Nothing Special   »   [go: up one dir, main page]

JPH0712655A - Measurement system - Google Patents

Measurement system

Info

Publication number
JPH0712655A
JPH0712655A JP5158223A JP15822393A JPH0712655A JP H0712655 A JPH0712655 A JP H0712655A JP 5158223 A JP5158223 A JP 5158223A JP 15822393 A JP15822393 A JP 15822393A JP H0712655 A JPH0712655 A JP H0712655A
Authority
JP
Japan
Prior art keywords
temperature
optical fiber
measurement
measured
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5158223A
Other languages
Japanese (ja)
Inventor
Ichiro Wada
一郎 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5158223A priority Critical patent/JPH0712655A/en
Publication of JPH0712655A publication Critical patent/JPH0712655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To heighten measurement precision and position resolution by continuously laying down a transmission route of an optical fiber at each measurement point of an area to be measured, applying a signal for reference and continuously and exactly measuring temperature, humidity and temperature distribution of a lot of measurement points. CONSTITUTION:A conduit 15 is hung from a ceiling 21 as a thermal partition wall in a room which is an area to be measured, arranged in the room, optical fibers 13 are passed therein, the optical fibers are loosely drawn from branch pipes 161-16n of the conduit 15 respectively provided at a plurality of temperature measurement points and temperature measurement parts 171-17n which indicate the same wound method as a non-inductive resistance are pulled from the branch pipes 161-16n to the outside. An operation instruction is received from CPU of a signal processor 14 of a thermometer body 20, and a light pulse emitted from a light source 11 is made incident on the optical fibers 13 through a beam splitter 12. Back scattered light is returned from each temperature measurement part 171-17n, introduced to the signal processor 14 through the beam splitter 12 and temperature is measured from the intensity of the back scattered light at the positions of the temperature measurement parts and therefrom.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビル等の建築物内の被
測定領域に光ファイバを敷設し、この光ファイバ内の一
端である入射端から光信号を入射し、他端側に向かう光
ファイバのあらゆる部分から入射端へ戻ってくる後方散
乱光を解析して前記被測定領域内の任意の場所の温度,
湿度,あるいは温度分布等を測定する測定システムに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention lays an optical fiber in a region to be measured in a building such as a building, receives an optical signal from an incident end which is one end of the optical fiber, and directs it toward the other end. By analyzing the backscattered light returning from all parts of the optical fiber to the incident end, the temperature at an arbitrary place in the measured region,
The present invention relates to a measurement system that measures humidity or temperature distribution.

【0002】[0002]

【従来の技術】この種の光ファイバを用いた温度計に
は、OTDR(Optical Time Domai
n Reflectometry)形温度計と、OFD
R(Optical Frequency Domai
n Reflectometry)形温度計とがある。
これら両温度計は、ラマン(Raman)散乱方式とレ
イリー(Rayleigh)散乱方式とが用いられてい
るが、これら両方式の違いは、ラマン散乱は散乱波長が
発射光と異なること、一方、レイリー散乱は散乱波長が
発射光と同一波長であることである。
2. Description of the Related Art A thermometer using an optical fiber of this type includes an OTDR (Optical Time Domai).
n Reflectometry) type thermometer and OFD
R (Optical Frequency Domai)
n Reflectometry) type thermometer.
Both of these thermometers use a Raman scattering method and a Rayleigh scattering method. The difference between these two methods is that Raman scattering has a scattering wavelength different from that of the emitted light. Is that the scattered wavelength is the same wavelength as the emitted light.

【0003】ここでは、温度計としてOTDR形温度計
を用い、且つ温度の測定感度が高いラマン散乱方式を用
いた例について説明する。このOTDR形温度計は、光
ファイバ中のラマン散乱を用いた温度測定と光パルス反
射法を用いた位置測定という2つの原理から成り立って
いる。
Here, an example in which an OTDR type thermometer is used as a thermometer and a Raman scattering method with high temperature measurement sensitivity is used will be described. This OTDR type thermometer consists of two principles: temperature measurement using Raman scattering in an optical fiber and position measurement using an optical pulse reflection method.

【0004】ところで、ラマン散乱は、物質に入射した
光子が分子振動の光学モードと相互作用し、非弾性衝突
を起こすことにより、入射光とは異なる波長の光が散乱
される物理現象である。ラマン散乱光には、入射光に対
して長波長側にずれるもの(ストークス光)と短波長側
にずれるもの(反ストークス光)との2種類があり、こ
れらの間には、入射光の波長をλ、ストークス光の波長
をλS 、反ストークス光の波長をλA とすると、
Raman scattering is a physical phenomenon in which photons incident on a substance interact with an optical mode of molecular vibration to cause inelastic collision, whereby light having a wavelength different from the incident light is scattered. There are two types of Raman scattered light: one that shifts to the long wavelength side (Stokes light) and one that shifts to the short wavelength side (anti-Stokes light) with respect to the incident light. Is λ, the wavelength of Stokes light is λ S , and the wavelength of anti-Stokes light is λ A ,

【数1】 のような関係が成り立つ。ここで、νは波数である。波
数は物質の性質で決まる量であり、ラマンシフトと呼ば
れている。
[Equation 1] The following relationship holds. Here, ν is the wave number. The wave number is a quantity determined by the properties of matter, and is called Raman shift.

【0005】ラマン散乱光の強度は温度に依存する。温
度Tにおける反ストークス光とストークス光の比をR
(T)とすると、次の関係が成り立つ。
The intensity of Raman scattered light depends on temperature. The ratio of anti-Stokes light to Stokes light at temperature T is R
Assuming (T), the following relationship holds.

【0006】[0006]

【数2】 ここで、hはプランク定数、cは光速、hはボルツマン
定数である。ラマン散乱では、反ストークス光の散乱強
度が温度に対して大きく変化することが知られており、
これを温度測定に利用している。一方、OTDR法は、
光ファイバの一端からパルス光を入射し、光ファイバの
媒質中で逆散乱されて戻ってくる成分の時間を測定する
ことにより距離を測定する。したがって、以上述べた2
つの方法を組合わせることにより、温度分布測定が可能
となるものである。
[Equation 2] Here, h is Planck's constant, c is the speed of light, and h is Boltzmann's constant. In Raman scattering, it is known that the scattering intensity of anti-Stokes light greatly changes with temperature,
This is used for temperature measurement. On the other hand, the OTDR method
The distance is measured by injecting pulsed light from one end of the optical fiber and measuring the time of the component that is backscattered and returned in the medium of the optical fiber. Therefore, 2 mentioned above
The temperature distribution can be measured by combining the two methods.

【0007】このラマン散乱は、空気やガスの環境下に
おいてその環境内の微小物質や種々の分子等の影響を受
けるために、温度測定に利用するのが難しいと考えられ
ていた。しかし、その後光ファイバの製造技術上の発展
に伴い、光ファイバの種々の利用法が研究され、その一
環として温度計の利用についても研究開発が進められて
きた。特に、光ファイバは空気やガスの環境と異なって
固定されたファイバ成分のみが存在するだけであるの
で、除々にではあるが温度計測に適することがわかって
きた。OTDRは高速パルスを用いて温度計測を行なう
のに対し、OFDRでは周波数変調された光を用いて温
度計測を行なうものである。
This Raman scattering is considered to be difficult to use for temperature measurement because it is affected by minute substances and various molecules in the environment in the environment of air or gas. However, since then, with the development of optical fiber manufacturing technology, various methods of using the optical fiber have been studied, and as part of the research and development, the use of the thermometer has been researched and developed. In particular, it has been found that the optical fiber is suitable for temperature measurement, although it is gradually different from the environment of air or gas because only the fixed fiber component exists. OTDR measures temperature using high-speed pulses, while OFDR measures temperature using frequency-modulated light.

【0008】しかしながら、現在、ラマン散乱方式を適
用した代表機種であるOTDR形温度計では、光ファイ
バの検温部(温度測定部)の位置分解能長さLt が20
m、最低測定温度Tb が5℃、最高測定温度Tc が15
0℃、最大測定長さLmax が1km(1GHzで0.1
mに相当するので、0.1m程度の分解能が限界)等を
有する測定範囲にあるが、学会その他の状況から将来的
にはLt が0.5m、Tb が−50℃、Tc が500〜
600℃、Lmax が10km程度まで改善されるものと
考えられている。なお、レイリー散乱方式を用いてもよ
く、これらの散乱方式を含め、OTDR形温度計と呼ぶ
こととする。
However, in the OTDR type thermometer which is a typical model to which the Raman scattering method is applied at present, the position resolution length L t of the temperature measuring portion (temperature measuring portion) of the optical fiber is 20.
m, minimum measured temperature T b is 5 ° C., maximum measured temperature T c is 15
0 ° C, maximum measurement length L max is 1 km (0.1 GHz at 0.1
Since it corresponds to m, the resolution is about 0.1 m, which is the limit of the measurement range. However, due to academic conference and other circumstances, L t will be 0.5 m, T b will be −50 ° C., and T c will be 500 ~
It is considered that the Lmax at 600 ° C. is improved to about 10 km. The Rayleigh scattering method may be used, and these scattering methods will be referred to as an OTDR type thermometer.

【0009】したがって、現状においてはLt は20m
よりも大であることから点の温度を測定することが難し
く、光ファイバに沿った温度分布を測定する程度の研究
しかなされていない。しかも、長い光ファイバ上の各点
からの後方散乱光は微弱であり、且つこれにノイズが混
入されているので、光信号を数千乃至数万回にわたって
繰り返し発射し、得られる後方散乱光を平均化してノイ
ズを除去し、所要とする信号を測定するように構成され
ているが、忠実度の良い測定は非常に難しい。
Therefore, at present, L t is 20 m.
Since it is larger than that, it is difficult to measure the temperature of the point, and only researches to measure the temperature distribution along the optical fiber have been made. Moreover, the backscattered light from each point on the long optical fiber is weak, and since noise is mixed in this, the optical signal is repeatedly emitted several thousands to tens of thousands of times, and the obtained backscattered light is emitted. It is configured to average and remove noise and measure the desired signal, but high fidelity measurements are very difficult.

【0010】また、OTDRは、本来、位置を検出する
機能を持ったものであり、光源から光ファイバの入射端
へ光信号を入射し、この光信号によって光ファイバ内で
発生するラマン散乱のうち前記入射端へ向う後方散乱光
が戻ってくるまでの時間からその温度検知位置を計測す
るように構成されているが、光ファイバを構成する微細
な成分の違いや、構成等により、光ファイバを外側から
長さ計で温度検知位置までの長さを計測した場合と異な
ることが多い。それに加えて、OTDRの検温部である
光ファイバは、取付場所になじんで柔軟に形が変化する
ため、光ファイバの長さを光ファイバの外側から測定す
ることも非常に難しいという問題がある。
The OTDR originally has a function of detecting a position, and an optical signal is made incident from the light source to the incident end of the optical fiber, and of the Raman scattering generated in the optical fiber by this optical signal. It is configured to measure the temperature detection position from the time until the backscattered light returning to the incident end is returned, but the optical fiber is changed depending on the difference in the minute components that make up the optical fiber, the configuration, and the like. This is often different from the case where the length from the outside to the temperature detection position is measured with a length meter. In addition to that, the optical fiber, which is the temperature detecting portion of the OTDR, has a problem that it is very difficult to measure the length of the optical fiber from the outside of the optical fiber because the shape of the optical fiber adapts flexibly to the mounting place.

【0011】なお、Lt が20mよりも大きい長さを必
要とする理由の1つには、光の伝送速度変化に起因する
ことがあげられる。したがって、予め定めた測定場所の
一定温度の環境下で使用され且つ部分的に発生する異常
温度を測定する場合には、それらの既知条件を考慮しな
がら温度検知場所およびその場所の温度をかなり正確に
測定できるが、不特定場所の温度を測定する一般的な温
度測定の場合には前述したような種々の問題が生じる。
One of the reasons why L t requires a length larger than 20 m is that it is due to a change in the transmission speed of light. Therefore, when measuring an abnormal temperature that is used in a certain temperature environment at a predetermined measurement location and partially occurs, the temperature detection location and the temperature at that location should be fairly accurate while considering these known conditions. However, in the case of general temperature measurement for measuring the temperature of an unspecified place, various problems as mentioned above occur.

【0012】[0012]

【発明が解決しようとする課題】上記のように、現状で
は光ファイバの検温部の位置分解能長さLt が20mよ
りも大きいことから点の温度を測定することが難しい、
また、長い光ファイバ上の各点からの後方散乱光は微弱
であり且つこれにノイズが混入されているので、光信号
を数万回も繰り返し発射し、得られる後方散乱光を平均
化してノイズを除去し、所要とする信号を得るように構
成されているが忠実度の良い測定は非常に難しい等の問
題がある。
As described above, it is difficult to measure the temperature of a point because the position resolution length L t of the temperature measuring portion of the optical fiber is larger than 20 m under the present circumstances.
In addition, since the backscattered light from each point on the long optical fiber is weak and noise is mixed therein, the optical signal is repeatedly emitted tens of thousands of times, and the obtained backscattered light is averaged to generate noise. However, there is a problem that it is very difficult to measure with high fidelity.

【0013】そこで本発明は、広範な被測定領域の多数
の測定点の温度,湿度,あるいは被測定領域の温度分布
等を連続的且つ正確に測定可能とし、しかも測定精度お
よび位置分解能を高め得る測定システムを提供すること
を目的とする。
Therefore, according to the present invention, it is possible to continuously and accurately measure the temperature and humidity at a large number of measurement points in a wide range of the measured area, or the temperature distribution of the measured area, and to improve the measurement accuracy and position resolution. The purpose is to provide a measuring system.

【0014】[0014]

【課題を解決するための手段】本発明の測定システム
は、光源から光ファイバの入射端へ光信号を入射し、こ
の光信号の入射によって光ファイバ内で発生するラマン
散乱のうち前記入射端の方へ向かう後方散乱光が戻って
来るまでの時間と戻って来た信号の強さを信号処理装置
で解析して温度,湿度,あるいは温度分布を測定する測
定システムにおいて、被測定領域の各測定箇所にわたっ
て前記光ファイバの伝送路を連続的に敷設するととも
に、この伝送路の一部または全領域にわたって基準用信
号を印加する基準用信号印加部を有し、前記光ファイバ
の伝送路を熱的な隔壁の裏に敷設して基準用信号印加部
とし、前記各測定箇所でそれぞれ光ファイバを前記隔壁
の表へ一筆書き的にたるみ状に引き出し温度測定部と
し、表と裏の境を利用して測定点位置を明確化するよう
にしたことを特徴とする。
According to the measurement system of the present invention, an optical signal is input from a light source to an incident end of an optical fiber, and Raman scattering generated in the optical fiber by the incidence of the optical signal is measured at the incident end. In the measurement system that measures the temperature, humidity, or temperature distribution by analyzing the time until the backscattered light going back and the strength of the returned signal are measured by the signal processing device, each measurement of the measured area The transmission path of the optical fiber is continuously laid over a portion, and a reference signal application unit for applying a reference signal is applied to a part or the whole area of the transmission path, and the transmission path of the optical fiber is thermally Laying on the back side of the partition wall as a reference signal applying section, and pulling out the optical fiber to the front surface of the partition wall in a slack shape in a single stroke at each of the measurement points, and using it as a temperature measuring section, using the boundary between the front and back sides. Characterized in that so as to clarify the measurement point position.

【0015】[0015]

【作用】本発明の測定システムにおいては、被測定領域
の各測定箇所にわたって光ファイバの主の伝送路を熱的
な隔壁の裏に敷設して基準用信号印加部とし、各測定箇
所でそれぞれ光ファイバを前記隔壁の表へ一筆書き的に
たるみ状に引き出し温度測定部としたことにより、被測
定領域で環境変化が発生した場合、隔壁の表にある温度
測定部には敏感に温度変化が現われ、隔壁の裏の温度変
化は緩慢であるため、表と裏の境位置明確化を利用し、
温度測定部の光ファイバ束の長さが小であっても測定点
位置および温度を精度良く計測できる。
In the measuring system of the present invention, the main transmission line of the optical fiber is laid behind the thermal partition wall over each measurement point in the measured region to serve as the reference signal application section, and the optical signal is applied at each measurement point. By slackening the fiber to the surface of the partition wall in a slack-like manner and using it as a temperature measurement unit, when an environment change occurs in the measurement area, the temperature measurement unit on the surface of the partition wall shows a sensitive temperature change. , Since the temperature change on the back side of the partition is slow, use the clarification of the boundary position between the front and back,
Even if the length of the optical fiber bundle of the temperature measuring unit is small, the measurement point position and the temperature can be accurately measured.

【0016】[0016]

【実施例】以下、図面に示した実施例に基いて本発明を
詳細に説明する。
The present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0017】先ず、本発明の測定システムを説明するた
めのベースとなるOTDRを用いた温度計の測定原理に
ついて図4乃至図6を参照して説明する。
First, the measurement principle of a thermometer using an OTDR, which is a base for explaining the measurement system of the present invention, will be described with reference to FIGS. 4 to 6.

【0018】いま、例えば図4に示すように、光パルス
を発生するレーザ発振装置や発光ダイオード等の光源1
1から光パルスSを発生し、ビームスプリッタ12(ビ
ームスプリッタと同様な機能を発揮するデバイス、例え
ば光分岐等も含めてビームスプリッタと呼ぶ)を通して
光ファイバ13の入射端に入射すると、この光ファイバ
13内で光パルスSの伝送伝達位置例えばt1 ,……t
n-1 ,tn から、
Now, for example, as shown in FIG. 4, a light source 1 such as a laser oscillator or a light emitting diode for generating an optical pulse.
When the optical pulse S is generated from 1 and is incident on the incident end of the optical fiber 13 through the beam splitter 12 (a device that performs the same function as the beam splitter, for example, a beam splitter including the optical branch), The transmission position of the optical pulse S in 13 is, for example, t 1 , ... T
From n-1 , t n ,

【数3】 なる周波数のラマン散乱が次々に発生し、それによって
各位置t1 ,…,tn-1,tn から後方散乱光が光ファ
イバ入射端側へ戻ってきて前記ビームスプリッタ12で
反射されあるいは分岐され、信号処理装置14に導入さ
れる。そこで、上述の光パルスS発生後、この信号処理
装置14においては、各位置t1 ,…,tn-1 ,tn
ら散乱されてくる後方散乱光の強度である温度T1 ,…
n-1 ,Tn を検出し、仮にT1 =T2 =……=Tn-1
=Tn なる関係にあるとき、遠い位置にある温度程伝送
による損失が大きいために信号レベルが小さくなる。す
なわち、信号処理装置14による測定結果は図5のよう
になる。なお、信号処理装置14から光源11へ光パル
ス発射命令を出しているので、本実施例ではこの発射命
令と光ファイバ13内から散乱して戻ってくる後方散乱
光とをそれぞれ処理可能な電気信号に変換し、発射命令
時刻を基準として後方散乱光の戻ってくる時間を計測
し、その計測時間軸上で後方散乱光の強度を計測し、か
つ、光ファイバ内の光速を既知として演算し、測定位置
およびその測定位置での後方散乱光の強度から温度を測
定する。
[Equation 3] Raman scattering of a certain frequency is generated one after another, whereby the backscattered light returns from each position t 1 , ..., t n-1 , t n to the optical fiber entrance end side and is reflected or branched by the beam splitter 12. And is introduced into the signal processing device 14. Therefore, after the above-described light pulse S is generated, in the signal processing device 14, the temperature T 1 , ..., Which is the intensity of the backscattered light scattered from each position t 1 , ..., t n-1 , t n .
T n-1 and T n are detected, and T 1 = T 2 = ... = T n-1
= T n , the signal level decreases because the loss due to the transmission increases as the temperature is farther away. That is, the measurement result by the signal processing device 14 is as shown in FIG. Since the signal processor 14 issues an optical pulse emission command to the light source 11, in the present embodiment, an electrical signal capable of processing the emission command and the backscattered light scattered and returned from the optical fiber 13. Converted to, measure the time that the backscattered light returns with reference to the launch command time, measure the intensity of the backscattered light on the measurement time axis, and calculate the speed of light in the optical fiber as known, The temperature is measured from the measurement position and the intensity of the backscattered light at the measurement position.

【0019】すなわち、この測定原理は、光パルスSの
発生後、光ファイバ13内から返ってくるまでの時間を
測定し、どこの位置で起こったラマン散乱であるかを知
る方法であって、比較的長い光ファイバに有効である。
That is, this measurement principle is a method of measuring the time from the generation of the optical pulse S to the return from the inside of the optical fiber 13 and knowing at which position the Raman scattering occurred. Effective for relatively long optical fibers.

【0020】一方、OFDRでは、AC連続波(変調
波)を用いる場合には同様にAC波形の光信号と光ファ
イバ内から戻ってくるAC波形の光信号との位相ずれか
らどの位置でラマン散乱が起きたかを知る方法であっ
て、この場合には比較的短い光ファイバであっても正確
に測定できる。何れの場合にも後方散乱光の大きさから
温度を測定する。この後方散乱光には光源11から発生
した光パルスSの波長λの他、λA ,λS 等が混在して
いるので、信号処理装置14内の特性フィルタ或いは分
波器によってλA ,λS を分離し、温度計測を行う。λ
A は温度に対して感度が高く、λS は温度に対して感度
が低いので、λA /λS のごとく割算を行ない、λS
光源や伝送路の変動を補償するのに用いる。このような
補償を行うことにより、光源の光量変化、伝送路の損失
変化等の影響を大きく受けることがなく、λA を用いた
高感度の温度測定を行うことができる。一方、位置を検
出する温度にもλA ,λS を活用することが望ましい。
なお、光信号を発生する光源と検出器とを兼ねる素子を
用いる場合にはビームスプリッタは不要である。
On the other hand, in the OFDR, when an AC continuous wave (modulation wave) is used, Raman scattering occurs at any position due to the phase shift between the AC waveform optical signal and the AC waveform optical signal returning from the optical fiber. This is a method of knowing whether or not a problem has occurred, and in this case, even a relatively short optical fiber can be accurately measured. In either case, the temperature is measured from the size of the backscattered light. Other wavelength lambda of the light pulses S generated from the light source 11 in this backscattered light, λ A, λ since S etc. are mixed, lambda by characteristic filter or the duplexer of the signal processing apparatus 14 A, lambda Separate S and measure the temperature. λ
Since A has a high sensitivity to temperature and λ S has a low sensitivity to temperature, it is divided like λ A / λ S , and λ S is used to compensate for variations in the light source and the transmission line. By performing such compensation, highly sensitive temperature measurement using λ A can be performed without being greatly affected by a change in the light amount of the light source, a change in the loss of the transmission line, and the like. On the other hand, it is desirable to utilize λ A and λ S for the temperature at which the position is detected.
The beam splitter is not required when using an element that also serves as a light source that generates an optical signal and a detector.

【0021】次に、図6は特に信号処理装置14の一具
体例を示す図である。すなわち、この信号処理装置14
は、シーケンスプログラムに基づいて種々の指令を出力
するCPU141を有し、このCPU141から動作指
令を受けて光源11から波長λの光パルスを例えば2個
のプリズムで構成されたビームスプリッタ12を介して
光ファイバ13へ入射すると、この光ファイバ13内部
で発生するラマン散乱のうち光入射端側に戻ってくる波
長λ,λA ,λS 等を含んだ後方散乱光が特性フィルタ
或いは分波器142に入射してくる。
Next, FIG. 6 is a diagram showing a specific example of the signal processing device 14, in particular. That is, this signal processing device 14
Has a CPU 141 which outputs various commands based on a sequence program, receives an operation command from the CPU 141, and transmits an optical pulse of wavelength λ from a light source 11 via a beam splitter 12 composed of, for example, two prisms. When the light is incident on the optical fiber 13, the backscattered light including the wavelengths λ, λ A , λ S, etc. returning to the light incident end side of the Raman scattering generated inside the optical fiber 13 is the characteristic filter or the demultiplexer 142. Incident on.

【0022】なお、142が特性フィルタの場合にはそ
れぞれ一方の波長λA 或いはλS を通すフィルタが用い
られ、前述のごとくλA で温度計測を行い、λS で光源
や伝送路の変動を検出するごとくし例えばλA /λS
温度に対応した補償されたプロセス量にする。或いはλ
A ,λS の双方を通すフィルタを用い、λA ,λS を温
度信号として用いる。
When 142 is a characteristic filter, a filter that passes one of wavelengths λ A or λ S is used. As described above, temperature measurement is performed at λ A and fluctuations of the light source and transmission line are performed at λ S. As detected, for example, λ A / λ S is a compensated process quantity corresponding to temperature. Or λ
A filter that passes both A and λ S is used, and λ A and λ S are used as temperature signals.

【0023】一方、142が分波器の場合は、λA ,λ
S なる波長の光に分離した後、後続の光−電気変換器1
43,144でそれぞれ電気信号に変換される。そし
て、光−電気変換器144で変換された電気信号、つま
りラマン散乱に起因した信号は直接またはスイッチ回路
145を通って高速時系列処理手段146に送られ、こ
こでCPU141から光源11への動作指令出力に同期
して入力されるタイミング信号に基づいて時間(位置)
の計測およびその時間に対する温度に相当する信号強度
を計測し内蔵するメモリに順次保存していく。147は
高速時系列処理手段146に記憶されているデータおよ
び必要に応じて被測定領域の例えば温度発信源等をマッ
プ化したファイル148のデータを用いて所望とするデ
ータ処理を行う処理部である。
On the other hand, when 142 is a duplexer, λ A , λ
After separating into light of wavelength S , the subsequent opto-electric converter 1
At 43 and 144, they are converted into electric signals. Then, the electric signal converted by the optical-electrical converter 144, that is, the signal caused by Raman scattering is sent to the high-speed time series processing means 146 directly or through the switch circuit 145, where the operation from the CPU 141 to the light source 11 is performed. Time (position) based on the timing signal input in synchronization with the command output
And the signal strength corresponding to the temperature for that time are measured and sequentially stored in the built-in memory. A processing unit 147 performs desired data processing by using the data stored in the high-speed time series processing unit 146 and the data of the file 148 in which, for example, a temperature transmission source of the measured region is mapped as necessary. .

【0024】次に、本発明一実施例の測定システムを図
1を参照して説明する。
Next, a measuring system according to an embodiment of the present invention will be described with reference to FIG.

【0025】図1に示すように、被測定領域である室内
に熱的隔壁としてのコンジット(鋼,塩ビ等)15を天
井21から吊るして配置し、この中に光ファイバ13を
通し、複数の測温箇所にそれぞれ設けたコンジットの枝
管161 〜16n からたるみ状に光ファイバ13を引き
出し、無誘導電気抵抗と同様な巻き方をした温度測定部
171 〜17n を枝管から外部へ出し、各枝管の開口端
部内に熱遮断のための栓(例えばガラスウール,パテ,
ゴム粘度,セメント等)19を設け、枝管から外部に出
ている測定部171 〜17n を、小孔が多数分布して明
けられたカバー18で覆い、このカバー18を枝管に取
り付けるようにして、火災報知システムを構成したもの
である。各温度測定部同士の間の間隔Lの十分長い(測
温に必要な長さを有する)部分を基準用信号印加部とし
ている。
As shown in FIG. 1, a conduit (steel, vinyl chloride, etc.) 15 as a thermal barrier is hung from a ceiling 21 in a room, which is an area to be measured, and an optical fiber 13 is passed through the conduit 15 to form a plurality of conduits. The optical fiber 13 is drawn out from the branch pipes 16 1 to 16 n of the conduits respectively provided at the temperature measurement points in a slack shape, and the temperature measuring units 17 1 to 17 n wound in the same manner as the non-inductive electric resistance are externally provided from the branch pipes. A heat-insulating plug (eg glass wool, putty, etc.) inside the open end of each branch pipe.
(Rubber viscosity, cement, etc.) 19 is provided, and the measuring portions 17 1 to 17 n protruding from the branch pipe are covered with a cover 18 having a large number of small holes distributed therein, and this cover 18 is attached to the branch pipe. Thus, the fire alarm system is configured. A sufficiently long interval L (having a length necessary for temperature measurement) between the temperature measuring units is used as a reference signal applying unit.

【0026】別置されたOTDR形温度計本体20内の
信号処理装置14(図6参照)のCPUからの動作指令
を受けて光源11から発せられた光パルスがビームスプ
リッタ12を介して光ファイバ13へ入射される。各温
度測定部171 〜17n から後方散乱光が戻って来てビ
ームスプリッタ12を介して信号処理装置14に導入さ
れ、温度測定部の位置およびその位置での後方散乱光の
強度から温度が測定される。
An optical pulse emitted from the light source 11 in response to an operation command from the CPU of the signal processing device 14 (see FIG. 6) in the separately placed OTDR type thermometer main body 20 is transmitted through the beam splitter 12 to the optical fiber. It is incident on 13. Backscattered light returns from each of the temperature measuring units 17 1 to 17 n and is introduced into the signal processing device 14 via the beam splitter 12, and the temperature is determined from the position of the temperature measuring unit and the intensity of the backscattered light at that position. To be measured.

【0027】この実施例の火災報知システムとして構成
した測定システムにおいては、光ファイバ13の主の伝
送路をコンジット15内に敷設し、各測定箇所ではコン
ジット枝管161 〜16n により光ファイバ13を一筆
書き的にたるみ状として引き出し、無誘導電気抵抗と同
様に巻いた温度測定部171 〜17n を多孔を有するカ
バー18で覆い、コンジット15内部とは栓19によっ
て熱遮断した構成にしたので、測定箇所での火災発生の
際には、温度測定部171 〜17n の温度変化が敏感且
つ顕著に現われ、コンジット15内の基準信号印加部の
光ファイバ13の温度変化は緩慢であるため、温度測定
部171 〜17n の光ファイバ13束の長さが小であっ
ても測定点位置および温度を精度良く計測できる。この
結果、限定長さ1000mの光ファイバから多数の光フ
ァイバ束ができ、広範な領域に温度測定部を配置するこ
とができる。
In the measurement system configured as the fire alarm system of this embodiment, the main transmission line of the optical fiber 13 is laid inside the conduit 15, and the optical fiber 13 is laid at each measurement point by conduit branch pipes 16 1 to 16 n. Was drawn as a slack in a single stroke, and the temperature measuring parts 17 1 to 17 n wound in the same manner as the non-inductive electric resistance were covered with a cover 18 having a porous structure, and heat was cut off from the inside of the conduit 15 by a plug 19. Therefore, when a fire occurs at the measurement point, the temperature changes of the temperature measurement units 17 1 to 17 n appear sensitively and remarkably, and the temperature change of the optical fiber 13 of the reference signal application unit in the conduit 15 is slow. Therefore, even if the length of the optical fiber 13 bundle of the temperature measuring units 17 1 to 17 n is small, the measurement point position and the temperature can be accurately measured. As a result, a large number of optical fiber bundles can be formed from the optical fiber having a limited length of 1000 m, and the temperature measuring unit can be arranged in a wide area.

【0028】なお、図1に示した実施例では、たるみ状
として引き出した光ファイバ13を無誘導電気抵抗と同
様に無誘導的に巻いて温度測定部を構成したが、たるみ
状として引き出した光ファイバ13をくしゃくしゃに束
ね、それをカバーで覆って温度測定部を構成するように
してもよい。
In the embodiment shown in FIG. 1, the temperature measuring portion is constructed by winding the optical fiber 13 drawn out in a slack shape in a non-inductive manner like the non-inductive electric resistance. The fibers 13 may be bundled in a crumpled shape and covered with a cover to form a temperature measuring unit.

【0029】ここで、図3(a),(b)を参照して温
度測定部の光ファイバ13の長さと測定精度の関係につ
いての実験例を説明する。図3(a)に示すように、1
20℃に設定されている恒温槽31内に光ファイバ13
の温度測定部を設置し、その光ファイバ13の所要とす
る基準温度印加部を恒温槽外に取り出し、20℃の基準
温度を印加したとき、光パルスの幅,光ファイバの材
質,データ処理方法によって多少異なるが、図3(b)
のような関係となる。つまり、光ファイバ13の基準温
度印加部(い)を20℃に設定後、その光ファイバ13
を恒温槽31に導入して長さ1mの温度測定部(イ)と
したとき、本来恒温槽31内の設定温度120℃を測定
すべきところが、測定結果としては80℃相当しか得ら
れない。以下、同様に恒温槽31に外部に50m延ばし
て光ファイバ13の基準温度印加部(ろ)〜(へ)に基
準温度20℃を印加し、その後、恒温槽31内に導入し
て長さがそれぞれ2m,5m,10m,50mの温度測
定部(ロ)〜(ホ)を設置すると、各測度測定部
(ロ),(ハ),(ニ),(ホ)においてはそれぞれ1
06℃,119.5℃,120℃,120℃が得られ、
再現性は十分であることが分った。したがって、各温度
測定部(イ)〜(ホ)で得られた測定結果に対し、
(イ)では1.5,(ロ)では1.132,(ハ)では
1.004の補正係数を乗じてやれば、補正値としてい
ずれも120℃が得られ、温度測定部の光ファイバの長
さが分かれば補正により正しい温度を求めることが可能
である。つまり、温度測定部の光ファイバ束を1m程度
まで短かくしても問題無い。
An experimental example of the relationship between the length of the optical fiber 13 of the temperature measuring section and the measurement accuracy will be described with reference to FIGS. 3 (a) and 3 (b). As shown in FIG.
The optical fiber 13 is placed in the thermostatic chamber 31 set to 20 ° C.
Temperature measuring section is installed, the required reference temperature application section of the optical fiber 13 is taken out of the thermostatic chamber, and when a reference temperature of 20 ° C. is applied, the width of the optical pulse, the material of the optical fiber, and the data processing method. 3b
It becomes a relationship like. That is, after setting the reference temperature application part (i) of the optical fiber 13 to 20 ° C.,
When the temperature is introduced into the constant temperature bath 31 to form a temperature measuring section (a) having a length of 1 m, the set temperature of 120 ° C. inside the constant temperature bath 31 should be measured, but only 80 ° C. is obtained as the measurement result. Hereinafter, similarly, the reference temperature 20 ° C. is applied to the reference temperature applying portions (ro) to (to) of the optical fiber 13 by extending it to the outside in the constant temperature bath 31 in the same manner, and thereafter, the reference temperature is applied to the inside of the constant temperature bath 31 to change the length. If 2m, 5m, 10m, and 50m temperature measuring parts (b) to (e) are installed, each of the measure measuring parts (b), (c), (d), and (e) has 1
06 ° C, 119.5 ° C, 120 ° C, 120 ° C are obtained,
The reproducibility was found to be sufficient. Therefore, with respect to the measurement results obtained by the respective temperature measuring units (a) to (e),
By multiplying by a correction coefficient of 1.5 in (a), 1.132 in (b) and 1.004 in (c), 120 ° C. can be obtained as a correction value, and the correction value of the optical fiber of the temperature measurement unit can be obtained. If the length is known, it is possible to obtain the correct temperature by correction. That is, there is no problem even if the optical fiber bundle of the temperature measuring unit is shortened to about 1 m.

【0030】次に、本発明の測定システムの他の実施例
を図2を参照して説明する。この実施例では、熱的隔壁
として天井21を用い、光ファイバ13を天井21の上
に引き回し、複数の測温箇所で天井に明けた穴23から
それぞれ光ファイバ13をたるみ状にして天井の下にた
らし、図1の場合と同様にたるみ状部にカバーなどの見
栄え処理を施して温度測定部171 〜17n を構成した
ものである。天井21上の各温度測定部間の光ファイバ
13の主の伝送路が基準用信号(温度)印加部になって
おり、温度測定部171 〜17n の光ファイバ束の長さ
を短かくしても測定点位置および温度を精度良く計測で
きる。
Next, another embodiment of the measuring system of the present invention will be described with reference to FIG. In this embodiment, the ceiling 21 is used as a thermal partition, and the optical fiber 13 is routed over the ceiling 21, and the optical fiber 13 is slackened from the holes 23 formed in the ceiling at a plurality of temperature measurement points. In the same manner as in the case of FIG. 1, the temperature measuring parts 17 1 to 17 n are formed by applying a visual treatment such as a cover to the slack portion. The main transmission line of the optical fiber 13 between the temperature measuring units on the ceiling 21 is a reference signal (temperature) applying unit, and the lengths of the optical fiber bundles of the temperature measuring units 17 1 to 17 n are shortened. Can also accurately measure the measurement point position and temperature.

【0031】なお、本発明の測定システムの校正は、光
ファイバの一部あるいは全領域で測温している値を、他
の基準となる温度計で測温した温度と比較することによ
り行なう。また、十分長い光ファイバの束を既知温度の
恒温槽に入れOTDRで読んだ値をこの既知温度に合わ
せるように調整してもよい。
The measurement system of the present invention is calibrated by comparing the temperature measured in a part or the whole area of the optical fiber with the temperature measured by another reference thermometer. Alternatively, a bundle of sufficiently long optical fibers may be placed in a constant temperature bath having a known temperature, and the value read by the OTDR may be adjusted to match the known temperature.

【0032】[0032]

【発明の効果】以上詳述したように本発明によれば、被
測定領域の各測定箇所にわたって光ファイバの伝送路を
連続的に敷設するとともに、この伝送路の一部または全
領域にわたって基準用信号を印加する基準用信号印加部
を有し、前記光ファイバの伝送路を熱的な隔壁の裏に敷
設して基準用信号印加部とし、前記各測定箇所でそれぞ
れ光ファイバを前記隔壁の表へ一筆書き的にたるみ状に
引き出して温度測定部とし、表と裏の境を利用して測定
点位置を明確化するようにしたことを特徴とする測定シ
ステムを実現したことにより、被測定領域で環境変化が
発生した場合、隔壁の表にある温度測定部では敏感に温
度変化が現われ、隔壁の裏の温度変化は緩慢であるた
め、温度測定部の光ファイバ束の長さが小であっても測
定点位置および温度を精度良く計測できる。また、各温
度測定部で光ファイバは一筆書き的にたるみ状に引き出
されていることから接続の必要が無く、工事の容易化,
低工数化が図れるとともに、光の損失を最少限に抑える
ことができ、測定箇所の数を多くできる。
As described above in detail, according to the present invention, a transmission line of an optical fiber is continuously laid over each measurement point in a region to be measured, and a reference line is used over a part or the whole region of this transmission line. A reference signal applying section for applying a signal is provided, and a transmission path of the optical fiber is laid behind a thermal partition wall to serve as a reference signal applying section, and the optical fiber is arranged at each measurement point on the partition wall table. By implementing a measurement system that draws a slack in a single stroke as a temperature measurement section and uses the boundary between the front and back to clarify the measurement point position, the measured area When an environmental change occurs in the temperature measurement section on the front side of the partition wall, the temperature change appears sensitively and the temperature change on the back side of the partition wall is slow, so the length of the optical fiber bundle in the temperature measurement section is small. Even measuring point position and temperature It can be accurately measured. In addition, since the optical fiber is drawn out in a slack shape in a single stroke at each temperature measurement unit, there is no need for connection, facilitating construction,
The number of man-hours can be reduced, the loss of light can be minimized, and the number of measurement points can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明一実施例の測定システムの構成を
示す概略立面図である。
FIG. 1 is a schematic elevation view showing the configuration of a measuring system according to an embodiment of the present invention.

【図2】図2は本発明他の実施例の測定システムの構成
を示す概略斜視図である。
FIG. 2 is a schematic perspective view showing the configuration of a measuring system according to another embodiment of the present invention.

【図3】図3(a),(b)は温度測定部の光ファイバ
束の長さと測定値の関係を説明するための図で、図3
(a)は被測定領域の外部に基準温度装置を設けたとき
の等価構成図であり、図3(b)は図3(a)の等価構
成を用いたときの測定温度を示す図である。
3A and 3B are views for explaining the relationship between the length of the optical fiber bundle of the temperature measuring unit and the measured value.
FIG. 3A is an equivalent configuration diagram when a reference temperature device is provided outside the measured region, and FIG. 3B is a diagram showing a measured temperature when the equivalent configuration of FIG. 3A is used. .

【図4】図4は本発明の測定システムの測定原理を説明
するための構成図である。
FIG. 4 is a configuration diagram for explaining the measurement principle of the measurement system of the present invention.

【図5】図5は図4の構成において光源から光パルスを
発生した後、時間と後方散乱光の強度との関係を説明す
る図である。
5 is a diagram illustrating a relationship between time and intensity of backscattered light after a light pulse is generated from the light source in the configuration of FIG.

【図6】図6は図4における信号処理装置の具体的構成
例を示すブロック図である。
FIG. 6 is a block diagram showing a specific configuration example of the signal processing device in FIG.

【符号の説明】[Explanation of symbols]

11…光源 12…ビームスプリッタ 13…光ファイバ 14…信号処理装置 15…コンジット 16…コンジットの枝管 17…温度測定部 18…カバー 19…栓 20…OTDR形温度計本体 21…天井 11 ... Light source 12 ... Beam splitter 13 ... Optical fiber 14 ... Signal processing device 15 ... Conduit 16 ... Conduit branch pipe 17 ... Temperature measuring part 18 ... Cover 19 ... Stopper 20 ... OTDR type thermometer main body 21 ... Ceiling

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源から光ファイバの入射端へ光記号を
入射し、この光信号の入射によって光ファイバ内で発生
するラマン散乱のうち前記入射端の方へ向かう後方散乱
光が戻って来るまでの時間と戻って来た信号の強さを信
号処理装置で解析して温度,湿度,あるいは温度分布を
測定する測定システムにおいて、被測定領域の各測定箇
所にわたって前記光ファイバの伝送路を連続的に敷設す
るとともに、この伝送路の一部または全領域にわたって
基準用信号を印加する基準用信号印加部を有し、前記光
ファイバの伝送路を熱的な隔壁の裏に敷設して基準用信
号印加部とし、前記各測定箇所でそれぞれ光ファイバを
前記隔壁の表へ一筆書き的にたるみ状に引き出して温度
測定部とし、表と裏の境を利用して測定点位置を明確化
するようにしたことを特徴とする測定システム。
1. An optical symbol is incident from a light source to an incident end of an optical fiber, and backscattered light, which is directed to the incident end, of Raman scattering generated in the optical fiber due to the incidence of the optical signal is returned. In a measurement system in which the signal processing device analyzes the time and the strength of the returned signal to measure temperature, humidity, or temperature distribution, the optical fiber transmission line is continuously connected over each measurement point in the measured region. And a reference signal applying section for applying a reference signal over a part or the whole area of the transmission line, and the reference signal is provided by laying the optical fiber transmission line behind a thermal partition wall. As a voltage application section, at each of the measurement points, the optical fiber is drawn out in a slack shape in a single stroke to the front surface of the partition wall to serve as a temperature measurement section, and the position of the measurement point is clarified using the front and back boundaries. What you did Measuring system.
【請求項2】 熱的な隔壁が建築物の天井,壁,床,天
井から吊り下げられて天井と一定間隔で設置されたコン
ジットのいずれか1つであることを特徴とする請求項1
記載の測定システム。
2. The thermal partition wall is any one of a ceiling, a wall, a floor of a building, and a conduit suspended from the ceiling and installed at a fixed interval from the ceiling.
The described measurement system.
【請求項3】 温度測定部が、隔壁の穴からたるみ状に
引き出した光ファイバを無誘導巻的に巻くかあるいはく
しゃくしゃに束ね、前記穴を断熱性の栓でふさぎ、巻か
れあるいは束ねられた光ファイバをカバーで覆った構造
であることを特徴とする請求項1記載の測定システム。
3. The temperature measuring unit comprises an optical fiber drawn in a slack shape from a hole of a partition wall, wound in a non-inductive manner or bundled in a crumpled manner, and the hole is closed with a heat-insulating stopper and wrapped or bundled. The measuring system according to claim 1, wherein the optical fiber is covered with a cover.
JP5158223A 1993-06-29 1993-06-29 Measurement system Pending JPH0712655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5158223A JPH0712655A (en) 1993-06-29 1993-06-29 Measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5158223A JPH0712655A (en) 1993-06-29 1993-06-29 Measurement system

Publications (1)

Publication Number Publication Date
JPH0712655A true JPH0712655A (en) 1995-01-17

Family

ID=15666977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5158223A Pending JPH0712655A (en) 1993-06-29 1993-06-29 Measurement system

Country Status (1)

Country Link
JP (1) JPH0712655A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195502A (en) * 2004-01-08 2005-07-21 Occ Techno Ltd Optical fiber type temperature measuring apparatus and temperature measuring method
WO2010125713A1 (en) 2009-04-27 2010-11-04 富士通株式会社 Method and device for analyzing laying condition of wire
DE112011103935T5 (en) 2010-11-26 2013-08-22 Mazda Motor Corporation Tool for collecting and directing lubricating oil
US10704964B2 (en) 2015-05-13 2020-07-07 Fujitsu Limited Temperature measurement device, temperature measurement method, and computer-readable non-transitory medium
US10712211B2 (en) 2015-05-13 2020-07-14 Fujitsu Limited Temperature measurement device, temperature measurement method, and computer-readable non-transitory medium
US10775245B2 (en) 2015-05-13 2020-09-15 Fujitsu Limited Temperature measurement device, temperature measurement method, and computer-readable non-transitory medium
US11029218B2 (en) 2015-02-17 2021-06-08 Fujitsu Limited Determination device, determination method, and non-transitory computer-readable recording medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195502A (en) * 2004-01-08 2005-07-21 Occ Techno Ltd Optical fiber type temperature measuring apparatus and temperature measuring method
WO2010125713A1 (en) 2009-04-27 2010-11-04 富士通株式会社 Method and device for analyzing laying condition of wire
US8310661B2 (en) 2009-04-27 2012-11-13 Fujitsu Limited Cable installed state analyzing method and cable installed state analyzing apparatus
DE112011103935T5 (en) 2010-11-26 2013-08-22 Mazda Motor Corporation Tool for collecting and directing lubricating oil
US11029218B2 (en) 2015-02-17 2021-06-08 Fujitsu Limited Determination device, determination method, and non-transitory computer-readable recording medium
US10704964B2 (en) 2015-05-13 2020-07-07 Fujitsu Limited Temperature measurement device, temperature measurement method, and computer-readable non-transitory medium
US10712211B2 (en) 2015-05-13 2020-07-14 Fujitsu Limited Temperature measurement device, temperature measurement method, and computer-readable non-transitory medium
US10775245B2 (en) 2015-05-13 2020-09-15 Fujitsu Limited Temperature measurement device, temperature measurement method, and computer-readable non-transitory medium

Similar Documents

Publication Publication Date Title
EP0457941B1 (en) Apparatus and method for measuring temperatures by using optical fiber
US10151626B2 (en) Fibre optic distributed sensing
US10330525B2 (en) Optical fiber vibration measurement system in multiphase flows with related method to monitor multiphase flows
Niklès Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications
JP2018146371A (en) Temperature-strain sensing device and temperature-strain sensing method
CA2738627A1 (en) Auto-correcting or self-calibrating dts temperature sensing sytems and methods
US5035511A (en) Distributed fiber optic temperature sensor based on time domain transmission
CN110518969A (en) A kind of positioning device and method of optic cable vibration
KR20180134253A (en) Fiber-optic acoustic sensor module apparatus and system using coherent optical time-domain reflectormeter method
EP1393033B1 (en) A cryogenic optical fibre temperature sensor
EP3172545B1 (en) Temperature sensor
EP3867615B1 (en) Temperature monitoring device, temperature monitoring method, and temperature monitoring system
JPH0712655A (en) Measurement system
CN101794506A (en) Method and device used for data calibration in distributed type optical fiber temperature sensor
JP6706192B2 (en) Propagation delay time difference measuring method between spatial channels and propagation delay time difference measuring apparatus between spatial channels
JP3063063B2 (en) Optical fiber temperature distribution measurement system
CN202631153U (en) Single-port distributed optic fiber temperature sensor with automatic compensation function
JP2693746B2 (en) measuring device
CN210327579U (en) Optical cable vibrating positioning device
JP2724246B2 (en) Optical fiber distributed temperature sensor
CN110518967A (en) A kind of uniaxial optical fibers interferometer and the positioning device for eliminating fiber-optic vibration blind area
CN110518968B (en) Optical cable vibration positioning device and method
Zhang et al. A distributed optical fiber temperature measuring system for oil Wells
GB2333357A (en) Fibre optic temperature sensor
JPH02145933A (en) Optical fiber linear temperature distribution measuring system