Nothing Special   »   [go: up one dir, main page]

JPH0769720A - Solid electrolytic material reinforced by dispersed composite material - Google Patents

Solid electrolytic material reinforced by dispersed composite material

Info

Publication number
JPH0769720A
JPH0769720A JP5171208A JP17120893A JPH0769720A JP H0769720 A JPH0769720 A JP H0769720A JP 5171208 A JP5171208 A JP 5171208A JP 17120893 A JP17120893 A JP 17120893A JP H0769720 A JPH0769720 A JP H0769720A
Authority
JP
Japan
Prior art keywords
solid electrolyte
solid
electrolyte
scandia
scsz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5171208A
Other languages
Japanese (ja)
Inventor
Yasunobu Mizutani
安伸 水谷
Moriyoshi Tamura
守淑 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP5171208A priority Critical patent/JPH0769720A/en
Publication of JPH0769720A publication Critical patent/JPH0769720A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a solid electrolytic material reinforced by a dispersed composite material, having high electrical conductivity as a solid electrolytic material and excellent in mechanical properties. CONSTITUTION:This solid electrolytic material mainly contains a zirconia electrolytic material stabilized with scandia and is mixed with 0.5-20wt.% of alumina as a high-strength composite material. When applied to a solid-electrolytic fuel cell, the solid electric material exhibits high generating efficiency and can be permanently used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
(SOFC)に用いられる固体電解質材料などとして好
適な複合材分散強化型固体電解質材料に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material dispersion strengthened solid electrolyte material suitable as a solid electrolyte material used in a solid oxide fuel cell (SOFC).

【0002】[0002]

【従来の技術】近年、いわゆる固体電解質材料が各種技
術分野および用途において研究開発されている。その中
で例えば、固体電解質型燃料電池(SOFC)は、それ
までに開発されてきたリン酸型、溶融炭酸塩型など他の
燃料電池に比べて発電効率が良く、排熱温度も高いため
効率的な利用が可能な発電システムを構築できるという
ことで近年特に注目を浴びている。
2. Description of the Related Art In recent years, so-called solid electrolyte materials have been researched and developed in various technical fields and applications. Among them, for example, the solid oxide fuel cell (SOFC) has higher power generation efficiency and higher exhaust heat temperature than other fuel cells such as phosphoric acid type and molten carbonate type that have been developed so far. In recent years, it has attracted particular attention because it is possible to construct a power generation system that can be used effectively.

【0003】ところでこの固体電解質型燃料電池(SO
FC)の形態としては、一般に図6に示した平板型のも
のと、図示しないが円筒型のものとに大きく分類され
る。またこの図6に示した平板型のものにおいても、図
7(a)に示した外部マニホールドタイプのものと、図
7(b)に示した内部マニホールドタイプのものとが代
表的なものとして挙げられる。
By the way, this solid oxide fuel cell (SO
The form of FC) is generally roughly classified into a flat type shown in FIG. 6 and a cylindrical type (not shown). The flat type shown in FIG. 6 is also typified by the external manifold type shown in FIG. 7A and the internal manifold type shown in FIG. 7B. To be

【0004】図6及び図7(a)(b)に示した固体電
解質型燃料電池(SOFC)の構造について簡単に説明
すると、燃料ガスが接する燃料極10と空気が接する酸
素極20との間に固体電解質板30を挟み、燃料極10
の外側および酸素極20の外側にそれぞれセパレータ4
0a、40bを設けた構造の単セルが多数層にわたって
積層状に設けられてなる。
The structure of the solid oxide fuel cell (SOFC) shown in FIGS. 6 and 7A and 7B will be briefly described. Between the fuel electrode 10 in contact with the fuel gas and the oxygen electrode 20 in contact with the air. The solid electrolyte plate 30 is sandwiched between the fuel electrode 10 and
On the outside of the separator and on the outside of the oxygen electrode 20, respectively.
A single cell having a structure in which 0a and 40b are provided is provided in a laminated form over a large number of layers.

【0005】そしてこのように構成された固体電解質型
燃料電池(SOFC)においては、燃料極に燃料ガス
(水素、一酸化炭素)が接触し、酸素極には酸化ガス
(空気、もしくは酸素)が接触する。そして酸素極で生
成した酸素イオン(O2-)が電解質を移動して燃料極に
到達し、燃料極ではO2-が水素(H2 )と反応して電子
を放出する。これにより電気が作り出され、電気の流れ
が生ずるものである。
In the solid oxide fuel cell (SOFC) thus constructed, the fuel electrode is contacted with the fuel gas (hydrogen, carbon monoxide) and the oxygen electrode is contacted with the oxidizing gas (air or oxygen). Contact. Then, oxygen ions (O 2− ) generated in the oxygen electrode move in the electrolyte to reach the fuel electrode, and in the fuel electrode, O 2− reacts with hydrogen (H 2 ) to release an electron. This produces electricity, which causes a flow of electricity.

【0006】この固体電解質型燃料電池(SOFC)に
おいて、固体電解質材料の電気的特性、特に導電率が電
池の性能に大きく影響する。従来この固体電解質材料に
は、安定化ジルコニアが用いられてきた。この安定化ジ
ルコニアは、ジルコニア(ZrO2 )が高温度(約11
50℃付近)で単斜晶形から正方晶形へ結晶構造が変化
することに伴ない容積変化が生じることから、この容積
変化を防ぐ手段としてカルシウム(Ca)やイットリウ
ム(Y)などの酸化物を固溶させて結晶構造の安定化を
図ったものである。現在ではイットリア安定化ジルコニ
ア(Y23 Stabilized ZrO2)が最も多く使用され
ている。また、電気的特性は劣るものの高強度材料であ
る正方晶ジルコニア多結晶体TZP(Tetragonal Zr
2 Policrystalline)が用いられる例もある。
In this solid oxide fuel cell (SOFC), the electrical characteristics of the solid electrolyte material, particularly the electrical conductivity, greatly affect the performance of the battery. Conventionally, stabilized zirconia has been used for this solid electrolyte material. This stabilized zirconia contains zirconia (ZrO 2 ) at a high temperature (about 11
At around 50 ° C), a volume change occurs as the crystal structure changes from a monoclinic form to a tetragonal form. Therefore, as a means to prevent this volume change, oxides such as calcium (Ca) and yttrium (Y) are solidified. It is intended to stabilize the crystal structure by melting. At present, yttria-stabilized zirconia (Y 2 O 3 Stabilized ZrO 2 ) is most often used. In addition, tetragonal zirconia polycrystalline TZP (Tetragonal Zr), which is a high-strength material with inferior electrical characteristics, is also used.
In some cases, O 2 Policrystalline) is used.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、イット
リア安定化ジルコニア(YSZ)を固体電解質材料に用
いた固体電解質型燃料電池(SOFC)では、そのYS
Z固体電解質材料そのものの導電率特性は優れている
が、平板面積の大きい固体電解質板を用いて大発電容量
の燃料電池を提供しようとすると、固体電解質板の板厚
を0.2〜0.3mmと厚くする必要がある。そのために
YSZ固体電解質板の内部抵抗は増大し、電力密度が
0.5W/cm2程度の低いものしか得られないという問
題があった。
However, in a solid oxide fuel cell (SOFC) using yttria-stabilized zirconia (YSZ) as a solid electrolyte material, the YS
Although the Z solid electrolyte material itself has excellent conductivity characteristics, if a solid electrolyte plate having a large flat area is used to provide a fuel cell having a large power generation capacity, the solid electrolyte plate has a thickness of 0.2 to 0.2. It is necessary to make it as thick as 3 mm. Therefore, there is a problem that the internal resistance of the YSZ solid electrolyte plate increases and only a low power density of about 0.5 W / cm 2 can be obtained.

【0008】一方本発明者らは、イットリ安定化ジルコ
ニア(YSZ)固体電解質材料に代わるものとして、こ
れよりも導電率特性に優れたスカンジア安定化ジルコニ
ア(Sc23 Stabilized ZrO2)固体電解質材料を
先に開発し、既に出願している。
On the other hand, the inventors of the present invention, as an alternative to the yttria-stabilized zirconia (YSZ) solid electrolyte material, have a scandia-stabilized zirconia (Sc 2 O 3 Stabilized ZrO 2 ) solid electrolyte material which is superior in conductivity characteristics. Was first developed and has already applied.

【0009】しかしながら、このスカンジア安定化ジル
コニア(ScSZ)固体電解質材料によっても、導電率
特性は更に改良されるものの、機械的強度はYSZ固体
電解質材料とそれ程変わらない。そのために平板面積の
大きな固体電解質板を用いた大容量の燃料電池としよう
とすると、やはりハンドリングの問題、構造強度の問題
から、電解質板の板厚を0.2〜0.3mmと厚くせざる
を得ず、以下のような問題点があった。すなわち、
However, even with this scandia-stabilized zirconia (ScSZ) solid electrolyte material, the electrical conductivity characteristics are further improved, but the mechanical strength is not so different from that of the YSZ solid electrolyte material. Therefore, when trying to make a large-capacity fuel cell using a solid electrolyte plate having a large flat area, the plate thickness of the electrolyte plate must be as thick as 0.2 to 0.3 mm due to handling problems and structural strength problems. There were the following problems. That is,

【0010】電解質板が厚くなることにより内部抵抗
が増大するため電力密度が低下し、高い発電効率・発電
性能が得られない。 電解質板の板厚の薄いものを用いると、ガス圧などで
破壊されやすい。 電解質板の材料強度が低いため、機械的・熱的疲労破
壊が生じやすく、長期間の耐久性に劣る、等々。
As the electrolyte plate becomes thicker, the internal resistance increases, so the power density decreases, and high power generation efficiency and power generation performance cannot be obtained. If a thin electrolyte plate is used, it is easily broken by gas pressure or the like. Due to the low material strength of the electrolyte plate, mechanical and thermal fatigue damage is likely to occur, and long-term durability is poor, etc.

【0011】本発明は、このような問題点を解決するた
めになされたものであり、その目的とするところは、導
電率特性に優れ、しかも機械的強度にも優れた固体電解
質材料を提供することにある。これにより例えば固体電
解質型燃料電池(SOFC)の固体電解質材料としての
発電効率の向上並びに恒久的使用の達成を図らんとする
ものである。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a solid electrolyte material having excellent conductivity characteristics and mechanical strength. Especially. Thus, for example, it is intended to improve the power generation efficiency as a solid electrolyte material of a solid oxide fuel cell (SOFC) and achieve permanent use.

【0012】[0012]

【課題を解決するための手段】このような目的を達成す
るため本発明者らは、種々の材料特性について実験研究
を重ねた結果、従来のイットリア−ジルコニア系(Y2
3−ZrO2 系)固体電解質材料よりも導電率特性に
優れているスカンジア−ジルコニア系(Sc23−Zr
2 系)固体電解質材料の機械的強度特性の改良を図っ
たものである。
In order to achieve such an object, the inventors of the present invention have conducted experimental research on various material properties, and as a result, have found that the conventional yttria-zirconia system (Y 2
O 3 —ZrO 2 system) Scandia-zirconia system (Sc 2 O 3 —Zr system), which has better conductivity characteristics than solid electrolyte materials.
This is intended to improve the mechanical strength characteristics of the (O 2 ) solid electrolyte material.

【0013】そこで本発明の要旨は、スカンジア安定化
ジルコニア電解質材料を主成分とし、これに高強度複合
材料を分散されていることにある。その場合に高強度複
合材料としては、アルミナ(Al23)あるいはムライ
ト(Mullite)などが好適なものとして挙げられる。そ
してスカンジア安定化ジルコニア電解質材料にはスカン
ジア(Sc23)が8〜15モル%固溶され、高強度複
合材料としてはアルミナなどが0.5 〜20重量%混合
されているときに、最も導電率特性に優れ、かつ機械的
強度も高い状態が得られる。
Therefore, the gist of the present invention is that the scandia-stabilized zirconia electrolyte material is the main component and the high-strength composite material is dispersed therein. In that case, as the high-strength composite material, alumina (Al 2 O 3 ) or mullite is preferable. When scandia (Sc 2 O 3 ) is solid-dissolved in the scandia-stabilized zirconia electrolyte material in an amount of 8 to 15 mol%, and as the high-strength composite material, alumina or the like is mixed in an amount of 0.5 to 20 wt%, the most Excellent electrical conductivity characteristics and high mechanical strength can be obtained.

【0014】[0014]

【実施例】以下に本発明について詳細に説明する。尚、
以下に述べる実施例では、固体電解質型燃料電池(SO
FC)に供される固体電解質材料を想定して説明してい
る。図1には、その固体電解質材料の製造工程を示して
いる。それによれば、初めに固体電解質板の主材料であ
るジルコニア(ZrO2 )の粉末粒子と安定化材料であ
るスカンジア(Sc23)の粉末粒子とを適当な配合比
率で混合する。ここではボールミル等により機械的に混
合している。この混合粉末の平均粒径は3μm程度であ
る。ジルコニアとスカンジアの混合粉末を調整する方法
として、ゾルゲル法や共沈法などの液相製造プロセスを
適用すれば、不純物が少なく、均一な混合粉末を得るこ
とができる。ZrO2 とSc23の配合比率について
は、ZrO2 92〜85モル%、Sc238〜15モル
%の範囲で適宜選択している。
The present invention will be described in detail below. still,
In the examples described below, solid oxide fuel cells (SO
The description is made assuming a solid electrolyte material used for FC). FIG. 1 shows the manufacturing process of the solid electrolyte material. According to this, first, powder particles of zirconia (ZrO 2 ) which is a main material of the solid electrolyte plate and powder particles of scandia (Sc 2 O 3 ) which is a stabilizing material are mixed at an appropriate mixing ratio. Here, they are mechanically mixed by a ball mill or the like. The average particle size of this mixed powder is about 3 μm. If a liquid phase manufacturing process such as a sol-gel method or a coprecipitation method is applied as a method for preparing a mixed powder of zirconia and scandia, it is possible to obtain a uniform mixed powder with few impurities. The mixing ratio of ZrO 2 and Sc 2 O 3 is appropriately selected within the range of ZrO 2 92 to 85 mol% and Sc 2 O 3 8 to 15 mol%.

【0015】そしてこのジルコニア(ZrO2 )とスカ
ンジア(Sc23)の混合粉末を高温度(数100℃)
で熱処理してSc23がZrO2 中に固溶化したスカン
ジア安定化ジルコニア(ScSZ)を得、しかる後粉砕
することにより調整されたScSZ粉末が得られる。次
にこのスカンジア安定化ジルコニア(ScSZ)粉末に
高強度複合材料としてアルミナ(Al23)の粉末を適
当な配合比率で混合する。Al23の配合比率として
は、ScSZ粉末に対し0.5〜20重量%の範囲が適
当である。
Then, the mixed powder of zirconia (ZrO 2 ) and scandia (Sc 2 O 3 ) is heated at a high temperature (several 100 ° C.).
To obtain scandia-stabilized zirconia (ScSZ) in which Sc 2 O 3 is solid-solubilized in ZrO 2 and then pulverized to obtain an adjusted ScSZ powder. Next, the scandia-stabilized zirconia (ScSZ) powder is mixed with a powder of alumina (Al 2 O 3 ) as a high-strength composite material at an appropriate mixing ratio. A suitable blending ratio of Al 2 O 3 is 0.5 to 20% by weight based on the ScSZ powder.

【0016】このようにしてScSZ粉末とAl23
末との混合粉末が得られたら、次にこの混合粉末を板厚
100〜300μmの板(およそ20cm角板)に成形
する。この成形手段としては、この実験例では静水圧プ
レス機(CIP)を用いて1t/cm2 の圧力により加
圧成形している。ただし、この成形手段に限られるもの
ではなく、従来一般に用いられているドクターブレード
法やカレンダーロール法により薄板を製作するものであ
ってもよい。そしてしかる後、この成形板を1500〜
1700℃の温度で焼成する。これによりスカンジア
(Sc23)がジルコニア(ZrO2)中に固溶化され
たスカンジア安定化ジルコニア(Sc23Stabilized
ZrO2 )材料を主成分とし、これに高強度複合材料と
してアルミナ(Al23)が分散された固体電解質板が
得られる。
When a mixed powder of ScSZ powder and Al 2 O 3 powder is obtained in this manner, the mixed powder is then formed into a plate having a plate thickness of 100 to 300 μm (square plate of about 20 cm). As this forming means, in this experimental example, a hydrostatic press (CIP) is used to perform pressure forming at a pressure of 1 t / cm 2 . However, it is not limited to this forming means, and a thin plate may be manufactured by a doctor blade method or a calendar roll method which has been generally used conventionally. After that, the molded plate
Baking at a temperature of 1700 ° C. Thereby, scandia-stabilized zirconia (Sc 2 O 3 Stabilized) in which scandia (Sc 2 O 3 ) is solid-solubilized in zirconia (ZrO 2 ).
A solid electrolyte plate containing a ZrO 2 ) material as a main component and alumina (Al 2 O 3 ) as a high-strength composite material dispersed therein is obtained.

【0017】次にこのスカンジア安定化ジルコニア(S
cSZ)系固体電解質板に燃料極あるいは酸素極を形成
するに当たっては、これらの極材料のセラミックス粉末
を泥状にしていわゆるスラリーコーティング法によりこ
のScSZ系固体電解質板の片面と反対側の面とにそれ
ぞれ塗布し、しかる後所定温度で焼成する。燃料極の場
合には、例えばニッケル(Ni)40重量%−ジルコニ
ア(ZrO2 )60重量%のNi−サーメット材料を5
0μm程度の厚さでこのScSZ系固体電解質板の片面
にコーティングし、1400〜1500℃の温度で焼成
する。これによりScSZ系固体電解質板の片面に薄膜
状の燃料極が形成されることとなる。
Next, this scandia-stabilized zirconia (S
In forming a fuel electrode or an oxygen electrode on a cSZ-based solid electrolyte plate, a ceramic powder of these electrode materials is formed into a mud, and the so-called slurry coating method is applied to one side and the opposite side of the ScSZ-based solid electrolyte plate. Each is applied and then baked at a predetermined temperature. In the case of the fuel electrode, for example, nickel (Ni) 40 wt% -zirconia (ZrO 2 ) 60 wt% Ni-cermet material is used.
This ScSZ-based solid electrolyte plate is coated on one side with a thickness of about 0 μm, and fired at a temperature of 1400 to 1500 ° C. As a result, a thin-film fuel electrode is formed on one surface of the ScSZ-based solid electrolyte plate.

【0018】また酸素極の場合には、例えばランタンス
トロンチウムマンガネイト(La(Sr)MnO3 )材
料を50μm程度の厚さで固体電解質板の前述の燃料極
とは反対側の面にコーティングし、1150℃前後の温
度で焼成する。これによりScSZ系固体電解質板の反
対側の面に、同じく薄膜状の酸素極が形成されることと
なる。尚、酸素極の材料の配合比率としては、ランタン
マンガネイト95〜85モル%に対し、ストロンチウム
5〜15モル%程度とするのが適当である。
In the case of the oxygen electrode, for example, a lanthanum strontium manganate (La (Sr) MnO 3 ) material is coated on the surface of the solid electrolyte plate on the opposite side of the fuel electrode to a thickness of about 50 μm, Baking at a temperature around 1150 ° C. As a result, a thin film oxygen electrode is similarly formed on the opposite surface of the ScSZ-based solid electrolyte plate. Incidentally, it is suitable that the compounding ratio of the oxygen electrode material is about 5 to 15 mol% of strontium to 95 to 85 mol% of lanthanum manganate.

【0019】次にこのようにして製作された固体電解質
型燃料電池(SOFC)の固体電解質板について種々の
実験を行なったのでこれらについて説明する。初めに図
2に、本発明に係るスカンジア安定化ジルコニア(Sc
SZ)電解質に高強度複合材料としてアルミナ(Al2
3)を配合したものと、従来のイットリア安定化ジル
コニア(YSZ)電解質と、比較用としてScSZ電解
質にアルミナ(Al23)を全く配合しないものとの固
体電解質型燃料電池(SOFC)としての発電特性の比
較を行なったのでその結果を示して説明する。
Next, various experiments were conducted on the solid electrolyte plate of the solid oxide fuel cell (SOFC) manufactured as described above, which will be described below. First, referring to FIG. 2, scandia-stabilized zirconia (Sc) according to the present invention is used.
Alumina (Al 2
O 3 ), a conventional yttria-stabilized zirconia (YSZ) electrolyte, and a solid oxide fuel cell (SOFC) with a ScSZ electrolyte containing no alumina (Al 2 O 3 ) for comparison. The power generation characteristics of the above were compared, and the results will be shown and described.

【0020】YSZ固体電解質材料は8モル%Y23
92モル%ZrO2 のものを、またScSZ固体電解質
材料は11モル%Sc23−89モル%ZrO2 のもの
を供試し、さらにアルミナ(Al23)の配合量として
は20重量%とした。また固体電解質板の板厚として
は、YSZ電解質板及びScSZ電解質板(アルミナ配
合なし)は250μmのものを用意し、ScSZ電解質
板(アルミナ20重量%配合)は250μmのものと1
00μmのものとを用意した。尚、同図中、横軸に電流
[mA]を示し、縦軸に電圧[mV]及び電力密度[W
/cm2 ]を示し、電圧特性と電力特性についてそれぞ
れを比較した。
The YSZ solid electrolyte material is 8 mol% Y 2 O 3
92 mol% ZrO 2 and a ScSZ solid electrolyte material of 11 mol% Sc 2 O 3 -89 mol% ZrO 2 were tested, and the amount of alumina (Al 2 O 3 ) was 20% by weight. And Regarding the thickness of the solid electrolyte plate, a YSZ electrolyte plate and a ScSZ electrolyte plate (without alumina compounding) of 250 μm were prepared, and a ScSZ electrolyte plate (alumina 20% by weight compounding) was 250 μm.
The one having a diameter of 00 μm was prepared. In the figure, the horizontal axis represents current [mA], and the vertical axis represents voltage [mV] and power density [W].
/ Cm 2 ], and voltage characteristics and power characteristics were compared with each other.

【0021】その結果、電圧特性をみた場合に電流値を
上げていくにつれて電圧値が徐々に低下していくこと
は、ScSZ固体電解質材料の場合もYSZ固体電解質
材料の場合も同様である。しかし、ScSZ固体電解質
材料の方がAl23配合しない11ScSZと、Al2
3を配合した11ScSZ20Aのいずれの場合も、
YSZ固体電解質材料よりも電圧低下の割合が小さいこ
とがわかる。また電流が高いほどその電圧差が大きいこ
ともわかる。ただ、ScSZ固体電解質材料のAl 23
を配合しない11ScSZ材料と、Al23を20重量
%配合した11ScSZ20A材料との比較において
は、同じ板厚250μmの場合Al23を配合すること
により電圧低下の割合が若干大きいとの結果となった。
これより Al23を添加することにより電気的特性が
悪くなる傾向にはあることがわかる。しかし板厚の薄い
もの(100μm)との比較では逆に板厚を薄くするこ
とによりAl23を配合しないScSZ電解質材料(1
1ScSZ)よりも電圧低下の割合が小さく、電気的特
性に優れるとの結果が得られた。
As a result, the current value is
The voltage value gradually decreases as it is increased.
Is a YSZ solid electrolyte in the case of ScSZ solid electrolyte material.
The same applies to materials. However, ScSZ solid electrolyte
Material is Al2O311ScSZ not mixed with Al2
O3In any case of 11ScSZ20A containing
The rate of voltage drop is smaller than that of YSZ solid electrolyte material.
I understand. Also, the higher the current, the larger the voltage difference.
I understand. However, Al of ScSZ solid electrolyte material 2O3
11ScSZ material without Al and Al2O320 weight
% In comparison with 11ScSZ20A material
Is Al for the same plate thickness of 250 μm2O3Blending
As a result, the rate of voltage drop was slightly high.
Than this Al2O3Electrical characteristics by adding
It turns out that it tends to get worse. However, the plate thickness is thin
On the contrary, in comparison with the one (100 μm), the plate thickness should be thin.
And by Al2O3ScSZ electrolyte material (1
1ScSZ), the rate of voltage drop is smaller than that of
The result was excellent.

【0022】一方、電力特性をみた場合も、同じ板厚
(250μm)での比較においてYSZ固体電解質材料
はおよそ400mAで電力密度のピーク値を示し、それ
より高い電流値における電力密度の低下は最も大きい。
これに対しScSZ電解質(Al23配合なし及びAl
2320重量%配合のいずれも)はおよそ500mAに
おいてそれぞれ電力密度のピーク値を示し、それより高
い電流値における電流密度の低下はYSZ電解質より小
さい。そしてその電力密度のピーク値の比較においては
YSZ固体電解質材料がおよそ0.8W /cm2 と最も
低く、アルミナ配合なしのScSZ固体電解質材料(1
1ScSZ材料)の電力密度が1.2 W/cm2 、アル
ミナ20重量%配合ScSZ固体電解質材料(11Sc
SZ20A材料)の電力密度が1.1W/cm2と、いず
れもYSZ固体電解質材料よりも高い電力密度のピーク
値を示すことがわかる。
On the other hand, when looking at the power characteristics, the YSZ solid electrolyte material shows a peak value of the power density at about 400 mA in comparison with the same plate thickness (250 μm), and the power density lowers most at higher current values. large.
On the other hand, ScSZ electrolyte (without Al 2 O 3 compound and Al
Each of 20% by weight of 2 O 3 shows a peak value of power density at about 500 mA, and the decrease in current density at higher current values is smaller than that of YSZ electrolyte. In comparison of the peak value of the power density, YSZ solid electrolyte material has the lowest value of about 0.8 W / cm 2, and ScSZ solid electrolyte material without alumina blending (1
1ScSZ material) having a power density of 1.2 W / cm 2 , and 20% by weight alumina mixed ScSZ solid electrolyte material (11Sc).
It can be seen that the power density of the SZ20A material) is 1.1 W / cm 2 and that both show higher peak values of the power density than the YSZ solid electrolyte material.

【0023】但し、アルミナ配合の11ScSZ20A
電解質の方がアルミナを配合しない11ScSZ電解質
よりも電力密度のピーク値は低い。しかしアルミナを配
合しても板厚を薄くしたもの(板厚100μm)では、
板厚の厚いもの(板厚250μm)よりも電力密度のピ
ーク値が高い(1.4W/cm2)ことはもとより、アル
ミナ配合しない11ScSZ電解質材料との比較でも板
厚を薄くすることにより高い電力密度のピーク値を示す
ことがわかる。
However, 11ScSZ20A containing alumina
The electrolyte has a lower peak value of power density than the 11ScSZ electrolyte containing no alumina. However, even if alumina is added, if the plate thickness is reduced (plate thickness 100 μm),
The peak value of the power density is higher (1.4 W / cm 2 ) than the thick plate (plate thickness 250 μm), and the high power is obtained by reducing the plate thickness even in comparison with 11ScSZ electrolyte material not containing alumina. It can be seen that the peak value of the density is shown.

【0024】そしてこの図2に示した実験結果より、Y
SZ電解質材料よりも高い電力密度が得られScSZ固
体電解質材料にアルミナを配合することによりその電力
密度は若干低下するがその板厚を薄くすることによりそ
の電力密度の低下は解消され、逆に高くすることもでき
ることがわかった。そして後にも述べるが、ScSZ電
解質材料にアルミナ(Al23)を配合することにより
電解質材料としての強度が高くなり、そのために板厚の
薄肉化が図れ、それにより電力密度を高めることができ
るものである。
From the experimental results shown in FIG. 2, Y
A power density higher than that of the SZ electrolyte material is obtained, and the power density is slightly decreased by mixing alumina into the ScSZ solid electrolyte material, but the decrease in the power density is eliminated by reducing the plate thickness, and conversely, it is high. It turns out that you can also do it. And, as will be described later, by adding alumina (Al 2 O 3 ) to the ScSZ electrolyte material, the strength as the electrolyte material becomes high, and therefore the plate thickness can be made thin, and thereby the power density can be increased. It is a thing.

【0025】図3は、スカンジア安定化ジルコニア(S
cSZ)電解質中のスカンジア(Sc23)の配合比率
を変え、つまりSc23の固溶量を変えることにより、
このScSZ電解質の導電率特性に対する温度依存性を
調べた結果を示している。但し、この実験では、ScS
Z電解質中にはAl23が全く配合されていない。横軸
に温度変数1000/T[1/K](K:絶対温度)を
示し、縦軸に導電率変数log σ[S/cm]を示してい
る。
FIG. 3 shows scandia-stabilized zirconia (S
cSZ) By changing the compounding ratio of scandia (Sc 2 O 3 ) in the electrolyte, that is, by changing the solid solution amount of Sc 2 O 3 ,
The results of examining the temperature dependence of the conductivity characteristics of this ScSZ electrolyte are shown. However, in this experiment, ScS
Al 2 O 3 is not incorporated in the Z electrolyte at all. The horizontal axis represents the temperature variable 1000 / T [1 / K] (K: absolute temperature), and the vertical axis represents the conductivity variable log σ [S / cm].

【0026】ScSZ電解質中のスカンジア(Sc
23)の配合比率を8〜15モル%までいろいろ変えて
みたが、その結果8モル%ScSZ電解質が最も導電率
特性に優れることがわかる。そして温度変数1000/
T[1/K]がおよそ1.1 以下(およそ650K以
下)程度の温度ではスカンジア配合比率(スカンジア固
溶量)の違いによる導電率特性に有意差は認められない
が、温度変数が1.1 以上(およそ650K以上)の温
度ではスカンジアの配合比率が高くなるにつれて、つま
りスカンジアの固溶量が増すにつれて導電率特性の低下
が目立つ傾向にある。このことよりこの固体電解質型燃
料電池(SOFC)の使用温度環境によってスカンジア
の配合比率を考慮することが必要であることがわかる。
Scandia (Sc) in ScSZ electrolyte
The composition ratio of 2 O 3 ) was variously changed to 8 to 15 mol%, and as a result, it was found that the 8 mol% ScSZ electrolyte was the most excellent in the conductivity characteristics. And temperature variable 1000 /
At a temperature where T [1 / K] is about 1.1 or less (about 650K or less), there is no significant difference in the conductivity characteristics due to the difference in scandia compounding ratio (scandia solid solution amount), but the temperature variable is 1. At a temperature of 1 or higher (about 650 K or higher), the conductivity characteristic tends to be conspicuously deteriorated as the scandia compounding ratio increases, that is, as the scandia solid solution amount increases. This shows that it is necessary to consider the mixing ratio of scandia depending on the operating temperature environment of this solid oxide fuel cell (SOFC).

【0027】図4は、スカンジア安定化ジルコニア(S
cSZ)電解質中に含有されるアルミナ(Al23)の
含有量とその電解質の導電率(1273Kにおける)と
の関係を示している。ScSZ電解質は11モル%Sc
23−89モル%ZrO2 のものを用い、これにAl2
3を0重量%〜40重量%の範囲で含有させている。
横軸にAl23の含有量を示し、縦軸に導電率σ[S/
cm]を示している。
FIG. 4 shows scandia-stabilized zirconia (S
The relationship between the content of alumina (Al 2 O 3 ) contained in the cSZ) electrolyte and the conductivity of the electrolyte (at 1273K) is shown. ScSZ electrolyte is 11 mol% Sc
2 O 3 -89 mol% ZrO 2 was used, and Al 2
O 3 is contained in the range of 0% by weight to 40% by weight.
The horizontal axis indicates the content of Al 2 O 3 , and the vertical axis indicates the conductivity σ [S /
cm].

【0028】その結果、このScSZ電解質の導電率
は、Al23を全く含有させない状態で最も高く、Al
23の含有量を増していくにつれて低下していくことが
わかる。そしてAl23の含有量が20重量%程度まで
は導電率の値として使用に耐え得るが、20重量%を越
えると導電率の低下も大きく、使用に耐え得ないものと
なってしまうことがわかった。
As a result, the conductivity of this ScSZ electrolyte is the highest when Al 2 O 3 is not contained at all.
It can be seen that the content decreases as the content of 2 O 3 increases. And, if the content of Al 2 O 3 is up to about 20% by weight, it can be used as a value of conductivity, but if it exceeds 20% by weight, the decrease in conductivity is large and it cannot be used. I understood.

【0029】図5は、さらに11モル%スカンジア(S
23)配合のスカンジア安定化ジルコニア(11Sc
SZ)電解質材料と、これにアルミナ(Al23)を2
0重量%配合したスカンジア安定化ジルコニア(11S
cSZ+20%Al23)電解質材料との比較におい
て、曲げ強度[MPa]と破壊確率[%]との関係を表
わす機械的特性のデータを示している。この試験は、J
IS R 1601のセラミックス曲げ試験方法に因るも
のである。
FIG. 5 further shows that 11 mol% scandia (S
Scandia-stabilized zirconia (11Sc) containing c 2 O 3 )
SZ) electrolyte material and alumina (Al 2 O 3 ) 2
Scandia Stabilized Zirconia (11S
In comparison with the cSZ + 20% Al 2 O 3 ) electrolyte material, the data of mechanical properties showing the relationship between the bending strength [MPa] and the fracture probability [%] are shown. This test is J
This is due to the ceramic bending test method of ISR1601.

【0030】この結果、11ScSZ電解質材料と11
ScSZ+20%Al23電解質材料はともに、曲げ強
度と破壊確率とがほぼ直線的な比例関係を示している
が、明らかにアルミナを配合した11ScSZ+20%
Al23電解質材料の方がアルミナを配合しない11S
cSZ電解質材料よりも高い曲げ強度で低い破壊確率を
示すことがわかる。したがってこの試験データよりSc
SZ固体電解質材料にAl23を分散配合させることに
より曲げ強度が向上し、かつ破壊強度に優れることが確
認された。
As a result, 11ScSZ electrolyte material and
Both ScSZ + 20% Al 2 O 3 electrolyte materials show a nearly linear proportional relationship between bending strength and fracture probability, but it is apparent that 11ScSZ + 20% containing alumina is mixed.
Al 2 O 3 electrolyte material does not contain alumina 11S
It can be seen that the bending strength is higher than that of the cSZ electrolyte material, and the fracture probability is low. Therefore, from this test data, Sc
It was confirmed that the bending strength was improved and the breaking strength was excellent by dispersing and mixing Al 2 O 3 in the SZ solid electrolyte material.

【0031】表1には、本発明に係るScSZ固体電解
質(Al23を配合したもの)と、従来から知られてい
るYSZ固体電解質、および比較用としてAl23を配
合しないScSZ電解質との間の既に前述した導電率特
性のほか、機械的特性(曲げ強度、破壊靭性強度、ビッ
カース硬さ、熱膨張係数、結晶構造)の比較を数値的に
示している。
Table 1 shows the ScSZ solid electrolyte according to the present invention (containing Al 2 O 3 ), the YSZ solid electrolyte conventionally known, and the ScSZ electrolyte containing no Al 2 O 3 for comparison. In addition to the above-mentioned electrical conductivity characteristics, numerical comparisons of mechanical characteristics (bending strength, fracture toughness strength, Vickers hardness, coefficient of thermal expansion, crystal structure) between the above are shown numerically.

【0032】[0032]

【表1】 [Table 1]

【0033】YSZ電解質については3モル%と8モル
%のイットリウム固溶量のものを示し、ScSZ電解質
については8モル%と11モル%のスカンジア固溶量の
もの(いずれもアルミナを全く配合しないものと、アル
ミナを20重量%配合したもの)を示している。
YSZ electrolytes with yttrium solid solution amounts of 3 mol% and 8 mol% are shown, and ScSZ electrolytes with scandia solid solution amounts of 8 mol% and 11 mol% (neither alumina is blended at all). And those containing 20% by weight of alumina).

【0034】この表よりわかるように、導電率について
は既に図2ないし図4でも説明したようにScSZ電解
質(アルミナを配合しないもの)がYSZ電解質よりも
優れているが、ScSZ電解質にアルミナを20重量%
も配合すると、YSZ電解質とほとんど同程度まで低下
してしまうことを示している。曲げ強度やビッカース硬
さでは若干YSZ電解質の方がScSZ電解質(アルミ
ナを配合しないもの)よりも高い値を示しているが、S
cSZ電解質にアルミナを20重量%配合したもので
は、逆にYSZ電解質よりも曲げ強度、破壊強度、ビッ
カース硬さにおいて格段に優れているとの結果が得られ
た。また熱膨張係数もScSZ電解質(アルミナ配合)
の方がYSZ電解質よりも値が小さく、このことは高温
環境における熱膨張ひずみ量が小さく、熱変形を受け難
いことを意味する。
As can be seen from this table, regarding the conductivity, the ScSZ electrolyte (which does not contain alumina) is superior to the YSZ electrolyte as already explained in FIGS. 2 to 4, but 20% alumina is added to the ScSZ electrolyte. weight%
It is shown that the compounding ratio also decreases to almost the same level as the YSZ electrolyte. The bending strength and Vickers hardness of the YSZ electrolyte are slightly higher than those of the ScSZ electrolyte (without alumina), but S
On the contrary, the result obtained by adding 20% by weight of alumina to the cSZ electrolyte was far superior to the YSZ electrolyte in bending strength, breaking strength and Vickers hardness. Also, the coefficient of thermal expansion is ScSZ electrolyte (alumina blend)
Has a smaller value than the YSZ electrolyte, which means that the amount of thermal expansion strain in a high temperature environment is small and it is less susceptible to thermal deformation.

【0035】したがってこの表から言えることは、Sc
SZ電解質にアルミナ(Al23)を20重量%も配合
する必要はないが、それよりも少ない配合量で従来一般
に知られているYSZ電解質以上の導電率が得られ、し
かも高温強度の高い機械的特性に優れたものが得られる
ことがわかる。
Therefore, what can be said from this table is that Sc
It is not necessary to mix 20% by weight of alumina (Al 2 O 3 ) into the SZ electrolyte, but with a smaller amount, a conductivity higher than that of the YSZ electrolyte conventionally known can be obtained, and high temperature strength is high. It can be seen that the one having excellent mechanical properties can be obtained.

【0036】そしてその結果、本発明のアルミナ分散型
高強度ScSZ固体電解質によれば、従来のYSZ電解
質よりも高い強度が得られるため、それだけ電解質板の
板厚を薄くできる。これよりいっそう材料の内部抵抗を
下げることができ、高い導電率の確保により電気特性の
向上が図れる。
As a result, according to the alumina-dispersed high-strength ScSZ solid electrolyte of the present invention, higher strength than that of the conventional YSZ electrolyte can be obtained, and the plate thickness of the electrolyte plate can be reduced accordingly. As a result, the internal resistance of the material can be further reduced, and the electrical characteristics can be improved by ensuring high conductivity.

【0037】また逆に本発明のアルミナ分散型高強度S
cSZ固体電解質の板厚を従来のYSZ電解質と同じと
すれば、機械的強度に優れる分、平板面積を大きく取る
ことができ、大容量の固体電解質型燃料電池(SOF
C)にも対応できるものである。しかも電解質板の強度
が確保できることから燃料電池としての信頼性が向上
し、機械的・熱的疲労破壊がしにくいことにより長期間
の使用にも耐え得るものである。
On the contrary, the alumina dispersion type high strength S of the present invention
If the plate thickness of the cSZ solid electrolyte is the same as that of the conventional YSZ electrolyte, the plate area can be increased due to the excellent mechanical strength, and a large capacity solid oxide fuel cell (SOF) can be obtained.
It is also compatible with C). Moreover, since the strength of the electrolyte plate can be secured, the reliability as a fuel cell is improved, and mechanical and thermal fatigue damage is less likely to occur, so that it can withstand long-term use.

【0038】尚、上記実施例ではScSZ電解質に分散
配合させる高強度複合材料としてアルミナ(Al23
についてのみしか示していないが、同目的と材料として
ムライト(Mullite)などの他の材料も適用できる。ま
たこの高強度複合材料はファイバー状で分散配合するな
ど種々の応用は可能である。
In the above example, alumina (Al 2 O 3 ) was used as the high-strength composite material to be dispersed and mixed in the ScSZ electrolyte.
However, other materials such as mullite are applicable as the same purpose and material. Further, this high-strength composite material can be applied in various ways such as being dispersed and compounded in a fiber form.

【0039】[0039]

【発明の効果】以上各種実験例に示したように、本発明
はスカンジア安定化ジルコニア固体電解質材料にアルミ
ナなどの高強度複合材料を分散させることにより、高い
導電率特性のみならず、機械的強度の高い固体電解質板
が得られるものである。したがって本発明の固体電解質
材料を固体電解質型燃料電池に適用すれば、大容量・大
発電効率化が図れる等の多くの効果を奏し、産業上の有
益性は極めて高いものである。
As shown in the various experimental examples above, the present invention has not only high electrical conductivity but also high mechanical strength by dispersing high strength composite material such as alumina in scandia-stabilized zirconia solid electrolyte material. It is possible to obtain a high solid electrolyte plate. Therefore, when the solid electrolyte material of the present invention is applied to a solid oxide fuel cell, many effects such as large capacity and large power generation efficiency can be achieved, and the industrial benefit is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る複合材分散強化型固体電解質材料
を固体電解質型燃料電池における固体電解質板として製
造する場合の製造工程図である。
FIG. 1 is a manufacturing process diagram in the case of manufacturing a composite material dispersion-strengthened solid electrolyte material according to the present invention as a solid electrolyte plate in a solid oxide fuel cell.

【図2】本発明に係るスカンジア安定化ジルコニア(S
cSZ)固体電解質材料と、従来一般に知られているイ
ットリア安定化ジルコニア(YSZ)固体電解質材料と
の発電比較特性データを示した図である。
FIG. 2 Scandia-stabilized zirconia (S
It is the figure which showed the electric power generation comparison characteristic data of the cSZ) solid electrolyte material and the yttria-stabilized zirconia (YSZ) solid electrolyte material generally known conventionally.

【図3】ScSZ固体電解質材料の導電率特性に対する
温度依存性のデータを示した図である。
FIG. 3 is a view showing data on temperature dependence of conductivity characteristics of ScSZ solid electrolyte material.

【図4】本発明に係るScSZ固体電解質材料中に含有
されるアルミナ(Al23)の含有量と導電率との関係
をを示した図である。
FIG. 4 is a diagram showing the relationship between the content of alumina (Al 2 O 3 ) contained in the ScSZ solid electrolyte material according to the present invention and the electrical conductivity.

【図5】本発明に係るScSZ固体電解質材料のアルミ
ナを配合しないものとアルミナを配合したものとの比較
における、曲げ強度と破壊確率との関係を表わす機械的
特性データを示した図である。
FIG. 5 is a diagram showing mechanical property data showing the relationship between bending strength and fracture probability in comparison between the ScSZ solid electrolyte material according to the present invention in which alumina is not mixed and the ScSZ solid electrolyte material which is mixed with alumina.

【図6】本発明に係る複合材分散強化型固体電解質材料
が適用される、従来一般に知られる平板型の固体電解質
型燃料電池(SOFC)の単セル構造の一例を示した図
である。
FIG. 6 is a diagram showing an example of a single cell structure of a conventionally known flat plate type solid oxide fuel cell (SOFC) to which the composite material dispersion strengthened solid electrolyte material according to the present invention is applied.

【図7】(a)は図6に示した平板型燃料電池における
外部マニホールドタイプのもの、(b)は同じく内部マ
ニホールドタイプのものの概略構成を示した図である。
7A is a diagram showing a schematic configuration of an external manifold type of the flat plate type fuel cell shown in FIG. 6, and FIG. 7B is a diagram showing a schematic configuration of an internal manifold type of the same.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 スカンジア安定化ジルコニア電解質材料
を主成分とし、これに高強度複合材料を分散させてなる
ことを特徴とする複合材分散強化型固体電解質材料。
1. A composite dispersion-strengthened solid electrolyte material comprising a scandia-stabilized zirconia electrolyte material as a main component, and a high-strength composite material dispersed therein.
【請求項2】 前記高強度複合材料がアルミナまたはム
ライトであることを特徴とする請求項1に記載の複合材
分散強化型固体電解質材料。
2. The composite material dispersion-strengthened solid electrolyte material according to claim 1, wherein the high-strength composite material is alumina or mullite.
【請求項3】 前記スカンジア安定化ジルコニア電解質
材料にはスカンジアが8〜15モル%固溶され、前記高
強度複合材料は前記スカンジア安定化ジルコニア電解質
材料中に0.5 〜20重量%混合されてなることを特徴
とする請求項1に記載の複合材分散強化型固体電解質材
料。
3. The scandia-stabilized zirconia electrolyte material contains 8 to 15 mol% of scandia as a solid solution, and the high-strength composite material is mixed with 0.5 to 20 wt% of the scandia-stabilized zirconia electrolyte material. The composite material dispersion-strengthened solid electrolyte material according to claim 1, wherein
JP5171208A 1993-06-17 1993-06-17 Solid electrolytic material reinforced by dispersed composite material Pending JPH0769720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5171208A JPH0769720A (en) 1993-06-17 1993-06-17 Solid electrolytic material reinforced by dispersed composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5171208A JPH0769720A (en) 1993-06-17 1993-06-17 Solid electrolytic material reinforced by dispersed composite material

Publications (1)

Publication Number Publication Date
JPH0769720A true JPH0769720A (en) 1995-03-14

Family

ID=15919041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5171208A Pending JPH0769720A (en) 1993-06-17 1993-06-17 Solid electrolytic material reinforced by dispersed composite material

Country Status (1)

Country Link
JP (1) JPH0769720A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076622A (en) * 1993-06-17 1995-01-10 Toho Gas Co Ltd Crystal phase stabilized solid electrolyte material
JPH10214519A (en) * 1996-12-31 1998-08-11 Praxair Technol Inc Solid electrolyte membrane having component for improving mechanical and catalytic characteristics
JP2000128545A (en) * 1998-08-26 2000-05-09 Praxair Technol Inc Production of ceramic film
JP2003022822A (en) * 2001-07-09 2003-01-24 Nippon Shokubai Co Ltd Scandia stabilized zirconia electrolyte
JP2003068324A (en) * 2001-06-15 2003-03-07 Ngk Spark Plug Co Ltd Oxygen ion conductive solid electrolytic and electrochemical device and solid electrolytic fuel cell using same
JP2004149385A (en) * 2002-10-31 2004-05-27 Ngk Spark Plug Co Ltd Method of producing oxygen ion conductive solid electrolyte
JP2005520306A (en) * 2001-11-21 2005-07-07 コーニング インコーポレイテッド Solid oxide fuel cell stack and packet structure
JP2009245628A (en) * 2008-03-28 2009-10-22 Mitsubishi Materials Corp Solid electrolye and flat-type solid-oxide fuel cell
WO2019003422A1 (en) * 2017-06-30 2019-01-03 第一稀元素化学工業株式会社 Scandia-stabilized zirconia powder for solid oxide fuel cells, method for producing same, scandia-stabilized zirconia sintered body for solid oxide fuel cells, method for producing said scandia-stabilized zirconia sintered body for solid oxide fuel cells, and solid oxide fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170363A (en) * 1990-10-31 1992-06-18 Tonen Corp Solid electrolyte made of polycrystalline sintered body
JPH04334507A (en) * 1991-05-08 1992-11-20 Fuji Electric Co Ltd Degassing device
JPH05171209A (en) * 1991-12-16 1993-07-09 Toyota Motor Corp Rubber die for rubber press forming
JPH06107462A (en) * 1992-08-12 1994-04-19 Nippon Telegr & Teleph Corp <Ntt> Oxide ion conductive body and solid fuel cell
JPH076622A (en) * 1993-06-17 1995-01-10 Toho Gas Co Ltd Crystal phase stabilized solid electrolyte material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170363A (en) * 1990-10-31 1992-06-18 Tonen Corp Solid electrolyte made of polycrystalline sintered body
JPH04334507A (en) * 1991-05-08 1992-11-20 Fuji Electric Co Ltd Degassing device
JPH05171209A (en) * 1991-12-16 1993-07-09 Toyota Motor Corp Rubber die for rubber press forming
JPH06107462A (en) * 1992-08-12 1994-04-19 Nippon Telegr & Teleph Corp <Ntt> Oxide ion conductive body and solid fuel cell
JPH076622A (en) * 1993-06-17 1995-01-10 Toho Gas Co Ltd Crystal phase stabilized solid electrolyte material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076622A (en) * 1993-06-17 1995-01-10 Toho Gas Co Ltd Crystal phase stabilized solid electrolyte material
JPH10214519A (en) * 1996-12-31 1998-08-11 Praxair Technol Inc Solid electrolyte membrane having component for improving mechanical and catalytic characteristics
JP2000128545A (en) * 1998-08-26 2000-05-09 Praxair Technol Inc Production of ceramic film
JP2003068324A (en) * 2001-06-15 2003-03-07 Ngk Spark Plug Co Ltd Oxygen ion conductive solid electrolytic and electrochemical device and solid electrolytic fuel cell using same
JP2003022822A (en) * 2001-07-09 2003-01-24 Nippon Shokubai Co Ltd Scandia stabilized zirconia electrolyte
JP2005520306A (en) * 2001-11-21 2005-07-07 コーニング インコーポレイテッド Solid oxide fuel cell stack and packet structure
JP2004149385A (en) * 2002-10-31 2004-05-27 Ngk Spark Plug Co Ltd Method of producing oxygen ion conductive solid electrolyte
JP2009245628A (en) * 2008-03-28 2009-10-22 Mitsubishi Materials Corp Solid electrolye and flat-type solid-oxide fuel cell
WO2019003422A1 (en) * 2017-06-30 2019-01-03 第一稀元素化学工業株式会社 Scandia-stabilized zirconia powder for solid oxide fuel cells, method for producing same, scandia-stabilized zirconia sintered body for solid oxide fuel cells, method for producing said scandia-stabilized zirconia sintered body for solid oxide fuel cells, and solid oxide fuel cell
US11462760B2 (en) 2017-06-30 2022-10-04 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Scandia-stabilized zirconia powder for solid oxide fuel cells, method for producing same, scandia-stabilized zirconia sintered body for solid oxide fuel cells, method for producing said scandia-stabilized zirconia sintered body for solid oxide fuel cells, and solid oxide fuel cell

Similar Documents

Publication Publication Date Title
US4749632A (en) Sintering aid for lanthanum chromite refractories
Savaniu et al. Reduction studies and evaluation of surface modified A-site deficient La-doped SrTiO 3 as anode material for IT-SOFCs
JP5263790B2 (en) Interconnecting member for solid oxide fuel cell comprising metal and titanate
US10050295B2 (en) Solid electrolyte laminate, method for manufacturing solid electrolyte laminate, and fuel cell
JP2000340240A (en) High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the same
EP2795708B1 (en) Solid oxide fuel cell interconnects including a ceramic interconnect material and partially stabilized zirconia
JP5311913B2 (en) Method for producing high ion conductive solid electrolyte material
KR20130099704A (en) Functional layer material for solid oxide fuel cell, functional layer manufactured using the material and solid oxide fuel cell including the functional layer
WO1992007393A1 (en) Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor
US5958304A (en) Doped lanthanum chromite material for bipolar interconnects for solid oxide fuel cells
WO2013048720A1 (en) Scandium-doped bzcy electrolytes
CN102738492A (en) Material for solid oxide fuel cell, cathode including the material, and solid oxide fuel cell including the same
CN102842722A (en) Material for solid oxide fuel cell, cathode including the material, and solid oxide fuel cell including the material
JPH0769720A (en) Solid electrolytic material reinforced by dispersed composite material
JP3620800B2 (en) Method for producing solid electrolyte sintered body
JP3458863B2 (en) Solid electrolyte sintered body for solid oxide fuel cell
JP3661676B2 (en) Solid oxide fuel cell
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JP3411064B2 (en) Method for producing solid electrolyte sintered body for solid oxide fuel cell
JP5436588B2 (en) High ion conductive solid electrolyte material and sintered body, and solid electrolyte fuel cell
JP3501409B2 (en) Self-supporting flat-plate solid electrolyte fuel cell
Akduman et al. Fabrication and characterization of micro-tubular solid oxide fuel cells with yttria stabilized zirconia and Hafnia-Erbia co-doped bismuth oxide bilayer electrolyte
JP2003217597A (en) Solid electrolyte type fuel cell
JP5596594B2 (en) FUEL ELECTRODE MATERIAL FOR SOLID OXIDE FUEL CELL, FUEL ELECTRODE, SOLID OXIDE FUEL CELL AND METHOD FOR PRODUCING FUEL ELECTRODE
JP3351865B2 (en) Fuel electrode for solid oxide fuel cell and self-standing membrane flat solid electrolyte fuel cell using this fuel electrode