Nothing Special   »   [go: up one dir, main page]

JPH07155286A - Fluorescence observing apparatus - Google Patents

Fluorescence observing apparatus

Info

Publication number
JPH07155286A
JPH07155286A JP5304430A JP30443093A JPH07155286A JP H07155286 A JPH07155286 A JP H07155286A JP 5304430 A JP5304430 A JP 5304430A JP 30443093 A JP30443093 A JP 30443093A JP H07155286 A JPH07155286 A JP H07155286A
Authority
JP
Japan
Prior art keywords
fluorescence
light
wave length
laser diode
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5304430A
Other languages
Japanese (ja)
Other versions
JP3194660B2 (en
Inventor
Masaya Yoshihara
雅也 吉原
Sakae Takehata
榮 竹端
Mamoru Kaneko
守 金子
Masahiko Iida
雅彦 飯田
Katsuya Suzuki
克哉 鈴木
Yasuhiro Ueda
康弘 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP30443093A priority Critical patent/JP3194660B2/en
Publication of JPH07155286A publication Critical patent/JPH07155286A/en
Application granted granted Critical
Publication of JP3194660B2 publication Critical patent/JP3194660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE:To make an apparatus miniaturized and inexpensive by providing the apparatus with a wave length controlling means which changes the wave length of a laser light by controlling the temp. of a semiconductor and changing selectively the range of wave length entered into a fluorescence detecting apparatus detecting fluorescence in accordance with change in wave length by using a filter means. CONSTITUTION:An electronic cooling and heating means 24 fitted on a laser diode 21 in an apparatus 5 for a light source for excitation for observing fluorescence is driven by a electric source circuit 25 for a heating means and they are controlled by a controlling means 26. This controlling means 26 is connected with a wave length selection indicating means and it controls the temp. of a laser diode 21 through the electronic cooling and heating means 24 in such a way that the laser diode 21 is made emitted by an indicated wave length. In addition, a controlling means 26 indicates selection of the wave length of the excited light and when the wave length of the fluorescence emitted by the excited light with the wave length, it indicates selection of the wave length and a filter through which the wave length of the fluorescence is selectively transmitted is set on a light path of a fluorescence photographing system through a filter switching control means 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザダイオードの温度
を制御して励起用光の波長を可変設定する蛍光観察装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescence observation apparatus for controlling the temperature of a laser diode to variably set the wavelength of excitation light.

【0002】[0002]

【従来の技術】近年、生体からの自家蛍光や、生体へ薬
物を注入し、その薬物の蛍光を2次元画像として検出
し、その蛍光像から、生体組織の変性や癌等の疾患状態
(例えば、疾患の種類や浸潤範囲)を診断する技術があ
る。
2. Description of the Related Art In recent years, autofluorescence from a living body or injection of a drug into a living body, the fluorescence of the drug is detected as a two-dimensional image, and from the fluorescence image, disease states such as degeneration of living tissue and cancer (eg, , Type of disease and extent of infiltration).

【0003】生体組織に光を照射するとその励起光より
長い波長の蛍光が発生する。生体における蛍光物質とし
て、例えばNADH(ニコチンアミドアデニンヌクレオ
チド),FMN(フラビンモノヌクレオチド),ピリジ
ンヌクレオチド等がある。最近では、このような、生体
内因物質と、疾患との相互関係が明確になってきた。ま
た、HpD(ヘマトポルフィリン),Photofri
n,ALA(δ−amino levulinic a
cid)は、癌への集積性があり、これを生体内に注入
し、前記物質の蛍光を観察することで疾患部位を診断で
きる。
When light is applied to living tissue, fluorescence having a wavelength longer than that of the excitation light is generated. Examples of fluorescent substances in the living body include NADH (nicotinamide adenine nucleotide), FMN (flavin mononucleotide), and pyridine nucleotide. Recently, such an interrelationship between an endogenous substance and a disease has become clear. In addition, HpD (hematoporphyrin), Photofri
n, ALA (δ-amino levulinica
Cid) has the property of accumulating in cancer, and by injecting this into a living body and observing the fluorescence of the substance, the diseased site can be diagnosed.

【0004】ところで、上記蛍光観察を行う場合、励起
用レーザ光を対象となる診断部位に照射することが一般
的に行われる。この場合、励起用レーザ光は診断部位に
応じて、その励起に適した波長が必要になる。
By the way, when performing the above-mentioned fluorescence observation, it is general to irradiate a target diagnostic region with a laser beam for excitation. In this case, the excitation laser light needs to have a wavelength suitable for the excitation depending on the diagnosis site.

【0005】[0005]

【発明が解決しようとする課題】このため、励起用レー
ザ装置としては複数のレーザ、又は複数の波長を発振で
きる色素レーザ、アレキサンドライトレーザ等が必要に
なり、装置が大型化したり、高価になってしまう欠点が
あった。
Therefore, a plurality of lasers, a dye laser capable of oscillating a plurality of wavelengths, an alexandrite laser, or the like is required as an excitation laser device, which makes the device large and expensive. There was a drawback.

【0006】本発明は上述した点にかんがみてなされた
もので、小型化及び低価格化できる蛍光観察装置を提供
することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a fluorescence observation apparatus which can be reduced in size and cost.

【0007】[0007]

【課題を解決するための手段および作用】本発明では半
導体レーザを蛍光観察のための励起用光源に用いる蛍光
観察装置において、半導体レーザの温度を制御すること
により、該半導体レーザから出射されるレーザ光の波長
を変える波長制御手段と、前記波長制御手段による波長
変化に応じて蛍光を検出するための蛍光検出装置に入射
される波長域を選択的に変えるフィルタ手段とを設ける
ことにより、1つの半導体レーザで使用できる波長領域
を広げ、他のレーザ発生装置を用いる場合よりも小型化
でき、しかも低価格で実現可能にしている。
In the present invention, in a fluorescence observation apparatus using a semiconductor laser as an excitation light source for fluorescence observation, a laser emitted from the semiconductor laser is controlled by controlling the temperature of the semiconductor laser. By providing wavelength control means for changing the wavelength of light and filter means for selectively changing the wavelength range incident on the fluorescence detection device for detecting fluorescence according to the wavelength change by the wavelength control means, The wavelength range that can be used in semiconductor lasers has been expanded, making it possible to achieve smaller size and lower cost than when using other laser generators.

【0008】[0008]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は本発明の第1実施例の蛍光観察装置の構成
を示す。図1に示す第1実施例の蛍光観察装置1は、内
視鏡2と、この内視鏡2に着脱自在で装着され、通常観
察及び蛍光観察の撮像手段を備えたTVカメラ3と、内
視鏡2に通常の観察のための照明光を供給する内視鏡用
光源装置4と、蛍光観察のための励起光を発生する励起
用光源装置5と、TVカメラ3と接続され、通常の映像
処理を行うCCU6と、このCCU6の出力信号により
内視鏡像を表示する内視鏡像モニタ7と、TVカメラ3
と接続され、蛍光像を生成する信号処理及び蛍光像を表
示する蛍光診断装置8と、励起用光源装置5と接続さ
れ、励起光に応じてTVカメラ3内の蛍光撮像系で使用
するフィルタを切換えるフィルタ切換え制御手段9と、
通常観察及び蛍光観察とを切換える指示を行う観察切換
手段10とから構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of the fluorescence observation apparatus according to the first embodiment of the present invention. The fluorescence observation apparatus 1 of the first embodiment shown in FIG. 1 includes an endoscope 2, a TV camera 3 that is detachably attached to the endoscope 2 and that is equipped with image pickup means for normal observation and fluorescence observation. The endoscope light source device 4 for supplying illumination light for normal observation to the endoscope 2, the excitation light source device 5 for generating excitation light for fluorescence observation, and the TV camera 3 are connected to each other. CCU 6 for image processing, endoscopic image monitor 7 for displaying an endoscopic image by the output signal of CCU 6, and TV camera 3
Is connected to the fluorescence diagnostic device 8 for signal processing for generating a fluorescence image and displaying the fluorescence image, and the excitation light source device 5, and a filter used in the fluorescence imaging system in the TV camera 3 in accordance with the excitation light. Filter switching control means 9 for switching,
It comprises an observation switching means 10 for instructing switching between normal observation and fluorescence observation.

【0009】上記内視鏡2は細長の挿入部11と、この
挿入部11の後端に設けられた操作部12と、この操作
部12の後端に設けられた接眼部13と、この操作部1
2から延出されたライトガイドケーブル14とからな
り、挿入部11及びライトガイドケーブル14内には照
明光及び励起光を伝送するライトガイド15が挿通され
ている。
The endoscope 2 has an elongated insertion portion 11, an operation portion 12 provided at the rear end of the insertion portion 11, an eyepiece portion 13 provided at the rear end of the operation portion 12, and Operation part 1
2 and a light guide cable 14 extending from the light guide cable 14, and a light guide 15 for transmitting illumination light and excitation light is inserted into the insertion portion 11 and the light guide cable 14.

【0010】このライトガイド15はライトガイドケー
ブル14部分で2本に分岐され、一方のライトガイドケ
ーブル14aの端部は内視鏡用光源装置4と接続され
る。そして、内視鏡用光源装置4内のランプ電源回路1
6からの電源で発光するランプ17の白色光がコンデン
サレンズ18を介してライトガイド15の端面に供給さ
れる。なお、通常観察の場合には遮光板19は図1のよ
うに退避した状態に保持される。
The light guide 15 is branched into two at the light guide cable 14 portion, and one end of the light guide cable 14a is connected to the endoscope light source device 4. Then, the lamp power supply circuit 1 in the endoscope light source device 4
The white light of the lamp 17 which emits light from the power source 6 is supplied to the end surface of the light guide 15 via the condenser lens 18. In the case of normal observation, the shading plate 19 is held in a retracted state as shown in FIG.

【0011】ライトガイドケーブル14における分岐さ
れた他方はレーザガイドケーブル14bとなり、その端
部は励起用光源装置5に接続される、そして、励起用光
源装置5内のレーザダイオード21からのレーザ光がコ
ンデンサレンズ22で集光されて照射される。このレー
ザダイオード21はレーザダイオード電源回路23から
の電源で駆動される。
The other branch of the light guide cable 14 becomes a laser guide cable 14b, the end of which is connected to the excitation light source device 5, and the laser light from the laser diode 21 in the excitation light source device 5 is emitted. It is condensed by the condenser lens 22 and is irradiated. The laser diode 21 is driven by the power source from the laser diode power source circuit 23.

【0012】また、このレーザダイオード21には電子
冷却・加温手段24が接合等して取り付けてあり、この
電子冷却・加温手段24は電子冷却・加温手段用電源回
路25からの電源で駆動される。レーザダイオード電源
回路23と電子冷却・加温手段用電源回路25は制御手
段26と接続され、この制御手段26によって制御され
る。
Further, an electronic cooling / heating means 24 is attached to the laser diode 21 by bonding or the like, and the electronic cooling / heating means 24 is powered by a power supply circuit 25 for the electronic cooling / heating means. Driven. The laser diode power supply circuit 23 and the electronic cooling / heating means power supply circuit 25 are connected to the control means 26 and controlled by the control means 26.

【0013】この制御手段26は図示しない波長選択指
示手段と接続され、この波長選択指示手段を操作して励
起光の波長の選択指示を行うと、制御手段は選択指示さ
れた波長でレーザダイオード21を発光させるように電
子冷却・加温手段24を介してレーザダイオード21の
温度を制御する。
The control means 26 is connected to a wavelength selection instructing means (not shown). When the wavelength selection instructing means is operated to instruct the selection of the wavelength of the pumping light, the control means 26 is operated by the laser diode 21 at the wavelength instructed. The temperature of the laser diode 21 is controlled via the electronic cooling / heating means 24 so as to emit light.

【0014】制御手段26は例えば図示しないROM等
に記録されたレーザダイオード21の発光波長と温度と
の関係情報から波長情報をアドレス信号として対応する
目標温度を読み出し、一方実際のレーザダイオード21
の温度を検出する図示しない温度センサの出力を基準に
して、目標温度に設定する場合に加熱すべきか冷却すべ
きかをまず判断し、その判断の後、電子冷却・加温手段
24の冷却又は加温動作を行わせて目標温度と一致する
ようにフィードバック制御ループでレーザダイオード2
1を目標温度に設定維持する制御を行う。
The control means 26 reads the corresponding target temperature using the wavelength information as an address signal from the relation information between the emission wavelength of the laser diode 21 and the temperature recorded in, for example, a ROM (not shown), while the actual laser diode 21 is read.
On the basis of the output of a temperature sensor (not shown) that detects the temperature, whether to heat or cool when setting the target temperature is first judged, and after that judgment, the electronic cooling / heating means 24 is cooled or heated. A laser diode 2 is used in a feedback control loop so that the temperature operation is performed and the target temperature is matched.
Control to set and maintain 1 at the target temperature is performed.

【0015】また、制御手段26はフィルタ切換え制御
手段9とも接続され、波長選択指示手段の励起光の波長
選択指示と共に、その波長の励起光により発光する蛍光
の波長が変化する場合には蛍光の波長の選択指示を行う
と、このフィルタ切換え制御手段9を介して蛍光撮像系
の光路上には上記蛍光の波長を選択的に透過するものに
設定されるようにしている(後述するモータ42により
フィルタターレット38を回転し、光路上に配置される
フィルタが上記蛍光の波長を選択的に透過するものに設
定される)。
The control means 26 is also connected to the filter switching control means 9, and when the wavelength of the fluorescence emitted by the excitation light of the wavelength changes with the wavelength selection instruction of the excitation light of the wavelength selection instruction means. When a wavelength selection instruction is given, the filter switching control means 9 is used to set on the optical path of the fluorescence imaging system such that the wavelength of the fluorescence is selectively transmitted (by a motor 42 described later). The filter turret 38 is rotated, and the filter arranged on the optical path is set to selectively transmit the wavelength of the fluorescence).

【0016】また、この波長選択指示手段の代わりに、
蛍光観察の種類等を選択或は指示する手段を設け、この
手段から蛍光剤の選択を行うことにより、制御手段26
はその蛍光剤で一般的に使用される蛍光観察の波長の励
起光を効率的に励起させるレーザ光の波長をROM等か
ら読み出し、かつその読み出した波長から(ROM等に
より)対応する目標温度も求め、その目標温度となるよ
うにレーザダイオード21の温度制御を行うと共に、蛍
光観察の波長を選択的に透過するフィルタを蛍光撮像系
の光路上に配置するようにフィルタ切換手段9を制御す
るようにしても良い。
Further, instead of the wavelength selection indicating means,
A control means 26 is provided by providing means for selecting or instructing the type of fluorescence observation and selecting the fluorescent agent from this means.
Reads the wavelength of the laser light that efficiently excites the excitation light of the fluorescence observation wavelength generally used for the fluorescent agent from the ROM or the like, and the corresponding target temperature from the read wavelength (by the ROM or the like) The temperature of the laser diode 21 is controlled so as to obtain the target temperature, and the filter switching means 9 is controlled so that a filter that selectively transmits the wavelength of fluorescence observation is arranged on the optical path of the fluorescence imaging system. You can

【0017】このように第1実施例では、レーザダイオ
ード21から励起光として発光するレーザ光の波長をそ
の温度を制御する波長制御機構を設けることにより、励
起光の波長を可変設定できるようにすると共に、励起光
として設定される波長に応じて撮像手段側での蛍光観察
のためのフィルタ手段のフィルタを選択的に可変設定で
きるようにしていることが特徴となっている。
As described above, in the first embodiment, the wavelength of the pumping light can be variably set by providing the wavelength control mechanism for controlling the temperature of the wavelength of the laser light emitted from the laser diode 21 as the pumping light. At the same time, the filter of the filter means for fluorescence observation on the side of the image pickup means can be selectively variably set according to the wavelength set as the excitation light.

【0018】上記ライトガイドケーブル14内及び挿入
部11内のライトガイド15で伝送された照明光又は励
起光は挿入部11の先端部側の端面から出射され、診断
部位等を照明する。診断部位側からの反射光又は励起光
は先端部の観察窓に取り付けられた対物レンズ31によ
ってその焦点面に配置されたイメージガイド32の先端
面に像を結ぶ。
The illumination light or excitation light transmitted through the light guide cable 14 and the light guide 15 in the insertion portion 11 is emitted from the end face of the insertion portion 11 on the distal end side, and illuminates a diagnosis site or the like. Reflected light or excitation light from the diagnostic region side forms an image on the front end surface of the image guide 32 arranged on the focal plane of the objective lens 31 attached to the observation window at the front end.

【0019】そして、イメージガイド32によって接眼
部13側の端面に伝送され、白色照明光の場合には接眼
レンズ33を介して肉眼で観察できる。この接眼部13
にTVカメラ3が装着された場合には、結像レンズ3
4、光路上のミラー35を介してイメージガイド32で
伝送された像が撮像素子としての例えばCCD36に結
像される。
Then, it is transmitted to the end face on the eyepiece 13 side by the image guide 32, and in the case of white illumination light, it can be observed with the naked eye through the eyepiece lens 33. This eyepiece 13
When the TV camera 3 is attached to the
4. The image transmitted by the image guide 32 via the mirror 35 on the optical path is formed on, for example, the CCD 36 as an image pickup device.

【0020】なお、撮像素子としてはCCDに限定され
るものでなく、SIT(静電誘導トランジスタ)、CM
D(Charge Modulation Devic
e)、MOSタイプの撮像素子等を用いてもよい。
The image pickup device is not limited to the CCD, but may be SIT (static induction transistor), CM.
D (Charge Modulation Device)
e), a MOS type image sensor or the like may be used.

【0021】上記ミラー35が例えばプランジャ37で
点線で示すように光路上から退避された場合には、結像
レンズ34、この結像レンズ34の光路上に配置された
フィルタターレット38のフィルタ、微弱光を増幅する
イメージ・インテンシファイア39を介してCCD41
に結像される。図1の点線で示す光路は蛍光撮像系の光
路となり、一方、実線で示す光路上に配置された結像レ
ンズ34、ミラー35、CCD36が通常観察の撮像系
を形成する。
When the mirror 35 is retracted from the optical path by the plunger 37, for example, as shown by the dotted line, the imaging lens 34, the filter of the filter turret 38 arranged on the optical path of the imaging lens 34, and the weak CCD 41 via an image intensifier 39 that amplifies light
Is imaged. The optical path shown by the dotted line in FIG. 1 becomes the optical path of the fluorescence imaging system, while the imaging lens 34, the mirror 35, and the CCD 36 arranged on the optical path shown by the solid line form the imaging system for normal observation.

【0022】上記フィルタターレット38は、円板の周
方向に、それぞれ透過域が異なる複数のフィルタが取り
付けられており、フィルタターレット駆動手段としての
モータ42により、光路上に配置される1つのフィルタ
を選択設定できる。
The filter turret 38 is provided with a plurality of filters each having a different transmission region in the circumferential direction of the disc, and a motor 42 as a filter turret driving means drives one filter arranged on the optical path. Can be set selectively.

【0023】TVカメラ3内のミラー35と内視鏡用光
源装置4内の遮光板19は観察切換手段10の操作によ
って連動して駆動される。つまり、観察切換手段10に
おける通常観察スイッチを操作すると、ミラー35と遮
光板19は図1の実線で示す状態に設定され、白色照明
光で照明された状態での被写体像がCCD36に結像さ
れ、このCCD36で光電変換された通常の内視鏡像が
CCU6で信号処理されてモニタに表示可能な映像信号
に変換され、内視鏡像モニタ7で表示される。つまり、
通常の内視鏡像が内視鏡像モニタ7で観察できる。
The mirror 35 in the TV camera 3 and the light blocking plate 19 in the endoscope light source device 4 are driven in conjunction with each other by operating the observation switching means 10. That is, when the normal observation switch in the observation switching means 10 is operated, the mirror 35 and the light shielding plate 19 are set to the state shown by the solid line in FIG. 1, and the subject image in the state illuminated by the white illumination light is formed on the CCD 36. The normal endoscopic image photoelectrically converted by the CCD 36 is signal-processed by the CCU 6, converted into a video signal that can be displayed on a monitor, and displayed on the endoscopic image monitor 7. That is,
A normal endoscopic image can be observed on the endoscopic image monitor 7.

【0024】一方、観察切換手段10における蛍光観察
スイッチを操作すると、ミラー35と遮光板19は図1
の点線で示す状態に設定され、励起光で照明された状態
での蛍光による像がフィルタターレット38のフィル
タ、イメージ・インテンシファイア39を介してCCD
41に結像され、このCCD41で光電変換された蛍光
像が蛍光診断装置8内の信号処理回路で信号処理され、
この蛍光診断装置8内のモニタに表示される。
On the other hand, when the fluorescence observation switch in the observation switching means 10 is operated, the mirror 35 and the light shielding plate 19 are moved to the positions shown in FIG.
The image of the fluorescent light in the state shown by the dotted line in FIG. 1 is illuminated by the excitation light, and the CCD image is transmitted through the filter of the filter turret 38 and the image intensifier 39.
The fluorescent image which is formed on 41 and photoelectrically converted by the CCD 41 is processed by a signal processing circuit in the fluorescent diagnostic device 8,
It is displayed on the monitor in the fluorescence diagnostic device 8.

【0025】この第1実施例によれば、レーザダイオー
ド21の温度を制御して、その発光するレーザ光の波長
を可変設定できるようにしているので、1つのレーザダ
イオード21により、広い波長範囲をカバーできる。
According to the first embodiment, the temperature of the laser diode 21 is controlled so that the wavelength of the emitted laser light can be variably set. Therefore, one laser diode 21 can cover a wide wavelength range. Can be covered.

【0026】この場合、レーザダイオード21は非常に
小型にできるし、電子冷却・加温手段24も小型にで
き、しかもレーザダイオード21の熱容量は小さくでき
るので小型の電子冷却・加温手段24により非常に広い
範囲で任意の温度に設定できることになり、発光する波
長も広範囲に可変できることになる。従って、色素レー
ザ等の大型のレーザ装置を必要とすることなく、適用範
囲の広い、かつ小型の励起光発生用レーザ装置を実現で
きる。
In this case, the laser diode 21 can be made extremely small, the electronic cooling / heating means 24 can also be made small, and the heat capacity of the laser diode 21 can be made small. This means that the temperature can be set to an arbitrary temperature in a wide range, and the wavelength of emitted light can be changed in a wide range. Therefore, it is possible to realize a compact excitation light generating laser device having a wide range of application without requiring a large laser device such as a dye laser.

【0027】さらに、蛍光撮像系の機能を備えたTVカ
メラ3には、複数のフィルタが取り付けられたフィルタ
ターレット38が設けてあり、フィルタ切換選択手段9
を介して光路上に配置されるフィルタを選択設定できる
ようにしてあるので、実際に発光する蛍光の波長を選択
的に透過するフィルタを光路上に設定して蛍光観察を行
うことができる。また、この実施例では通常観察と蛍光
観察とを簡単な切換え操作で行うことができる。
Further, the TV camera 3 having the function of the fluorescence imaging system is provided with a filter turret 38 having a plurality of filters attached thereto, and the filter switching selection means 9 is provided.
Since the filter disposed on the optical path can be selectively set via the optical path, it is possible to perform fluorescence observation by setting a filter on the optical path that selectively transmits the wavelength of the fluorescence actually emitted. Further, in this embodiment, normal observation and fluorescence observation can be performed by a simple switching operation.

【0028】なお、図1ではレーザ光を伝送するレーザ
ガイドケーブル14bはライトガイドケーブル14aと
途中で合流しているが、レーザ光を伝送するガイドケー
ブルを照明光を伝送するライトガイド15と分離して設
けるようにしても良い。また、内視鏡のチャンネルを利
用してそのチャンネル内にレーザガイドを挿通しても良
い。
In FIG. 1, the laser guide cable 14b for transmitting the laser light joins the light guide cable 14a on the way, but the guide cable for transmitting the laser light is separated from the light guide 15 for transmitting the illumination light. May be provided. Alternatively, the laser guide may be inserted through the channel of the endoscope.

【0029】図2は本発明の第2実施例の蛍光観察装置
51を示す。この第2実施例では励起用光源装置5′内
のレーザダイオード21′の前に2次高調波発生素子
(セカンド・ハーモニック・ジェネレータ・デバイス;
以下SHGと略記する)52が配置され、レーザダイオ
ード21′のレーザ光の2次高調波、つまりその波長の
1/2の波長のレーザ光を出力するようにしている。こ
のレーザダイオード21′は赤外域等の長波長のレーザ
光を発光するレーザダイオードであり、その波長を1/
2にしたレーザ光が励起用光の波長になる。
FIG. 2 shows a fluorescence observation apparatus 51 according to the second embodiment of the present invention. In the second embodiment, a second harmonic generating device (second harmonic generator device) is provided in front of the laser diode 21 'in the pumping light source device 5'.
52 is arranged so as to output the second harmonic of the laser light of the laser diode 21 ', that is, the laser light having a wavelength half the wavelength thereof. This laser diode 21 'is a laser diode that emits laser light having a long wavelength in the infrared region, and the wavelength thereof is 1 /
The laser light set to 2 becomes the wavelength of the excitation light.

【0030】上記レーザダイオード21′はタイミング
コントローラ53からの制御パルスによって、パルス的
な駆動電流を出力するレーザダイオード駆動回路54に
よってパルス的(例えばパルス周期Pは1/数100
S)に明滅発光するようにしている。
The laser diode 21 'is pulsed (for example, the pulse period P is 1 / several hundreds) by the laser diode drive circuit 54 which outputs a pulsed drive current in response to a control pulse from the timing controller 53.
It is designed to emit a blinking light in S).

【0031】また、第1実施例におけるTVカメラ3内
のイメージ・インテンシファイア39を介することな
く、蛍光像がCCD41に結像される。このTVカメラ
3内のCCD36、41はそれぞれドライバ55、56
により駆動される。この場合、CCD36は例えば1フ
レームの読み出し周期が1/30Sで駆動され、一方C
CD41はパルス周期Pの2倍で駆動され、励起光パル
スが出力された時と、されない時のCCD41の撮像信
号が出力されることになる。さらにこの実施例における
蛍光診断装置57は、2次元ロックインアンプ58と、
CCU59と、モニタ60とから構成される。
Further, the fluorescent image is formed on the CCD 41 without passing through the image intensifier 39 in the TV camera 3 in the first embodiment. CCDs 36 and 41 in the TV camera 3 are drivers 55 and 56, respectively.
Driven by. In this case, the CCD 36 is driven, for example, with a read cycle of 1 frame being 1 / 30S, while C
The CD 41 is driven at twice the pulse period P, and the image pickup signal of the CCD 41 is output when the excitation light pulse is output and when it is not output. Furthermore, the fluorescence diagnostic device 57 in this embodiment includes a two-dimensional lock-in amplifier 58,
It is composed of a CCU 59 and a monitor 60.

【0032】2次元ロックインアンプ57は前記CCD
41の出力信号をデジタルデータに変換するA/D変換
器61と、前記タイミングコントローラ53と同期し、
レーザダイオード52の明と滅(点滅)に合わせ、それ
ぞれの画像データをフレームごとに第1フレームメモリ
62aと第2フレームメモリ62bに分けるマルチプレ
クサ63と、第1フレームメモリ62aと第2フレーム
メモリ62bの画像データの差分を求め、ノイズ分をキ
ャンセルする差分回路64と、ノイズ分がキャンセルさ
れた画像データを累算的に積分(対応する同じ画素部分
を繰り返し加算する)することにより増幅する積分回路
65とから成る。
The two-dimensional lock-in amplifier 57 is the CCD
A / D converter 61 for converting the output signal of 41 into digital data and the timing controller 53,
A multiplexer 63 that divides each image data into a first frame memory 62a and a second frame memory 62b for each frame according to whether the laser diode 52 is turned on or off (flashes), and a first frame memory 62a and a second frame memory 62b. A difference circuit 64 that obtains the difference between the image data and cancels the noise component, and an integration circuit 65 that amplifies the image data from which the noise component has been canceled by cumulatively integrating (correspondingly adding the same corresponding pixel portion). It consists of and.

【0033】この2次元ロックインアンプ57におい
て、レーザダイオード52の明と滅でそれぞれ撮像され
た画像データを差分回路64で差分処理することによ
り、この明と滅に無関係なノイズ成分を大幅に低減で
き、また低い周波数で顕著になる1/fノイズの影響を
低減でき、さらに積分回路65で積分処理することによ
り、非常にS/Nの高い蛍光画像データを生成できる。
In the two-dimensional lock-in amplifier 57, the difference circuit 64 performs difference processing on the image data picked up by the light and darkness of the laser diode 52, thereby significantly reducing the noise component unrelated to the lightness and darkness. In addition, the influence of 1 / f noise which becomes conspicuous at a low frequency can be reduced, and the integration processing by the integration circuit 65 can generate fluorescence image data having a very high S / N.

【0034】なお、この積分回路65による積分処理に
より、1/30Sの画像データにされ、図示しないD/
A変換器でアナログ画像信号に変換された後、CCU5
9に入力され、このCCU59で標準的な映像信号に変
換され、モニタ60で蛍光画像が表示される。
By the integration processing by the integration circuit 65, image data of 1 / 30S is obtained, and D / (not shown)
After being converted to an analog image signal by the A converter, CCU5
9 is input to the monitor 9, converted into a standard video signal by the CCU 59, and a fluorescent image is displayed on the monitor 60.

【0035】その他、レーザダイオード21′の温度を
実際に望む励起光の2倍の波長になるように制御した
り、撮像系のフィルタを観察する蛍光の波長に応じて選
択設定する構成等は第1実施例と同様である。
In addition, the temperature of the laser diode 21 'is controlled to be twice the wavelength of the actually desired excitation light, and the configuration of selecting and setting the filter of the image pickup system according to the wavelength of fluorescence observed is the first. This is the same as in the first embodiment.

【0036】この第2実施例によれば、直接励起光の波
長で発光するレーザダイオード21の代わりに、2倍の
波長となる長い波長のレーザ光を発生する低価格のレー
ザダイオード21′を用いることができるので、さらに
低コストで実現できる。また、2次元ロックインアンプ
57を用いることにより、非常にS/Nの良い蛍光画像
が得られる。図3は本発明の第3実施例の内視鏡装置7
1を示す。第2実施例では内視鏡2の外部の励起用光源
装置5内にレーザダイオード21′等を設けたが、この
実施例では内視鏡72内部にレーザダイオード21′等
を設け、外部のレーザダオード電源回路73から必要な
電源を供給するようにしている。
According to the second embodiment, instead of the laser diode 21 which directly emits the wavelength of the pumping light, a low-cost laser diode 21 'which generates a laser beam of a long wavelength which is twice the wavelength is used. Therefore, it can be realized at a lower cost. Further, by using the two-dimensional lock-in amplifier 57, a fluorescence image with very good S / N can be obtained. FIG. 3 shows an endoscope apparatus 7 according to the third embodiment of the present invention.
1 is shown. In the second embodiment, the laser diode 21 'and the like are provided in the excitation light source device 5 outside the endoscope 2, but in this embodiment, the laser diode 21' and the like are provided in the endoscope 72 and the external laser diode is used. The power supply circuit 73 supplies necessary power.

【0037】図4にも示すようにこの内視鏡72の挿入
部74内には第1実施例と同様にライトガイド15とイ
メージガイド32とが挿通され、先端部には照明レンズ
75と対物レンズ31とがそれぞれ配置されている。こ
の内視鏡72ではさらに、挿入部74の先端部に、電子
冷却・加温手段24に取り付けられたレーザダイオード
21′と、SHG52と照明レンズ76とが配置されて
いる。
As shown in FIG. 4, the light guide 15 and the image guide 32 are inserted into the insertion portion 74 of the endoscope 72 in the same manner as in the first embodiment, and the illumination lens 75 and the objective are provided at the tip end portion. The lenses 31 and 31 are arranged respectively. In the endoscope 72, a laser diode 21 'attached to the electronic cooling / heating means 24, an SHG 52, and an illumination lens 76 are further arranged at the tip of the insertion portion 74.

【0038】レーザダイオード21′と電子冷却・加温
手段24は信号線77と接続され、この信号線77はラ
イトガイドケーブル14から分岐された信号ケーブル7
8内を挿通され、レーザダオード電源回路73のレーザ
ダオード駆動回路54と電子冷却・加温手段用電源回路
25にそれぞれ接続される。その他は第2実施例と同様
の構成であり、その作用効果も第2実施例とほぼ同様で
ある。
The laser diode 21 'and the electronic cooling / heating means 24 are connected to a signal line 77, and the signal line 77 is branched from the light guide cable 14.
The laser diode drive circuit 54 of the laser diode power supply circuit 73 and the electronic cooling / warming means power supply circuit 25 are connected to the laser diode power supply circuit 73. Other than that, the configuration is the same as that of the second embodiment, and the function and effect thereof are almost the same as those of the second embodiment.

【0039】なお、内視鏡72内にレーザダイオード2
1′及びSHG52を収納し、信号線を介してレーザダ
イオード21′に対し、外部のレーザダイオード21′
から駆動信号を供給するようにして、単にレーザダイオ
ード21′の1/2の波長の励起光を出射できるように
しても良い。この場合にも以下の利点がある。
The laser diode 2 is inserted in the endoscope 72.
1'and the SHG 52 are housed, and an external laser diode 21 'is connected to the laser diode 21' via a signal line.
Alternatively, the drive signal may be supplied from the laser diode 21 'so that the pumping light having a half wavelength of the laser diode 21' can be emitted. Also in this case, there are the following advantages.

【0040】例えば、442nmの励起光が必要になる
場合、通常はHe−Cdレーザを用いる場合が多いが、
大型であるし、高価でもある。この励起光が必要な場
合、882nmの波長のレーザ光を出すレーザダイオー
ドは低価格で求めることができるので、He−Cdレー
ザの代わりに用いると低コストで同じ機能を実現でき
る。また、レーザダイードは非常に小型にできるので、
内視鏡の先端部内に収納することもできる。
For example, when excitation light of 442 nm is required, a He--Cd laser is usually used, but
It is large and expensive. When this pumping light is required, a laser diode that emits a laser beam having a wavelength of 882 nm can be obtained at a low cost, and thus the same function can be realized at a low cost when used in place of the He-Cd laser. Also, since the laser diode can be made very small,
It can also be housed in the tip of the endoscope.

【0041】図5は本発明の第4実施例の内視鏡装置8
1を示す。この実施例は硬性内視鏡82と、この硬性内
視鏡82のライトガイドに通常観察のための照明光を供
給する内視鏡用光源装置4と、励起用レーザ光を供給す
る励起用光源装置5′と、硬性内視鏡82の接眼部83
に接続されるスコープホルダ84と、このスコープホル
ダ84の基端に設けられたTVカメラ85と、このTV
カメラ85に対する信号処理を行うと共に、内視鏡像と
蛍光像とを表示する内視鏡像&蛍光像表示装置86とか
ら構成される。
FIG. 5 shows an endoscope apparatus 8 according to the fourth embodiment of the present invention.
1 is shown. In this embodiment, a rigid endoscope 82, an endoscope light source device 4 for supplying illumination light for normal observation to a light guide of the rigid endoscope 82, and an excitation light source for supplying excitation laser light. Device 5'and eyepiece 83 of rigid endoscope 82
Connected to the scope holder 84, a TV camera 85 provided at the base end of the scope holder 84, and a TV
It is composed of an endoscopic image & fluorescent image display device 86 for performing signal processing for the camera 85 and displaying an endoscopic image and a fluorescent image.

【0042】硬性内視鏡82の挿入部89の後端に形成
された把持部90のライトガイド口金にはライトガイド
ケーブル14が接続され、途中で分岐された一方のライ
トガイドケーブル14aは内視鏡用光源装置4に接続さ
れ、この光源装置4から白色照明光が供給される。
The light guide cable 14 is connected to the light guide mouthpiece of the grip portion 90 formed at the rear end of the insertion portion 89 of the rigid endoscope 82, and one of the light guide cables 14a branched in the middle is viewed internally. It is connected to the mirror light source device 4, and white illumination light is supplied from the light source device 4.

【0043】このライトガイドケーブル14における分
岐されたレーザガイドケーブル14bは励起用光源装置
5′に接続され、この光源装置5′は励起用レーザ光を
供給する。白色照明光又は励起用レーザ光は硬性内視鏡
82内のライトガイドにより伝送され、先端部側の端面
から出射される。
The branched laser guide cable 14b of the light guide cable 14 is connected to the excitation light source device 5 ', which supplies the excitation laser light. The white illumination light or the excitation laser light is transmitted by the light guide in the rigid endoscope 82 and emitted from the end face on the tip end side.

【0044】照明された診断部位で反射された光或は励
起光により発光する蛍光は先端部の対物レンズを介して
結像され、リレー光学系等のイメージガイドで後方に伝
送され、伝送された像は可視像の場合には接眼部83か
ら観察することができる。
Fluorescence emitted by the light reflected by the illuminated diagnostic site or the excitation light is imaged through the objective lens at the tip, and transmitted rearward by an image guide such as a relay optical system. In the case of a visible image, the image can be observed from the eyepiece 83.

【0045】この接眼部83に接続されるスコープホル
ダ84は例えばロッドレンズが内蔵されたアーム部と8
4aと、回動自在の関節部84bとを有し、接眼部83
に伝送された像をその基端に接続したTVカメラ85に
伝送する。
The scope holder 84 connected to the eyepiece 83 has, for example, an arm portion containing a rod lens and
4a and a rotatable joint 84b, and an eyepiece 83
The image transmitted to the TV camera 85 connected to the base end of the image is transmitted.

【0046】このTVカメラ85の入射光路上にはプラ
ンジャ37により退避可能なミラー35が配置され、こ
のミラー35で反射された光は第2のミラー92、第3
のミラー93で反射され、プランジャ94により光路上
から退避可能な第4ミラー95を経てCCD96に結像
される。
A mirror 35 retractable by a plunger 37 is arranged on the incident optical path of the TV camera 85, and the light reflected by the mirror 35 is a second mirror 92 and a third mirror.
Is reflected by the mirror 93 and is imaged on the CCD 96 via the fourth mirror 95 which can be retracted from the optical path by the plunger 94.

【0047】また、上記ミラー35及び95が退避され
た場合にはモータ97で回転されるフィルタターレット
98のフィルタ、イメージ・インテンシファイヤ39を
介してCCD96に結像される。
When the mirrors 35 and 95 are retracted, an image is formed on the CCD 96 through the image intensifier 39 and the filter of the filter turret 98 rotated by the motor 97.

【0048】なお、フィルタターレット98のフィルタ
をスイッチ操作等で、モータ97を介して蛍光撮像系の
光路上に配置できるようにしても良い。この実施例は共
通のCCD96を用いて通常の内視鏡像と蛍光像とを得
られる。その他は第1実施例とほぼ同様の効果を有す
る。
The filter of the filter turret 98 may be arranged on the optical path of the fluorescence imaging system via the motor 97 by a switch operation or the like. In this embodiment, a common CCD 96 is used to obtain a normal endoscopic image and a fluorescent image. Others have substantially the same effects as the first embodiment.

【0049】なお、励起光の波長領域を広げるために、
発光波長が異なる複数のレーザダイオードを用いるよう
にして、実際に必要となる励起光の波長に応じて使用す
るレーザダイオードを選択するようにしても良い。
In order to widen the wavelength range of the excitation light,
A plurality of laser diodes having different emission wavelengths may be used, and the laser diode to be used may be selected according to the actually required wavelength of the excitation light.

【0050】この場合、SHGも必要に応じて使用する
ようにしても良い。また、発光出力を上げるために、同
一の波長で発光するレーザダイオードを複数用いるよう
にしても良い。なお、上述した実施例等を部分的等で組
み合わせても良い。
In this case, SHG may be used if necessary. Further, in order to increase the light emission output, a plurality of laser diodes that emit light with the same wavelength may be used. The above-described embodiments may be partially combined.

【0051】[0051]

【発明の効果】以上説明したように本発明によれば、励
起光に使用される半導体レーザの温度を制御して発光す
る波長を可変できるようにすると共に、対象組織側から
の蛍光を蛍光撮像系に選択的に導くフィルタ手段とを設
けているので、小型で低価格の蛍光観察装置を実現でき
る。
As described above, according to the present invention, the temperature of the semiconductor laser used for excitation light can be controlled to change the wavelength of emitted light, and the fluorescence from the target tissue side can be imaged with fluorescence. Since the filter means for selectively guiding the system is provided, a compact and low-cost fluorescence observation apparatus can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の蛍光観察装置の構成を示
す構成図。
FIG. 1 is a configuration diagram showing a configuration of a fluorescence observation apparatus according to a first embodiment of the present invention.

【図2】本発明の第2実施例の蛍光観察装置の構成を示
す構成図。
FIG. 2 is a configuration diagram showing a configuration of a fluorescence observation apparatus according to a second embodiment of the present invention.

【図3】本発明の第3実施例の蛍光観察装置の構成を示
す構成図。
FIG. 3 is a configuration diagram showing a configuration of a fluorescence observation apparatus according to a third embodiment of the present invention.

【図4】第3実施例に用いられる内視鏡の光学系の構造
を示す説明図。
FIG. 4 is an explanatory diagram showing a structure of an optical system of an endoscope used in a third embodiment.

【図5】本発明の第4実施例の蛍光観察装置の構成を示
す構成図。
FIG. 5 is a configuration diagram showing a configuration of a fluorescence observation apparatus according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…蛍光観察装置 2…内視鏡 3…TVカメラ 4…内視鏡用光源装置 5…励起用光源装置 6…CCU 7…内視鏡像モニタ 8…蛍光診断装置 9…フィルタ切換え制御手段 10…観察切換手段 11…挿入部 13…接眼部 14…ライトガイドケーブル 14b…レーザガイドケーブル 15…ライトガイド 17…ランプ 19…遮光板 21…レーザダイオード 23…レーザダイオード電源回路 24…電子冷却・加温手段 25…電子冷却・加温手段用電源回路 26…制御手段 35…ミラー 36、41…CCD 38…フィルタターレット 39…イメージ・インテンシファイア DESCRIPTION OF SYMBOLS 1 ... Fluorescence observation device 2 ... Endoscope 3 ... TV camera 4 ... Endoscope light source device 5 ... Excitation light source device 6 ... CCU 7 ... Endoscopic image monitor 8 ... Fluorescence diagnostic device 9 ... Filter switching control means 10 ... Observation switching means 11 ... Insertion part 13 ... Eyepiece part 14 ... Light guide cable 14b ... Laser guide cable 15 ... Light guide 17 ... Lamp 19 ... Shade plate 21 ... Laser diode 23 ... Laser diode power supply circuit 24 ... Electronic cooling / heating Means 25 ... Power supply circuit for electronic cooling / heating means 26 ... Control means 35 ... Mirrors 36, 41 ... CCD 38 ... Filter turret 39 ... Image intensifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 雅彦 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 鈴木 克哉 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 植田 康弘 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Iida 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Inventor Katsuya Suzuki 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd. (72) Inventor Yasuhiro Ueda 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体レーザを蛍光観察のための励起用
光源に用いる蛍光観察装置において、 半導体レーザの温度を制御することにより、該半導体レ
ーザから出射されるレーザ光の波長を変える波長制御手
段と、 前記波長制御手段による波長変化に応じて蛍光を検出す
るための蛍光検出装置に入射される波長域を選択的に変
えるフィルタ手段とを設けたことを特徴とする蛍光観察
装置。
1. A fluorescence observation apparatus using a semiconductor laser as an excitation light source for fluorescence observation, comprising: wavelength control means for changing the wavelength of laser light emitted from the semiconductor laser by controlling the temperature of the semiconductor laser. And a filter means for selectively changing a wavelength range incident on a fluorescence detection device for detecting fluorescence according to a wavelength change by the wavelength control means.
JP30443093A 1993-12-03 1993-12-03 Fluorescence observation device Expired - Fee Related JP3194660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30443093A JP3194660B2 (en) 1993-12-03 1993-12-03 Fluorescence observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30443093A JP3194660B2 (en) 1993-12-03 1993-12-03 Fluorescence observation device

Publications (2)

Publication Number Publication Date
JPH07155286A true JPH07155286A (en) 1995-06-20
JP3194660B2 JP3194660B2 (en) 2001-07-30

Family

ID=17932915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30443093A Expired - Fee Related JP3194660B2 (en) 1993-12-03 1993-12-03 Fluorescence observation device

Country Status (1)

Country Link
JP (1) JP3194660B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345733A (en) * 2001-05-29 2002-12-03 Fuji Photo Film Co Ltd Imaging device
JP2002360510A (en) * 2001-06-08 2002-12-17 Fuji Photo Film Co Ltd Endoscopic apparatus and control method for the same
JP2003019112A (en) * 2001-07-06 2003-01-21 Fuji Photo Film Co Ltd Light source device and imaging device
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
JP2004237081A (en) * 2003-01-14 2004-08-26 Morita Mfg Co Ltd Diagnostic imaging apparatus
US6821245B2 (en) 2000-07-14 2004-11-23 Xillix Technologies Corporation Compact fluorescence endoscopy video system
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
JP2005168520A (en) * 2003-12-05 2005-06-30 Morita Mfg Co Ltd Photography device for diagnosis
JP2005323738A (en) * 2004-05-13 2005-11-24 Olympus Corp Endoscope device
JP2005342033A (en) * 2004-05-31 2005-12-15 Pentax Corp Light source device for endoscope
JP2006102481A (en) * 2004-09-08 2006-04-20 Olympus Corp Endoscope apparatus and fluorescence determining method using endoscope apparatus
JP2006296635A (en) * 2005-04-19 2006-11-02 Olympus Corp Endoscope apparatus
JP2006304847A (en) * 2005-04-26 2006-11-09 Pentax Corp Endoscope light source device
JP2008264578A (en) * 2002-05-08 2008-11-06 Kuresuto Japan Kk Optically excited fluorescein detector suitable for measuring physical property of cartilage tissue
JP2009279168A (en) * 2008-05-22 2009-12-03 Fujinon Corp Fluorescence endoscope apparatus and excitation light unit
US7871373B2 (en) 2004-05-13 2011-01-18 Olympus Corporation Endoscope device
CN102028444A (en) * 2009-10-07 2011-04-27 奥林巴斯株式会社 Endoscope device
US8630698B2 (en) 2005-05-04 2014-01-14 Novadaq Technologies, Inc. Filter for use with imaging endoscopes
US9386909B2 (en) 2006-07-28 2016-07-12 Novadaq Technologies Inc. System and method for deposition and removal of an optical element on an endoscope objective
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
US9877654B2 (en) 2006-02-07 2018-01-30 Novadaq Technologies Inc. Near infrared imaging
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10265419B2 (en) 2005-09-02 2019-04-23 Novadaq Technologies ULC Intraoperative determination of nerve location
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
US10293122B2 (en) 2016-03-17 2019-05-21 Novadaq Technologies ULC Endoluminal introducer with contamination avoidance
US10434190B2 (en) 2006-09-07 2019-10-08 Novadaq Technologies ULC Pre-and-intra-operative localization of penile sentinel nodes
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
US10631746B2 (en) 2014-10-09 2020-04-28 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947975B2 (en) 2005-12-28 2012-06-06 オリンパス株式会社 Endoscope device and endoscope illumination device
JP4812430B2 (en) 2005-12-28 2011-11-09 オリンパス株式会社 Endoscope device

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
US8961403B2 (en) 2000-07-14 2015-02-24 Novadaq Technologies Inc. Compact fluorescence endoscopy video system
US7341557B2 (en) 2000-07-14 2008-03-11 Novadaq Technologies Inc. Compact fluorescence endoscopy video system
US6821245B2 (en) 2000-07-14 2004-11-23 Xillix Technologies Corporation Compact fluorescence endoscopy video system
US7722534B2 (en) 2000-07-14 2010-05-25 Novadaq Technologies, Inc. Compact fluorescence endoscopy video system
US9968244B2 (en) 2000-07-14 2018-05-15 Novadaq Technologies ULC Compact fluorescence endoscopy video system
JP2002345733A (en) * 2001-05-29 2002-12-03 Fuji Photo Film Co Ltd Imaging device
JP2002360510A (en) * 2001-06-08 2002-12-17 Fuji Photo Film Co Ltd Endoscopic apparatus and control method for the same
JP2003019112A (en) * 2001-07-06 2003-01-21 Fuji Photo Film Co Ltd Light source device and imaging device
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
US10182709B2 (en) 2002-01-15 2019-01-22 Novadaq Technologies ULC Filter for use with imaging endoscopes
JP2008264578A (en) * 2002-05-08 2008-11-06 Kuresuto Japan Kk Optically excited fluorescein detector suitable for measuring physical property of cartilage tissue
JP2004237081A (en) * 2003-01-14 2004-08-26 Morita Mfg Co Ltd Diagnostic imaging apparatus
JP2005168520A (en) * 2003-12-05 2005-06-30 Morita Mfg Co Ltd Photography device for diagnosis
US7871373B2 (en) 2004-05-13 2011-01-18 Olympus Corporation Endoscope device
JP4540390B2 (en) * 2004-05-13 2010-09-08 オリンパス株式会社 Endoscope device
JP2005323738A (en) * 2004-05-13 2005-11-24 Olympus Corp Endoscope device
JP4656864B2 (en) * 2004-05-31 2011-03-23 Hoya株式会社 Endoscope light source device
JP2005342033A (en) * 2004-05-31 2005-12-15 Pentax Corp Light source device for endoscope
JP2006102481A (en) * 2004-09-08 2006-04-20 Olympus Corp Endoscope apparatus and fluorescence determining method using endoscope apparatus
JP2006296635A (en) * 2005-04-19 2006-11-02 Olympus Corp Endoscope apparatus
JP2006304847A (en) * 2005-04-26 2006-11-09 Pentax Corp Endoscope light source device
US8630698B2 (en) 2005-05-04 2014-01-14 Novadaq Technologies, Inc. Filter for use with imaging endoscopes
US10265419B2 (en) 2005-09-02 2019-04-23 Novadaq Technologies ULC Intraoperative determination of nerve location
US9877654B2 (en) 2006-02-07 2018-01-30 Novadaq Technologies Inc. Near infrared imaging
US9386909B2 (en) 2006-07-28 2016-07-12 Novadaq Technologies Inc. System and method for deposition and removal of an optical element on an endoscope objective
US10434190B2 (en) 2006-09-07 2019-10-08 Novadaq Technologies ULC Pre-and-intra-operative localization of penile sentinel nodes
US10694151B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US11770503B2 (en) 2006-12-22 2023-09-26 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US11025867B2 (en) 2006-12-22 2021-06-01 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US9936887B2 (en) 2008-01-25 2018-04-10 Novadaq Technologies ULC Method for evaluating blush in myocardial tissue
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US11564583B2 (en) 2008-01-25 2023-01-31 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US10835138B2 (en) 2008-01-25 2020-11-17 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
US10779734B2 (en) 2008-03-18 2020-09-22 Stryker European Operations Limited Imaging system for combine full-color reflectance and near-infrared imaging
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
JP2009279168A (en) * 2008-05-22 2009-12-03 Fujinon Corp Fluorescence endoscope apparatus and excitation light unit
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
CN102028444A (en) * 2009-10-07 2011-04-27 奥林巴斯株式会社 Endoscope device
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
US11284801B2 (en) 2012-06-21 2022-03-29 Stryker European Operations Limited Quantification and analysis of angiography and perfusion
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
US10488340B2 (en) 2014-09-29 2019-11-26 Novadaq Technologies ULC Imaging a target fluorophore in a biological material in the presence of autofluorescence
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
US10631746B2 (en) 2014-10-09 2020-04-28 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target
US11298024B2 (en) 2016-01-26 2022-04-12 Stryker European Operations Limited Configurable platform
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US10293122B2 (en) 2016-03-17 2019-05-21 Novadaq Technologies ULC Endoluminal introducer with contamination avoidance
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US11756674B2 (en) 2016-06-14 2023-09-12 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US12028600B2 (en) 2017-02-10 2024-07-02 Stryker Corporation Open-field handheld fluorescence imaging systems and methods

Also Published As

Publication number Publication date
JP3194660B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
JP3194660B2 (en) Fluorescence observation device
JP3487933B2 (en) Fluorescence observation device
JP3283128B2 (en) Fluorescence observation endoscope device
US7798955B2 (en) Image generating device for generating a fluorescence image
JP3869324B2 (en) Image processing device for fluorescence observation
JP4611674B2 (en) Electronic endoscope system
JP5127639B2 (en) Endoscope system and method of operating the same
JP3455289B2 (en) Endoscope device for fluorescence diagnosis
JPH07155290A (en) Endoscope apparatus
JPH08224208A (en) Fluorescence observing endoscope device
JP2009095566A (en) Endoscope apparatus
JPH07155291A (en) Fluorescence observation apparatus
JPH07250804A (en) Fluorescence observer
JPH07155292A (en) Fluorescence observing apparatus
JP2005006856A (en) Endoscope apparatus
JP2005013279A (en) Endoscope apparatus
JP2010063590A (en) Endoscope system and drive control method thereof
JPH07250812A (en) Fluorescence diagnosing apparatus
JPH10225426A (en) Fluorescence observing device
JP2003079570A (en) Endoscope apparatus
JPH10328129A (en) Fluorescent observing device
JPH11104060A (en) Fluorescent observation device
KR20080102317A (en) Biological observation system
JPH11113839A (en) Endoscope device
JP4744279B2 (en) Electronic endoscope device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080601

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees