Nothing Special   »   [go: up one dir, main page]

JPH0719193A - Displacement control inlet vane for fluid machine - Google Patents

Displacement control inlet vane for fluid machine

Info

Publication number
JPH0719193A
JPH0719193A JP16456592A JP16456592A JPH0719193A JP H0719193 A JPH0719193 A JP H0719193A JP 16456592 A JP16456592 A JP 16456592A JP 16456592 A JP16456592 A JP 16456592A JP H0719193 A JPH0719193 A JP H0719193A
Authority
JP
Japan
Prior art keywords
inlet vane
vane
fluid machine
inlet
rotary shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16456592A
Other languages
Japanese (ja)
Inventor
Naoyoshi Sango
直義 山後
Tsutomu Shimada
島田  勉
Hiroyoshi Miura
啓悦 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP16456592A priority Critical patent/JPH0719193A/en
Publication of JPH0719193A publication Critical patent/JPH0719193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce clearance area at the totally closed time of an inlet vane so as to enlarge a displacement control range by forming the tip part of the inlet vane into circular arc shape, and forming a rotary shaft on the inside into spherical shape. CONSTITUTION:A fluid passes between a rotary shaft 2 and a casing 3 and rotates an inlet vane 1, supported at a casing 3, by 90 deg. to open/close it, thus adjusting the displacement of a fluid machine. In this case, the rotary shaft 2 is formed into spherical shape, and the tip part of the inlet vane 1 is formed into circular arc shape. The area of a clearance between the tip part of the inlet vane 1 and the rotary shaft 2 can be thereby made small, so that leakage from the vane part is reduced, and the flow of the fluid machine can be made small. As a result, a displacement throttling effect at the totally closed time of the inlet vane of the fluid machine can be heightened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体機械の容量制御イ
ンレットベーンに係り、特に、一軸多段遠心圧縮機等に
おいて、インレットベーン全閉時の容量絞り限界を広げ
るのに好適な容量制御インレットベーンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacity control inlet vane of a fluid machine, and particularly to a capacity control inlet vane suitable for expanding the capacity restriction limit when the inlet vane is fully closed in a single-shaft multi-stage centrifugal compressor or the like. Regarding

【0002】[0002]

【従来の技術】図4,図5および図6は一従来例を示す
図である。図5は図4の構造を示す断面図であり、図6
はインレットベーン全開時の構造を示し、1はインレッ
トベーン,2はこのインレットベーン内に設けられた回
転軸、3はインレットベーンの軸を支えるケーシングで
ある。流体は回転軸2とケーシング3の間を通りケーシ
ングにて支えられたインレットベーン1を回転し開閉さ
せることにより流体機械の容量を調節する。
2. Description of the Related Art FIGS. 4, 5 and 6 are views showing a conventional example. FIG. 5 is a sectional view showing the structure of FIG.
Shows a structure when the inlet vane is fully opened, 1 is an inlet vane, 2 is a rotating shaft provided in the inlet vane, and 3 is a casing which supports the shaft of the inlet vane. The fluid passes between the rotary shaft 2 and the casing 3 to rotate and open / close the inlet vane 1 supported by the casing to adjust the capacity of the fluid machine.

【0003】図4,図5および図6に示す従来例のイン
レットベーンは、回転軸2の形状が円筒であり、インレ
ットベーン1を回転させ開閉する時に、回転軸2とイン
レットベーン1の先端の干渉を避けるため、インレット
ベーン先端部は直線となっていた。このためインレット
ベーン1を全閉とした時に、インレットベーン1の先端
部と回転軸2との間のA部に大きく隙間があいていた。
In the conventional inlet vane shown in FIGS. 4, 5 and 6, the rotating shaft 2 has a cylindrical shape, and when the inlet vane 1 is rotated and opened / closed, the tip of the rotating shaft 2 and the inlet vane 1 are formed. The tip of the inlet vane was straight to avoid interference. Therefore, when the inlet vane 1 was fully closed, there was a large gap in the A portion between the tip of the inlet vane 1 and the rotating shaft 2.

【0004】なお、この種の装置として関連するものに
は、例えば、朝倉書店発行 生井武文著 送風機と圧縮
機 436頁に記載されている。
A related device of this kind is described in, for example, Takefumi Ikai, Blower and Compressor, page 436, published by Asakura Shoten.

【0005】[0005]

【発明が解決しようとする課題】図7は、インレットベ
ーン制御による流体機械の特性曲線を示す。インレット
ベーン制御は、インレットベーンの角度を変えることに
より、羽根車入口の絶対速度に回転と同方向の予旋回を
与えて流量と圧力を減少させる方法で、インレットベー
ンの角度を全閉に近づけることにより、特性曲線はa,
b,cのように圧力と流量が減少する。また、インレッ
トベーンが全閉の時にはdの特性曲線となる。この時に
はインレットベーンが全閉であるため予旋回が与えられ
ず、インレットベーン部の隙間の面積およびインレット
ベーンの上流側と下流側の差圧により流量がきまる。
FIG. 7 shows a characteristic curve of a fluid machine with inlet vane control. The inlet vane control is a method of changing the angle of the inlet vane to give a pre-rotation in the same direction as the rotation to the absolute speed of the impeller inlet to reduce the flow rate and the pressure, and to close the angle of the inlet vane to the fully closed state. Therefore, the characteristic curve is a,
The pressure and flow rate decrease like b and c. When the inlet vane is fully closed, the characteristic curve is d. At this time, since the inlet vane is fully closed, pre-turning is not given, and the flow rate is determined by the area of the gap of the inlet vane portion and the differential pressure between the upstream side and the downstream side of the inlet vane.

【0006】この時の流量Qは次式で表される。The flow rate Q at this time is expressed by the following equation.

【0007】[0007]

【数1】 [Equation 1]

【0008】ここで、Cは定数、Aはインレットベーン
全閉時の隙間の面積、ΔPはインレットベーンの上流側
と下流側の差圧である。
Here, C is a constant, A is the area of the gap when the inlet vane is fully closed, and ΔP is the differential pressure between the upstream side and the downstream side of the inlet vane.

【0009】従来技術において、インレットベーン全閉
時にインレットベーン先端部と回転軸の隙間の面積が大
きくなることから、上式の面積Aが大きくなり流体機械
の流量Qも大きくなることから、流体機械の容量絞り効
果が小さくなっていた。
In the prior art, when the inlet vane is fully closed, the area of the gap between the tip of the inlet vane and the rotating shaft becomes large, so the area A in the above equation becomes large and the flow rate Q of the fluid machine also becomes large. The capacity squeezing effect of was smaller.

【0010】本発明の目的は、インレットベーン全閉時
の隙間の面積を小さくすることによって流体機械の容量
制御範囲の拡大を図るようにした、容量制御インレット
ベーンを提供することにある。
It is an object of the present invention to provide a capacity control inlet vane which is designed to expand the capacity control range of a fluid machine by reducing the area of the gap when the inlet vane is fully closed.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明はインレットベーン先端部を円弧としその内
側にある回転軸を球形状とすることにより、インレット
ベーン全閉時にベーンと回転軸の間の隙間の面積を小さ
くした。
In order to achieve the above-mentioned object, the present invention uses an arc at the tip of the inlet vane and makes the rotating shaft inside the spherical shape so that the inlet vane and the rotating shaft are closed when the inlet vane is fully closed. The area of the gap between them has been reduced.

【0012】[0012]

【作用】本発明によれば、インレットベーン全閉時にベ
ーンと回転軸の隙間の面積を小さくすることができ、数
1に述べたように流量Qを小さくすることができる。こ
の結果、流体機械の容量絞り効果が大きくなり容量制御
範囲の拡大につながる。
According to the present invention, the area of the gap between the vane and the rotating shaft can be reduced when the inlet vane is fully closed, and the flow rate Q can be reduced as described in the equation (1). As a result, the capacity reduction effect of the fluid machine is increased, leading to an expansion of the capacity control range.

【0013】[0013]

【実施例】以下、本発明の一実施例を図面により説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1,図2および図3は、本発明のインレ
ットベーンの構造を示す図であり、図2は図1の構造を
示す断面図、図3はインレットベーン全開時の構造を示
す。1はインレットベーン,2はこのインレットベーン
内に設けられた回転軸、3はインレットベーンの軸を支
えるケーシングである。流体は回転軸2とケーシング3
の間を通り、ケーシングにて支えられたインレットベー
ン1を90°回転し開閉させることにより流体機械の容
量を調節する。
1, 2 and 3 are views showing the structure of the inlet vane of the present invention, FIG. 2 is a sectional view showing the structure of FIG. 1, and FIG. 3 shows the structure when the inlet vane is fully opened. Reference numeral 1 is an inlet vane, 2 is a rotating shaft provided in the inlet vane, and 3 is a casing that supports the shaft of the inlet vane. Fluid is rotating shaft 2 and casing 3
The capacity of the fluid machine is adjusted by rotating the inlet vane 1 which is supported by the casing by 90 ° and opened and closed.

【0015】図1,図2および図3に示す本発明のイン
レットベーンは、回転軸2を球形状とし,インレットベ
ーン1の先端部を円弧形状としたことにより、インレッ
トベーン1を全閉にした時、インレットベーン1の先端
部と回転軸2との隙間の面積を小さくすることができ、
流体機械の流量を小さくすることができる。したがっ
て、流体機械のインレットベーンを全閉とした時の、容
量絞り効果を高めることができる。
In the inlet vane of the present invention shown in FIGS. 1, 2 and 3, the rotating shaft 2 has a spherical shape and the tip of the inlet vane 1 has a circular arc shape so that the inlet vane 1 is fully closed. At this time, the area of the gap between the tip of the inlet vane 1 and the rotary shaft 2 can be reduced,
The flow rate of the fluid machine can be reduced. Therefore, when the inlet vane of the fluid machine is fully closed, the capacity reducing effect can be enhanced.

【0016】[0016]

【発明の効果】本発明によれば、インレットベーン全閉
時のベーン部からの洩れを小さくすることにより、流体
機械の容量絞り性能を高めることができる。
According to the present invention, by reducing the leakage from the vane portion when the inlet vane is fully closed, the capacity reduction performance of the fluid machine can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のインレットベーンの構造を示す説明
図。
FIG. 1 is an explanatory view showing the structure of an inlet vane of the present invention.

【図2】本発明のインレットベーンの構造を示す説明
図。
FIG. 2 is an explanatory view showing the structure of the inlet vane of the present invention.

【図3】本発明のインレットベーンの構造を示す説明
図。
FIG. 3 is an explanatory view showing the structure of the inlet vane of the present invention.

【図4】従来例のインレットベーンの構造を示す説明
図。
FIG. 4 is an explanatory view showing the structure of an inlet vane of a conventional example.

【図5】従来例のインレットベーンの構造を示す説明
図。
FIG. 5 is an explanatory view showing a structure of a conventional inlet vane.

【図6】従来例のインレットベーンの構造を示す説明
図。
FIG. 6 is an explanatory view showing a structure of a conventional inlet vane.

【図7】インレットベーン制御による流体機械の特性
図。
FIG. 7 is a characteristic diagram of a fluid machine with inlet vane control.

【符号の説明】[Explanation of symbols]

1…インレットベーン、2…回転軸、3…ケーシング。 1 ... Inlet vane, 2 ... Rotating shaft, 3 ... Casing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 啓悦 東京都千代田区神田駿河台四丁目3番地 日立テクノエンジリアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keietsu Miura 4-3, Surugadai Kanda, Chiyoda-ku, Tokyo Hitachi Techno Engineering Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】羽根車の上流側に設けられたインレットベ
ーン部を、インレットベーン内側の回転軸を球形状と
し、インレットベーン先端部を円弧形状としたことを特
徴とする流体機械の容量制御用インレットベーン。
1. A capacity control device for a fluid machine, characterized in that an inlet vane portion provided on an upstream side of an impeller has a rotating shaft inside the inlet vane formed in a spherical shape and an inlet vane tip portion formed in an arc shape. Inlet vane.
JP16456592A 1992-06-23 1992-06-23 Displacement control inlet vane for fluid machine Pending JPH0719193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16456592A JPH0719193A (en) 1992-06-23 1992-06-23 Displacement control inlet vane for fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16456592A JPH0719193A (en) 1992-06-23 1992-06-23 Displacement control inlet vane for fluid machine

Publications (1)

Publication Number Publication Date
JPH0719193A true JPH0719193A (en) 1995-01-20

Family

ID=15795584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16456592A Pending JPH0719193A (en) 1992-06-23 1992-06-23 Displacement control inlet vane for fluid machine

Country Status (1)

Country Link
JP (1) JPH0719193A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193695A (en) * 2000-01-12 2001-07-17 Mitsubishi Heavy Ind Ltd Compressor
KR20170106789A (en) * 2016-03-14 2017-09-22 한화테크윈 주식회사 A vane device for compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193695A (en) * 2000-01-12 2001-07-17 Mitsubishi Heavy Ind Ltd Compressor
KR20170106789A (en) * 2016-03-14 2017-09-22 한화테크윈 주식회사 A vane device for compressor

Similar Documents

Publication Publication Date Title
US4378194A (en) Centrifugal compressor
JP2975008B2 (en) Free rotor
JP4256196B2 (en) Variable form turbine
JP2009281197A (en) Mixed flow turbine
JPH06294397A (en) Radial flow compressor with casing stabilizing flow
KR20040002526A (en) Turbine
JP2004044576A (en) Compressor
JP2002129970A (en) Variable displacement turbine
JP2005023792A (en) Centrifugal compressor with variable vane
JPH0719193A (en) Displacement control inlet vane for fluid machine
JP6763804B2 (en) Centrifugal compressor
JP2000045784A (en) Variable capacity type turbo supercharger
JP3377172B2 (en) Variable vane type turbocharger
JP2001263078A (en) Variable capacity turbo charger
JPS61135998A (en) Multistage centrifugal compressor
JP5427900B2 (en) Mixed flow turbine
JPH05332150A (en) Variable displacement supercharger
JPH10299403A (en) Variable capacity radial turbine
JP7100993B2 (en) Centrifugal compressor and turbocharger
JP2780079B2 (en) Movable blade mixed flow pump
JPH0148361B2 (en)
KR100280009B1 (en) Low Noise High Airflow Sirocco Fan
JP2002129966A (en) Clearance forming device for variable displacement supercharger
JPS5915606A (en) Variable displacement type radial turbine device
JP4556369B2 (en) Variable capacity turbocharger