent Application Laid-Open No. 54-1639
Various means for suppressing oxidation are disclosed in JP-A No. 13, JP-A-59-12823, and JP-A-59-110713, but these oxidation suppressing means can be summarized into the following four points. In other words, (1) adding carbides and nitrides such as silicon carbide, boron carbide, silicon nitrogen, and boron nitride, (2) adding easily oxidizable substances such as aluminum, and (3) adding low-carbon materials such as borosilicate glass. (4) Applying borosilicate glass, etc. to the brick surface.

しかし、(1)の場合は添加した炭化物又は窒化物か自
ら酸化することにより、ガラス被膜を形成したり或いは
煉瓦を緻密化することによって酸化抑制効果が得られる
が、生成したガラス層の耐スラグ性かきわめて小さく耐
食性が劣化する。さらに骨材がMgO5CaO等の塩基
性物質の場合にはこれらと化学反応し、低融点物を生成
して耐スラグ性が低下するため、 5i02−Al2O
3質やジルコン質等の酸性又は中性骨材との組合せに限
られていた。
However, in the case of (1), the added carbide or nitride oxidizes itself to form a glass coating or to densify the brick, thereby achieving an oxidation-suppressing effect; however, the slag resistance of the resulting glass layer The corrosion resistance is extremely small and the corrosion resistance deteriorates. Furthermore, if the aggregate is a basic substance such as MgO5CaO, it will chemically react with these substances, producing low melting point substances and reducing slag resistance.
It was limited to combinations with acidic or neutral aggregates such as 3-quality and zircon-based aggregates.

(2)の場合は耐火物自体の酸化抑制効果か得られるか
、脱炭層が小さくならす脱炭層の生成防止が不充分なこ
とと、加えて脱炭層がAl2O3となって他の骨材と反
応し、耐スラグ性の低下がみられる。
In the case of (2), whether the oxidation suppressing effect of the refractory itself is obtained or the prevention of the formation of the decarburized layer, which reduces the size of the decarburized layer, is insufficient, and in addition, the decarburized layer becomes Al2O3 and reacts with other aggregates. However, a decrease in slag resistance is observed.

(3)の場合はガラス被膜を形成し、酸化抑制効果か大
きくなるか、スラグとの接触により低融点物が溶融流失
し易くなり、スラグ条件の厳しい使用部位には適さない
In the case of (3), a glass film is formed and the oxidation suppressing effect is increased, or low melting point substances are easily melted and washed away by contact with slag, and are not suitable for areas where slag conditions are severe.

(4)のホウ・ケイ酸ガラス等の煉瓦表面への塗付は、
酸化防止効果はあるか、表面被膜が一度浸食されると再
びその効果が得られない欠点を有している。
(4) When applying borosilicate glass, etc. to the brick surface,
Although it does have an antioxidant effect, it has the disadvantage that once the surface coating is eroded, the effect cannot be obtained again.

これらの諸点を解決するために、酸化クロムの添加によ
り酸化を抑制し、耐用性の低下を阻止する試み(特開昭
62−56351号公報)がなされている。しかし、こ
の場合も酸化防止効果は1300’C以上の比較的高温
度域で発現するが、炭素含有耐火物の最も重要な低温域
での酸化防止効果には貢献しなかった。
In order to solve these problems, an attempt has been made to suppress oxidation by adding chromium oxide to prevent a decrease in durability (Japanese Patent Application Laid-Open No. 62-56351). However, in this case as well, although the antioxidant effect was expressed in a relatively high temperature range of 1300'C or higher, it did not contribute to the antioxidant effect in the most important low temperature range of carbon-containing refractories.

解決しようとする課題: 従来技術にみる酸化クロムの添加をはじめ、上記130
0°C以上の高温度域での酸化防止手段としては、たと
えばアルミニウム、シリコン等の金属類の添加により目
的が達成されている。
Problems to be solved: Including the addition of chromium oxide seen in the conventional technology, the above 130
As a means for preventing oxidation in a high temperature range of 0° C. or higher, the purpose is achieved by adding metals such as aluminum and silicon.

しかし、炭素含有耐火物に共通する、1000〜120
0’C以下の低温使用域での酸化防止に著しい効果を上
げることができなかった。
However, 1000 to 120 is common to carbon-containing refractories.
It was not possible to achieve a significant effect in preventing oxidation in the low temperature range of use below 0'C.

課題の解決手段: 本発明は上記したような課題を解決するもので、酸化ク
ロムの作用機作を詳細に解明することにより、低温域に
おいても酸化防止機能を発現させるようにした。
Means for Solving the Problems: The present invention solves the above-mentioned problems, and by elucidating the mechanism of action of chromium oxide in detail, it has been made to exhibit an antioxidant function even in a low temperature range.

先づ特開昭62−56351号に開示される酸化クロム
添加の効果は理論的には第1図に示す反応形態で生じて
いる。すなわち、稼動面近くの高温域でS i02の緻
密層が形成されることに基づいている。第2図は酸化ク
ロムを添加しない場合の反応形態であるか、第1図と第
2図とに示される大きな相違点はCOの発生速度であり
、酸化クロムの存在でCOの発生速度か大となり、5i
02か短時間に形成され酸化防止効果を示すに至る。
The effect of adding chromium oxide disclosed in JP-A No. 62-56351 theoretically occurs in the reaction form shown in FIG. That is, it is based on the fact that a dense layer of Si02 is formed in a high temperature region near the operating surface. Figure 2 shows the reaction form when chromium oxide is not added.The major difference between Figures 1 and 2 is the rate of CO generation, and the presence of chromium oxide greatly increases the rate of CO generation. So, 5i
02 is formed in a short time and exhibits an antioxidant effect.

さらに、第1図に示す反応かおこるには予め炭素が酸化
されてCOになっていることが必要であり、本発明者等
の詳細な研究によると第3図に示す熱天秤による重量減
少割合から、約1250℃以上で急激に変化しているこ
とが明らかとなった。特開昭62−56351号公報に
記載の手段は、溶鋼中の酸素又は溶銑予備処理用として
吹込まれた酸素により炭素が酸化され、クロムと反応し
て結果的には稼動面近くで煉瓦内に5i02の緻密層を
形成し外因による酸化を防止していたのである。
Furthermore, in order for the reaction shown in Figure 1 to occur, it is necessary for carbon to be oxidized to CO in advance, and according to detailed research by the present inventors, the weight loss rate determined by the thermobalance shown in Figure 3 is It was found that the temperature changed rapidly at temperatures above about 1250°C. In the method described in JP-A-62-56351, carbon is oxidized by oxygen in molten steel or oxygen injected for hot metal pretreatment, and reacts with chromium, resulting in carbon being deposited in bricks near the working surface. A dense layer of 5i02 was formed to prevent oxidation caused by external factors.

本発明者等はこの機作(こ着目し、予め酸化雰囲気で1
250℃以上で焼成することにより全温度域にわたって
酸化防止機能を保持させ、従来この種煉瓦が低温域で酸
化し耐用性が低下する難点を解決した。
The present inventors focused on this mechanism, and the
By firing at a temperature of 250° C. or higher, the anti-oxidation function is maintained over the entire temperature range, solving the problem that conventional bricks of this type oxidize at low temperatures and reduce their durability.

発明の構成・作用: 本発明は、炭素を含有した耐火性原料に、酸化クロムを
一定範囲内で添加すると共に特定の条件で焼成すること
により、耐酸化性と耐食性との両方にすぐれ、しかも耐
熱衝撃性も良好な炭素含有焼成耐火物を得るのである。
Structure and operation of the invention: The present invention has excellent both oxidation resistance and corrosion resistance by adding chromium oxide within a certain range to a refractory raw material containing carbon and firing it under specific conditions. A carbon-containing fired refractory having good thermal shock resistance is obtained.

すなわち、本発明は炭素含有焼成耐火物を製造するに際
し、 炭素3〜30wt%、酸化クロム0.1〜20wt%で
残部が酸化物からなる配合物を混練、成形し;酸化雰囲
気で焼成して炭素含有焼成耐火物を製造する; 方法を要旨としている。
That is, in producing a carbon-containing fired refractory, the present invention involves kneading and shaping a mixture consisting of 3 to 30 wt% carbon, 0.1 to 20 wt% chromium oxide, and the balance being an oxide; and firing in an oxidizing atmosphere. Producing carbon-containing fired refractories; summary of the method.

また、上記残部のうちに炭化物、窒化物3〜20w【%
が配合されたものとすることもできる。
In addition, carbides and nitrides of 3 to 20 w [%]
It may also be blended with.

本発明で用いられる炭素は、天然黒鉛、人造黒鉛、ピッ
チコークス等で、通常の耐火物に組合せて利用されるも
のが対象となる。この炭素を3〜30wt%配合するも
ので3wt%未満では炭素添加の効果が得られず耐スラ
グ性及び耐熱衝撃性が不充分となる。30wt%を超す
と耐火物としての強度や耐摩耗性が低下する。他の耐火
性原料としては珪石、溶融シリカ、ろう石、シャモット
、アングルサイト、カイヤナイト、シリマナイト、合成
ムライト、パン土頁岩、ボーキサイト、焼結アルミナ、
電融アルミナ等のAl 203− S i02質或いは
電融マグネシア、焼結マグネシア、合成スピネル、合成
カルシア、ジルコン、ジルコニア質等が単独又は2種以
上組合せて使用できる。
The carbon used in the present invention includes natural graphite, artificial graphite, pitch coke, etc., which are used in combination with ordinary refractories. This carbon is blended in an amount of 3 to 30 wt%, and if it is less than 3 wt%, the effect of carbon addition cannot be obtained, resulting in insufficient slag resistance and thermal shock resistance. If it exceeds 30 wt%, the strength and wear resistance of the refractory will decrease. Other refractory raw materials include silica, fused silica, waxite, chamotte, anglesite, kyanite, sillimanite, synthetic mullite, clay shale, bauxite, sintered alumina,
Al 203-Si02 materials such as fused alumina, fused magnesia, sintered magnesia, synthetic spinel, synthetic calcia, zircon, zirconia materials, etc. can be used alone or in combination of two or more.

本発明で特性を発揮する酸化クロムは、粒度0.05履
以下のものを0.1〜20wt%、好ましくは0.5〜
10wt%添加する。粒度を0.05 a以下としたの
は反応速度の向上に加え、耐火物組織の空隙部の充填を
図るためである。その添加量は、0.1wt%未満では
酸化クロームが均一に分散するのが困難で添加の効果が
定常化し難い。又、20wt%を超すと耐火性原料全体
として微粉部が過大となり、亀裂が入り易くスラグに対
する抵抗性が低下する。
The chromium oxide that exhibits the characteristics in the present invention has a particle size of 0.05 mm or less in an amount of 0.1 to 20 wt%, preferably 0.5 to 20 wt%.
Add 10 wt%. The reason for setting the particle size to 0.05 a or less is to improve the reaction rate and also to fill the voids in the refractory structure. If the amount added is less than 0.1 wt%, it is difficult to uniformly disperse chromium oxide and the effect of addition is difficult to stabilize. On the other hand, if it exceeds 20 wt%, the fine powder portion of the refractory raw material as a whole becomes too large, which tends to cause cracks and decreases resistance to slag.

また、酸化抑制材として、20wt%以下の炭化ケイ素
、炭化ホウ素等の炭化物若しくは窒化ケイ素、窒化ホウ
素等の窒化物、又は10wt%以下のAI、 Si、 
Mg 等の金属若しくはこれらの合金をさらに併用して
もよい。
In addition, as an oxidation suppressing material, 20 wt% or less of carbides such as silicon carbide and boron carbide, or nitrides such as silicon nitride and boron nitride, or 10 wt% or less of AI, Si,
A metal such as Mg or an alloy thereof may also be used in combination.

これらからなる配合物を、たとえばフェノール樹脂等を
バインダーとして混練し、所定の形状に成形した後乾燥
する。
A mixture of these materials is kneaded using, for example, a phenol resin as a binder, molded into a predetermined shape, and then dried.

さらに、1250°C以上の酸化雰囲気下で熱処理し、
焼成煉瓦として使用するものである。
Furthermore, heat treatment is performed in an oxidizing atmosphere at 1250°C or higher,
It is used as a fired brick.

本発明方法で得られる炭素含有焼成耐火物は、使用に際
し低温域での炭素の酸化を完全に防止したとえば溶銑鍋
、溶鋼鍋、混銑車、転炉等の所要部に内張煉瓦として施
工しても、すぐれた耐用性を示す。
The carbon-containing fired refractory obtained by the method of the present invention completely prevents carbon oxidation at low temperatures during use, and can be used as lining bricks in required parts of hot metal ladle, molten steel ladle, pig iron mixer, converter, etc. However, it shows excellent durability.

実施例: 第1表に示す化学成分の耐火性原料等を用い、第2表に
示す配合割合に従って、本発明例(意1〜6)、比較例
(!7〜10で炭素又は酸化クロームの配合割合が本発
明例の範囲外)、在来例(11〜13)のそれぞれの配
合物を得た。この配合物をフェノール樹脂をバインダー
として混練し、フリクションプレスにより雛形形状に成
形した。
Examples: Using fire-resistant raw materials with the chemical components shown in Table 1, and according to the blending ratios shown in Table 2, the present invention examples (1 to 6) and comparative examples (!7 to 10) containing carbon or chromium oxide Blends with blending ratios outside the range of the present invention examples) and conventional examples (11 to 13) were obtained. This mixture was kneaded using a phenol resin as a binder and molded into a template shape using a friction press.

そして150°Cのトンネル乾燥炉を通過させて乾燥し
、酸化雰囲気のもとに1300°Cで焼成し、試料量1
〜13を作成した。
Then, it was dried by passing through a tunnel drying oven at 150°C and fired at 1300°C in an oxidizing atmosphere.
~13 were created.

これら各試料について物性値及び特性値を測定し、第1
表に併せ示した。物性値JISに基づく耐火物試験法に
よった。特性値は下記の方法によった。
The physical property values and characteristic values of each of these samples were measured, and the first
It is also shown in the table. Physical properties were determined by the refractory test method based on JIS. Characteristic values were determined by the following method.

a 酸化脱炭層の厚さについては、5×5×56Inの
立方体を検体として切出し、1400’Cで16hr加
熱した後、各部をスライスし脱炭層の厚さを測定し、各
部の平均を求めた。
a. For the thickness of the oxidized decarburized layer, a 5 x 5 x 56 In cube was cut out as a specimen, heated at 1400'C for 16 hours, then sliced into each part to measure the thickness of the decarburized layer, and the average of each part was calculated. .

b 耐食性については、適当な大きさの検体を切出し、
回転侵食法により塩基度3のスラグ100%を用い、1
500°Cで5hr試験した。そして、在来例のものに
生じた侵食を100とする比率で侵食の度合いを示した
。この数値が小さい程耐食性に富む。
b For corrosion resistance, cut out a specimen of an appropriate size,
Using 100% slag with basicity 3 by rotary erosion method, 1
Tested at 500°C for 5 hours. The degree of erosion was expressed as a ratio, with the erosion occurring in the conventional example being taken as 100. The smaller this value is, the richer the corrosion resistance is.

c 耐熱スポール性については、上記雛形形状の供試体
の片面を1400℃に加熱し、30分間保持した後取出
す。この操作を5回繰返してその加熱面を目視観察した
。亀裂発生のないものを◎、微細な亀裂の認められるも
のを○、剥離を伴う大亀裂を生じたものを×で評価した
c Regarding heat-resistant spalling property, one side of the above-mentioned template-shaped specimen was heated to 1400°C, held for 30 minutes, and then taken out. This operation was repeated five times and the heated surface was visually observed. Those with no cracks were evaluated as ◎, those with fine cracks were evaluated as ○, and those with large cracks accompanied by peeling were evaluated as ×.

以上の試験結果から明らかなように特定の酸化クローム
添加量をもつと共に一定温度範囲で焼成して得られる本
発明例、K 1〜6は、比較例又は在来例に比べて特性
の改善が顕著に認められた。
As is clear from the above test results, the present invention examples, K1 to 6, which have a specific amount of chromium oxide added and are fired at a constant temperature range, have improved properties compared to the comparative or conventional examples. Remarkably recognized.

発明の効果: 本発明方法で得られる炭素含有焼成耐火物は、従来低温
域で問題となっていた炭素の酸化が効果的に防止され、
実炉テストの実績において約30%の耐用性の向上が認
められた。さらに操業の安定性を増し、特殊な原料を使
用せずに苛酷な条件下での使用に堪える耐火物の実現に
貢献するもので、産業上の利用性は大きい。
Effects of the invention: The carbon-containing fired refractory obtained by the method of the present invention effectively prevents carbon oxidation, which has conventionally been a problem at low temperatures.
Approximately 30% improvement in durability was observed in actual furnace tests. Furthermore, it increases operational stability and contributes to the creation of refractories that can withstand use under harsh conditions without using special raw materials, so it has great industrial applicability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸化クロムを添加した炭素含有耐火物の稼動面
温度による組成分の反応形態を示す説明図、第2図は酸
化クロムを添加しないときの同様反応形態を示す説明図
、第3図は炭素含有耐火物の熱天秤による重量減少割合
を示す図である。 出願人  播磨耐火煉瓦株式会社
Fig. 1 is an explanatory diagram showing the reaction form of the components depending on the working surface temperature of a carbon-containing refractory to which chromium oxide is added, Fig. 2 is an explanatory diagram showing the same reaction form when no chromium oxide is added, Fig. 3 is a diagram showing the weight reduction rate of carbon-containing refractories measured on a thermobalance. Applicant: Harima Firebrick Co., Ltd.

Claims (1)

【特許請求の範囲】 1 炭素3〜30wt%、酸化クロム0.1〜20wt
%で残部が酸化物からなる配合物を混練、成形し;この
成形体を酸化雰囲気で焼成する; ことを特徴とする炭素含有焼成耐火物の製造法。 2 混練、成形される配合物が、炭素3〜30wt%、
酸化クロム0.1〜20wt%、炭化物及び/又は窒化
物が3〜20wt%で残部が酸化物である請求項第1項
に記載の炭素含有焼成耐火物の製造法。
[Claims] 1. 3 to 30 wt% carbon, 0.1 to 20 wt% chromium oxide
1. A method for producing a carbon-containing fired refractory, comprising: kneading and molding a mixture in which the balance is an oxide; and firing the molded body in an oxidizing atmosphere. 2 The compound to be kneaded and molded contains 3 to 30 wt% carbon,
2. The method for producing a carbon-containing fired refractory according to claim 1, wherein the chromium oxide is 0.1 to 20 wt%, the carbide and/or nitride is 3 to 20 wt%, and the balance is an oxide.
JP63234337A 1988-09-19 1988-09-19 Production of carbon-containing calcined refractory Pending JPH0283250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63234337A JPH0283250A (en) 1988-09-19 1988-09-19 Production of carbon-containing calcined refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63234337A JPH0283250A (en) 1988-09-19 1988-09-19 Production of carbon-containing calcined refractory

Publications (1)

Publication Number Publication Date
JPH0283250A true JPH0283250A (en) 1990-03-23

Family

ID=16969409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63234337A Pending JPH0283250A (en) 1988-09-19 1988-09-19 Production of carbon-containing calcined refractory

Country Status (1)

Country Link
JP (1) JPH0283250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210814A (en) * 2006-02-08 2007-08-23 Hitachi Zosen Corp Refractory and melting furnace comprising the refractory
JP2011251737A (en) * 2010-06-02 2011-12-15 Yoshimasa Tamai Arbitrary proportion discharging container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210814A (en) * 2006-02-08 2007-08-23 Hitachi Zosen Corp Refractory and melting furnace comprising the refractory
JP4677915B2 (en) * 2006-02-08 2011-04-27 日立造船株式会社 Refractory and melting furnace made of this refractory
JP2011251737A (en) * 2010-06-02 2011-12-15 Yoshimasa Tamai Arbitrary proportion discharging container

Similar Documents

Publication Publication Date Title
JP4681456B2 (en) Low carbon magnesia carbon brick
KR860001649B1 (en) Refractory brick
JPH0283250A (en) Production of carbon-containing calcined refractory
JPH11322405A (en) Low carbon refractory and its production
JP3947245B2 (en) Corrosion resistance, oxidation resistance, irregular refractories
JP2529501B2 (en) Carbon-containing refractory
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JP2005139062A (en) Low carbon unfired brick
JPH0585805A (en) Carbon-containing fire-resistant material
JPH0130784B2 (en)
JP2000327401A (en) Plate for slide gate
JPH0421558A (en) Plate brick for sliding nozzle
JPH05319898A (en) Carbon containing refractory
JPH06287050A (en) Carbon-containing refractory
JPH06183828A (en) Production of refractory for casting
JPH02274370A (en) Refractories for vessel for pretreatment of molten iron
JPH07157359A (en) Carbon-containing refractory
JPH03153563A (en) Magnesia-carbon brick
JPH11278940A (en) Alumina-silicon carbide refractory
GB2131791A (en) Carbon-containing refractory
JPH03197346A (en) Carbon-containing refractory
JPS63157746A (en) Submerged nozzle for continuous casting
JPH04338160A (en) High-durable magnesia-carbon brick
JPS6256351A (en) Carbon-containing refractories
JP2001139366A (en) Magnesia-carbon unburned refractory brick