Nothing Special   »   [go: up one dir, main page]

JP2005195502A - Optical fiber type temperature measuring apparatus and temperature measuring method - Google Patents

Optical fiber type temperature measuring apparatus and temperature measuring method Download PDF

Info

Publication number
JP2005195502A
JP2005195502A JP2004003176A JP2004003176A JP2005195502A JP 2005195502 A JP2005195502 A JP 2005195502A JP 2004003176 A JP2004003176 A JP 2004003176A JP 2004003176 A JP2004003176 A JP 2004003176A JP 2005195502 A JP2005195502 A JP 2005195502A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
heat pipe
measured
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004003176A
Other languages
Japanese (ja)
Inventor
Shunsuke Kubota
俊輔 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCC TECHNO Ltd
Original Assignee
OCC TECHNO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCC TECHNO Ltd filed Critical OCC TECHNO Ltd
Priority to JP2004003176A priority Critical patent/JP2005195502A/en
Publication of JP2005195502A publication Critical patent/JP2005195502A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber type temperature measuring apparatus, which can be applied to even a narrow and small section to be measured. <P>SOLUTION: The optical fiber type temperature measuring apparatus which measures temperature values of the section to be measured, is equipped with a light source device 2 which emits pulse light from one edge of an optical fiber 4; a detecting system which detects backscattering light generated at each portion of the optical fiber 4; and a processing section 18 which determines the temperature value of each portion of the optical fiber, based on output signals from the detecting system. In the temperature measuring apparatus, a heat pipe 5 which is used as a thermosensitive member, has a thermosensitive section 5A at its portion contacting with the section to be measured, and the optical fiber 4 is brought to contact with the heat pipe 5 over a prescribed length in the remaining portion of the heat pipe. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光ファイバを用いて温度を計測する光ファイバ型温度計測装置に関する。   The present invention relates to an optical fiber temperature measuring device that measures temperature using an optical fiber.

多数の被測定部位が広範囲に存在する条件での温度測定、発熱監視、例えば可燃物製造工程のポンプ、モータ、軸受等の機器類の発熱監視、さらには、火力発電所の石炭ベルトコンベア火災の主原因と考えられる軸受発熱監視のために光ファイバ型温度計測装置が用いられることがある。   Temperature measurement under conditions where a large number of parts to be measured exist in a wide range, heat generation monitoring, for example, heat generation monitoring of equipment such as pumps, motors, bearings, etc. in the combustible manufacturing process, as well as coal belt conveyor fires at thermal power plants An optical fiber type temperature measuring device is sometimes used to monitor bearing heat generation, which is considered to be the main cause.

このような装置としては、光ファイバの長手方向での特定部分を被測定部位に配して、該光ファイバの一端からパルス光を投射し、後方散乱光を検出することにより上記被測定部位の温度を測定する装置が特許文献1で知られている。   As such an apparatus, a specific portion in the longitudinal direction of the optical fiber is arranged at a measurement site, pulse light is projected from one end of the optical fiber, and backscattered light is detected to detect the measurement site. An apparatus for measuring temperature is known from US Pat.

かかる光ファイバによる温度測定においては、測定精度(距離分解能)は光パルスのパルス幅に依存し、測定温度はパルス幅相当長の平均温度となるため、光ファイバは上記パルス光のパルス幅に相当する長さにわたり被測定温度のもとにおかれる必要があり、ほぼ点状の狭部位の測定には不向きであった。そこで特許文献1では、光ファイバを保護材の除去のもとに複数回巻回して、なるべく小さな範囲内で上記の長さを得てパルス幅相当長が同一温度となるようにして温度測定している。   In such temperature measurement using an optical fiber, the measurement accuracy (distance resolution) depends on the pulse width of the optical pulse, and the measurement temperature is an average temperature corresponding to the pulse width. Therefore, the optical fiber corresponds to the pulse width of the pulse light. Therefore, it was necessary to be kept under the temperature to be measured over the length of the measurement, and it was not suitable for measuring a substantially spot-like narrow part. Therefore, in Patent Document 1, the optical fiber is wound a plurality of times under the removal of the protective material, and the temperature is measured so that the above length is obtained within the smallest possible range and the equivalent pulse width is the same temperature. ing.

この特許文献1の装置は、添付図面の図3ないし図4に見られるように、光ファイバケーブルCを一定長にわたり、その金属管等の保護材被覆を除去して光ファイバC1を露呈せしめ、この光ファイバC1を複数回コイル状に巻回し、このコイルを支持部材51の対応環状溝52へ収めている。該環状溝52には、その接線方向に延びる引出溝53が連通形成されていて、上記ケーブルCが支持部材51外へ引き出されている。上記支持部材51には蓋部材54が取り付けられる。   As shown in FIGS. 3 to 4 of the accompanying drawings, the device of Patent Document 1 exposes the optical fiber C1 by exposing the optical fiber cable C over a certain length and removing the protective coating such as the metal tube. The optical fiber C <b> 1 is wound into a coil shape a plurality of times, and this coil is stored in the corresponding annular groove 52 of the support member 51. A drawing groove 53 extending in the tangential direction is formed in communication with the annular groove 52, and the cable C is drawn out of the support member 51. A lid member 54 is attached to the support member 51.

上記支持部材51は、良熱伝導性材で作られていて、測定対象物の所望の被測定部位へ取り付けられる。したがって、光ファイバC1のコイルは、そのコイル全長にわたり、上記被測定部位の温度と近似する温度となる。   The support member 51 is made of a highly heat conductive material and is attached to a desired measurement site of the measurement object. Therefore, the coil of the optical fiber C1 has a temperature that approximates the temperature of the measurement site over the entire length of the coil.

このような特許文献1の装置によると、測定用光ファイバに入射されたパルス光は光ファイバを伝播し、その間に光ファイバの各部位で後方散乱光が発生する。この後方散乱光の強度は光ファイバの各部位の温度に対応した値となる。発生した後方散乱光はパルス光の伝導方向とは逆方向すなわち入射方向に向いて伝播し、そして、投射光から分離され、さらに、ラマン散乱によるストークス光と反ストークス光に分離される。これらストークス光及び反ストークス光は、それぞれストークス光の強度及び反ストークス光の強度の対応した出力信号を発生し、これら出力信号が処理回路(図示せず)へ送られて、演算処理され、光ファイバの各部位の温度が求まる。
特許第3200298号
According to such an apparatus of Patent Document 1, the pulsed light incident on the measurement optical fiber propagates through the optical fiber, and backscattered light is generated at each part of the optical fiber. The intensity of the backscattered light has a value corresponding to the temperature of each part of the optical fiber. The generated backscattered light propagates in a direction opposite to the conduction direction of the pulsed light, that is, in the incident direction, is separated from the projection light, and further separated into Stokes light and anti-Stokes light due to Raman scattering. The Stokes light and the anti-Stokes light generate output signals corresponding to the intensity of the Stokes light and the intensity of the anti-Stokes light, respectively, and these output signals are sent to a processing circuit (not shown) for arithmetic processing, The temperature of each part of the fiber is obtained.
Japanese Patent No. 3300288

かかる特許文献1の形式の温度計測装置にあっては、被測定部位における光ファイバの加熱される部分の長さ(加熱長)は、少なくとも入射パルス光のパルス幅に相当する長さが必要である。そこで、特許文献1では、その長さを確保するために光ファイバをコイル状に複数回巻回されている。   In such a temperature measuring device of the type of Patent Document 1, the length (heating length) of the heated portion of the optical fiber in the measurement site needs to be at least the length corresponding to the pulse width of the incident pulsed light. is there. Therefore, in Patent Document 1, an optical fiber is wound in a coil shape a plurality of times in order to ensure the length.

光ファイバは、上述のごとく巻回が可能ではあるが、巻回半径が小さくなる程ロスが大きくなるので、巻半径を小さくすることには限界があり比較的大きな半径で巻回しなければならない。これは、この光ファイバを収める良熱伝導性材の支持部材が大きくなってしまい、多少の小型化はできても、点状の狭部位での測定には、依然として不向きであることを意味する。   Although the optical fiber can be wound as described above, the loss increases as the winding radius decreases. Therefore, there is a limit to reducing the winding radius, and the optical fiber must be wound with a relatively large radius. This means that the support member of the heat-conductive material that accommodates the optical fiber becomes large, and even though it can be somewhat reduced in size, it is still unsuitable for measurement in a spot-like narrow part. .

このような支持部材は十分な小型化ができないために、取扱いが不自由となるばかりか、該支持部材が取り付けられる測定対象物の被測定部位に自ずと限定を生じ、狭い部分や特定の点での測定ができない。   Since such a support member cannot be sufficiently reduced in size, not only handling becomes inconvenient, but also the measurement target part of the measurement object to which the support member is attached is naturally limited to a narrow part or a specific point. Cannot be measured.

又、光ファイバは、被測定部位の温度のもとに置かれる測定範囲が上記パルス幅に比して短いほど精度が低下する。測定長と測定精度(距離分解能)に相関性があるため、不十分な長さでも、補正により真温度の推定は可能であるが、上記測定範囲が小さいほど補正量が大きくなり、その信頼性は低下する。   In addition, the accuracy of the optical fiber decreases as the measurement range placed under the temperature of the measurement site is shorter than the pulse width. Since there is a correlation between measurement length and measurement accuracy (distance resolution), true temperature can be estimated by correction even if the length is insufficient. However, the smaller the measurement range, the larger the correction amount and its reliability. Will decline.

本発明は、光ファイバを利用して狭い部分や特定の点での測定を可能とする光ファイバ型温度測定装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an optical fiber type temperature measuring apparatus that enables measurement in a narrow part or a specific point using an optical fiber.

本発明に係る光ファイバ型温度計測装置は、光ファイバの一端からパルス光を投射する光源装置と、光ファイバの各部位で発生した後方散乱光を検出する検出系と、検出系からの出力信号に基いて光ファイバの各部位の温度を決定する処理部とを備えている。   An optical fiber type temperature measuring device according to the present invention includes a light source device that projects pulsed light from one end of an optical fiber, a detection system that detects backscattered light generated at each part of the optical fiber, and an output signal from the detection system. And a processing unit for determining the temperature of each part of the optical fiber based on the above.

かかる光ファイバ型温度計測装置において、本発明は、感熱部材としてヒートパイプを有し、該ヒートパイプが一部に被測定部位と接触する感熱部を有し、上記光ファイバが該ヒートパイプの残部にて所定長にわたり該ヒートパイプと接触保持されていることを特徴としている。   In such an optical fiber type temperature measuring device, the present invention has a heat pipe as a heat sensitive member, the heat pipe has a heat sensitive part in contact with a part to be measured, and the optical fiber is the remaining part of the heat pipe. It is characterized by being held in contact with the heat pipe over a predetermined length.

このような本発明装置によると、ヒートパイプの一部が感熱部として測定対象物の被測定部位に配される。したがって、被測定部位が狭い部位であっても、上記感熱部たるヒートパイプの一部は十分に小寸法であるために取付けが可能となる。   According to such an apparatus of the present invention, a part of the heat pipe is arranged as a heat sensitive part at the measurement site of the measurement object. Therefore, even if the part to be measured is narrow, a part of the heat pipe as the heat sensitive part is sufficiently small in size so that attachment is possible.

被測定部位に温度変化があったときには、ヒートパイプの感熱部を経てヒートパイプ全長にわたりほぼ即時に感熱部の温度まで昇温・降温する。一方、光ファイバはこのヒートパイプと所定長にわたり直接又は間接的に接触しているので、接触範囲長にわたり上記被測定部位の温度となる。すなわち、ヒートパイプの感熱部が小部分であるにも拘らず、光ファイバは所定長にわたり被測定部位の温度となる。   When there is a change in temperature at the part to be measured, the temperature is raised and lowered almost immediately to the temperature of the heat sensitive part through the heat sensitive part of the heat pipe over the entire length of the heat pipe. On the other hand, since the optical fiber is in direct or indirect contact with the heat pipe over a predetermined length, the temperature of the measurement site is maintained over the contact range length. That is, although the heat-sensitive part of the heat pipe is a small part, the optical fiber reaches the temperature of the measurement site over a predetermined length.

光ファイバにおける測定は、特許文献1に示された従来の方法と同様に、上記光ファイバの一端からパルス光を入射し、その後方散乱光を用いて、ラマン散乱によるストークス光と反ストークスとに分離され、これらの強度に基く出力信号を処理することにより温度が算出される。このとき、光ファイバとヒートパイプとの接触長が入射パルスのパルス幅よりも短く、そして隣接部との間に測定温度差があるときには、補正を行なう。   As in the conventional method disclosed in Patent Document 1, the measurement in the optical fiber is performed by making pulse light incident from one end of the optical fiber and using the backscattered light to produce Stokes light and anti-Stokes by Raman scattering. The temperature is calculated by processing an output signal that is separated and based on these intensities. At this time, correction is performed when the contact length between the optical fiber and the heat pipe is shorter than the pulse width of the incident pulse and there is a measured temperature difference between adjacent portions.

本発明において、ヒートパイプは略環状部を有し、光ファイバが該環状部に対して接触して複数回巻回されているようにすることができる。こうすることにより、ヒートパイプの一端での感熱部が小寸法のままで良い一方で、光ファイバは上記略環状部に沿って複数回巻回されることによって、入射パルス光のパルス幅に対して十分な長さでヒートパイプと接触できる。   In the present invention, the heat pipe may have a substantially annular portion, and the optical fiber may be wound a plurality of times in contact with the annular portion. In this way, the heat sensitive part at one end of the heat pipe may be kept small, while the optical fiber is wound a plurality of times along the substantially annular part to thereby reduce the pulse width of the incident pulse light. Long enough to contact the heat pipe.

又、本発明においては、光ファイバとヒートパイプは、互いの接触範囲長にわたり断熱材で被覆されているようにすることが望ましい。この断熱材を設けることにより、光ファイバはヒートパイプの温度により近似ししかもその応答性もさらに改善される。   In the present invention, it is desirable that the optical fiber and the heat pipe are covered with a heat insulating material over the length of the contact range. By providing this heat insulating material, the optical fiber is more approximate to the temperature of the heat pipe and its responsiveness is further improved.

さらに、本発明において、光ファイバとヒートパイプとの接触範囲長がパルス光のパルス幅よりも短くかつ該範囲での測定温度と隣接部での測定温度とに差があるときには、該温度差にパルス幅と加熱長との比に基いて温度補正する補正部を上記処理部に有していることが好ましい。   Furthermore, in the present invention, when the contact range length between the optical fiber and the heat pipe is shorter than the pulse width of the pulsed light and there is a difference between the measured temperature in the range and the measured temperature at the adjacent portion, the temperature difference It is preferable that the processing unit has a correction unit that corrects the temperature based on the ratio between the pulse width and the heating length.

本発明は、以上のように、ヒートパイプの一部を感熱部として測定対象物の被測定部位へ配し、このヒートパイプの残部で所定長にわたり光ファイバを接触せしめて、この光ファイバにより温度測定することとしたので、被測定部位が狭い部位でも測定を可能とし、光ファイバによる測定のため光ファイバ長を確保でき、測定応用分野が拡がるだけでなく、測定の精度そして確実性も向上する。   In the present invention, as described above, a part of the heat pipe is arranged as a heat sensitive part at a measurement site of an object to be measured, and an optical fiber is brought into contact with the remaining part of the heat pipe for a predetermined length. Since measurement was performed, measurement was possible even in a narrow part to be measured, and the length of the optical fiber could be secured for measurement using an optical fiber. Not only the measurement application field expanded, but also the accuracy and certainty of measurement were improved. .

以下、添付図面の図1及び図2に基き、本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2 of the accompanying drawings.

図1本実施形態の光ファイバ型温度計測装置の全体構成図である。   1 is an overall configuration diagram of an optical fiber type temperature measuring device of the present embodiment.

本実施形態装置は、計測要素1と、計測装置本体2と、表示装置3とを有している。   The apparatus according to the present embodiment includes a measurement element 1, a measurement device main body 2, and a display device 3.

計測要素1は、本実施形態では、一つの光ファイバ4で複数直列に接続されている。各計測要素1は、上記光ファイバ4が接触しているヒートパイプ5を感熱部材として有している。該ヒートパイプ5は、直状管の一端を屈曲して作られていて、該一端が感熱部5Aをなしている。該ヒートパイプ5の直状の残部は伝熱部5Bをなし、上記光ファイバ4と接触しており、該ヒートパイプ5の熱がそのまま光ファイバ4に伝熱されるようになっている。ここで、上記光ファイバ4は、計測装置本体2外に在るために、通常、金属管等により保護されていることが多い。したがって、この場合、光ファイバ4は良熱伝導性材である金属管等を介して伝熱部5Bからの熱を受ける。又、上記感熱部はヒートパイプの一端であることを要せず、中間部の一部であってもよい。   In the present embodiment, a plurality of measuring elements 1 are connected in series with one optical fiber 4. Each measuring element 1 has a heat pipe 5 in contact with the optical fiber 4 as a heat sensitive member. The heat pipe 5 is formed by bending one end of a straight pipe, and the one end forms a heat sensitive part 5A. The straight portion of the heat pipe 5 forms a heat transfer portion 5B and is in contact with the optical fiber 4 so that the heat of the heat pipe 5 is transferred to the optical fiber 4 as it is. Here, the optical fiber 4 is usually protected by a metal tube or the like because it is outside the measuring apparatus main body 2. Therefore, in this case, the optical fiber 4 receives heat from the heat transfer section 5B through a metal tube or the like that is a good heat conductive material. The heat sensitive part does not need to be one end of the heat pipe and may be a part of the intermediate part.

上記ヒートパイプ5の伝熱部5Bと、この伝熱部5Bに対応する範囲の光ファイバ4は断熱材6により包囲されている。この断熱材6は、外部との熱の授受を遮断すると共に上記伝熱部5Bと光ファイバ4とを確実に接触させその状態で保持するという機能を有している。   The heat transfer section 5B of the heat pipe 5 and the optical fiber 4 in a range corresponding to the heat transfer section 5B are surrounded by a heat insulating material 6. The heat insulating material 6 has a function of blocking heat exchange with the outside and securely contacting the heat transfer portion 5B and the optical fiber 4 in that state.

上記計測要素1は、測定対象物の各被測定部位Pに対し、例えば、計測孔等を穿設して上記感熱部5Aを挿入する、支持具で固定する等、適宜取り付けられる。又、被測定部位Pの箇所が増えたときには、その対応位置で、長く延びている上記光ファイバ4に対して上記要領でヒートパイプ5を接触取付けすることにより増設することができる。   The measurement element 1 is appropriately attached to each measurement site P of the measurement object, for example, by making a measurement hole or the like and inserting the heat sensitive part 5A, or fixing with a support. Further, when the number of measurement sites P increases, the number of the measurement sites P can be increased by contacting and attaching the heat pipe 5 to the optical fiber 4 extending long at the corresponding position.

装置本体2は、パルス光を発する光源装置としてのレーザ光源7、光ファイバ8により接続される第一方向性結合器9を有し、上記光ファイバ4がこの第一方向性結合器9に接続される。この第一方向性結合器9は、上記レーザ光源7から光ファイバ4へ入射される入射光と、該光ファイバ4内で後光散乱して入射方向とは逆方向に伝播される後方散乱光とを分離する機能を有する。   The apparatus main body 2 includes a laser light source 7 as a light source device that emits pulsed light and a first directional coupler 9 connected by an optical fiber 8, and the optical fiber 4 is connected to the first directional coupler 9. Is done. The first directional coupler 9 includes incident light that is incident on the optical fiber 4 from the laser light source 7 and backscattered light that is scattered in the optical fiber 4 in the direction opposite to the incident direction after being scattered. And has a function of separating.

上記第一方向性結合器9には、光ファイバ10により第二方向性結合器11が接続されている。該第二方向性結合器11は、第一方向性結合器9で分離された後方散乱光を、上記光ファイバ10を経て受け、これをラマン散乱によるストークス光と反ストークス光とに分離し、これらを別々の光ファイバ12,13を経て狭帯域フィルタ14,15に伝達すべく接続されている。   A second directional coupler 11 is connected to the first directional coupler 9 by an optical fiber 10. The second directional coupler 11 receives the backscattered light separated by the first directional coupler 9 through the optical fiber 10 and separates it into Stokes light and anti-Stokes light due to Raman scattering, These are connected to transmit them to the narrow band filters 14 and 15 via separate optical fibers 12 and 13.

上記狭帯域フィルタ14,15には、それぞれ第一光検出器16、第二光検出器17が近接して設けられていて検出系を形成し、上記狭帯域フィルタ14,15を透過したストークス光そして反ストークス光を検出するようになっている。上記第一光検出器16と第二光検出器17は処理部(信号処理回路)18に接続されており、公知の方法により上記ストークス光と反ストークス光との強度比から各被測定部位における温度を算出する。該処理部18は、レーザ光源7でのパルス光のタイミングを定めるべく、該レーザ光源7とも接続されている。さらに上記処理部18には、算出された温度を表示すべく表示装置3が接続されている。   The narrow band filters 14 and 15 are respectively provided with a first photodetector 16 and a second photodetector 17 in close proximity to form a detection system, and Stokes light transmitted through the narrow band filters 14 and 15. Anti-Stokes light is detected. The first photodetector 16 and the second photodetector 17 are connected to a processing unit (signal processing circuit) 18, and the intensity ratio between the Stokes light and the anti-Stokes light is measured at each measured site by a known method. Calculate the temperature. The processing unit 18 is also connected to the laser light source 7 in order to determine the timing of the pulsed light from the laser light source 7. Further, the display unit 3 is connected to the processing unit 18 so as to display the calculated temperature.

又、上記処理部18には、必要に応じて補正を行なう補正部18Aも備えている。この補正部18Aにおける補正は、ヒートパイプ5の伝熱部5Bがパルス光のパルス幅よりも短く、そして隣接部との間に測定温度差があるときに行なわれる。温度算出は、パルス幅に相当する長さでの信号強度の平均値としてなされるので、伝熱部5Bにおける接触範囲長が短いと、実際の温度よりも低い値として算出されてしまう。そこで、かかる場合、伝熱部5B以外の部位における温度と伝熱部5Bにおける温度との差に対し、上記パルス幅と接触範囲長の比を乗じることにより、補正される。   The processing unit 18 also includes a correction unit 18A that performs correction as necessary. The correction in the correction unit 18A is performed when the heat transfer unit 5B of the heat pipe 5 is shorter than the pulse width of the pulsed light and there is a measured temperature difference between the adjacent units. Since the temperature calculation is performed as an average value of the signal intensity with a length corresponding to the pulse width, if the contact range length in the heat transfer section 5B is short, it is calculated as a value lower than the actual temperature. Therefore, in such a case, the difference between the temperature at the portion other than the heat transfer section 5B and the temperature at the heat transfer section 5B is corrected by multiplying the ratio of the pulse width and the contact range length.

例えば、被測定部位の温度が115℃、隣接部の温度が15℃の場合パルス光のパルス幅をx、伝熱部と接触する光ファイバの長さをyとして、y≧xのときは接触範囲長は距離分解能よりも長いので、測定温度は115℃が得られ被測定部位の温度TはそのままT=115℃として採用してよい。次にy<xのときには、接触範囲長が距離分解能よりも短いので上記測定温度よりも低くなる。例えばy=x/2であるとき、上記測定温度が65℃であって被測定部位外の隣接部での温度が15℃であるとすると、被測定部位の温度Tは、T=15+(65−15)×[x/(x/2)]、すなわちT=15+50×2=115(℃)として、補正された被測定部位の温度Tを得る。   For example, when the temperature of the measured region is 115 ° C. and the temperature of the adjacent portion is 15 ° C., the pulse width of the pulsed light is x, the length of the optical fiber in contact with the heat transfer unit is y, and the contact is made when y ≧ x Since the range length is longer than the distance resolution, the measurement temperature may be 115 ° C., and the temperature T of the measurement site may be adopted as T = 115 ° C. as it is. Next, when y <x, the contact range length is shorter than the distance resolution, so that it becomes lower than the measured temperature. For example, when y = x / 2, if the measurement temperature is 65 ° C. and the temperature at the adjacent part outside the measurement site is 15 ° C., the temperature T of the measurement site is T = 15 + (65 −15) × [x / (x / 2)], that is, T = 15 + 50 × 2 = 115 (° C.), and the corrected temperature T of the measured region is obtained.

このような構成の本実施形態装置にあっては、被測定部位についての温度測定は、次の要領で行なわれる。   In this embodiment of the apparatus having such a configuration, the temperature measurement for the measurement site is performed as follows.

(1)先ず、測定対象物の被測定部位に形成された取付孔等に計測要素1の感熱部5Aを挿入取付けする。感熱部5Aは、良伝熱性の接着剤等により固定する。   (1) First, the heat sensitive part 5A of the measuring element 1 is inserted and attached to an attachment hole or the like formed in the measurement site of the measurement object. The heat sensitive part 5A is fixed with a good heat transfer adhesive or the like.

(2)被測定部位に温度変化があると、ヒートパイプ5内の熱媒体は即時に流動して、伝熱部5Bは感熱部5Aと同一温度となり、伝熱部5Bに接触している光ファイバ4も、その接触域で上記伝熱部5Bの温度となる。   (2) When there is a temperature change in the measurement site, the heat medium in the heat pipe 5 immediately flows, and the heat transfer section 5B has the same temperature as the heat sensitive section 5A and is in contact with the heat transfer section 5B. The temperature of the heat transfer part 5B also becomes the fiber 4 in the contact area.

(3)レーザ光源7からはパルス光が発せられ、光ファイバ8を経て測定用の光ファイバ4に入射する。この光ファイバ4に入射したパルス光は該光ファイバ4を伝播し、その間に光ファイバ4の伝熱部5Bに対応する部位を含む各部位で後方散乱光が発生する。この後方散乱光の強度は光ファイバの各部位の温度に対応した値となる。   (3) Pulse light is emitted from the laser light source 7 and enters the measurement optical fiber 4 through the optical fiber 8. The pulsed light incident on the optical fiber 4 propagates through the optical fiber 4, and backscattered light is generated at each part including the part corresponding to the heat transfer section 5 </ b> B of the optical fiber 4. The intensity of the backscattered light has a value corresponding to the temperature of each part of the optical fiber.

(4)発生した後方散乱光は、パルス光の伝導方向とは逆方向すなわち入射方向に向いて伝播して第一方向性結合器9に入射し、該第一方向性結合器により投射光から分離され、光ファイバ10を経て第二方向性結合器11に入射する。   (4) The generated backscattered light propagates in the direction opposite to the conduction direction of the pulsed light, that is, in the incident direction, enters the first directional coupler 9, and is projected from the projection light by the first directional coupler. The light is separated and enters the second directional coupler 11 through the optical fiber 10.

(5)しかる後、上記後方散乱光は、第二方向性結合器11によりラマン散乱によるストークス光と反ストークス光に分離され、これらストークス光及び反ストークス光はそれぞれ狭帯域フィルタ14及び15を透過して第一光検出器16及び第二光検出器17にそれぞれ入射する。   (5) Thereafter, the backscattered light is separated into Stokes light and anti-Stokes light due to Raman scattering by the second directional coupler 11, and these Stokes light and anti-Stokes light are transmitted through the narrow band filters 14 and 15, respectively. Then, the light enters the first photodetector 16 and the second photodetector 17, respectively.

(6)第一光検出器16及び第二光検出器17は、それぞれストークス光の強度及び反ストークス光の強度に対応した出力信号を発生し、これら出力信号を処理部18に送る。ラマン散乱によるストークス光の強度と反ストークス光の強度との間の比は測定用光ファイバ4の各部位の温度に対応した値となるから、処理部18において第一光検出器16及び第二光検出器17からの出力信号を演算処理して光ファイバの計測要素1における部位の温度を求める。又、処理部18は、レーザ光源2からのパルス光の放出タイミングと第一光検出器16及び第二光検出器17からの出力信号の発生時間とに基いて光ファイバの入射端から各部位までの距離を求める。さらに、計測要素1における伝熱部5Bの長さがパルス光のパルス幅よりも短く、そして隣接部との間に測定温度差があるときには、既述の原理に基き、補正部18Aにて算出温度を補正する。   (6) The first photodetector 16 and the second photodetector 17 generate output signals corresponding to the intensity of Stokes light and the intensity of anti-Stokes light, respectively, and send these output signals to the processing unit 18. Since the ratio between the intensity of Stokes light due to Raman scattering and the intensity of anti-Stokes light becomes a value corresponding to the temperature of each part of the measurement optical fiber 4, the first photodetector 16 and the second detector 16 in the processing unit 18. An output signal from the light detector 17 is arithmetically processed to determine the temperature of the part of the measurement element 1 of the optical fiber. Further, the processing unit 18 is configured so that each part from the incident end of the optical fiber is based on the emission timing of the pulsed light from the laser light source 2 and the generation time of the output signals from the first photodetector 16 and the second photodetector 17. Find the distance to. Further, when the length of the heat transfer section 5B in the measurement element 1 is shorter than the pulse width of the pulsed light and there is a measured temperature difference between the adjacent sections, the calculation is performed by the correction section 18A based on the principle described above. Correct the temperature.

(7)かくして、処理部18から測定用光ファイバの入射端からの距離とその距離の位置の温度とが出力され、この出力を表示装置3に表示する。   (7) Thus, the distance from the incident end of the measurement optical fiber and the temperature at the position of the distance are output from the processing unit 18, and this output is displayed on the display device 3.

本発明は、図1に示された形態に限られず、変形が可能である。例えば、ヒートパイプの伝熱部がパルス幅に対して十分長くとれないとき、ここでの光ファイバの加熱長を大きく確保するために、図2に示すように、ヒートパイプ5の伝熱部5Bを略環状部として形成し、光ファイバ4をこの伝熱部5Bに接触させながら複数回巻回させる形態とすることができる。巻回し量はパルス幅よりも長い量を巻き回せば、距離分解能よりも長く測定長を確保できるので、測定温度を補正する必要はない。この場合、巻回数そして半径にもよるが、光ファイバ4は金属管等の保護材を除去してもよい。ただ、この場合においても、巻回された光ファイバ4と伝熱部5Bとは断熱材6によって包囲されて外部との間の熱遮断がされていることが好ましい。かくして、図2の例によれば、図1の場合と同様に感熱部がヒートパイプの一端であり点状の狭部位での測定が可能であるのに加え、ヒートパイプの伝熱部に接触する光ファイバの長さを測定用パルス光のパルス幅に対して十分確保できるようになる。   The present invention is not limited to the form shown in FIG. 1 and can be modified. For example, when the heat transfer portion of the heat pipe cannot be sufficiently long with respect to the pulse width, in order to ensure a large heating length of the optical fiber here, as shown in FIG. 2, the heat transfer portion 5B of the heat pipe 5 Is formed as a substantially annular portion, and the optical fiber 4 can be wound a plurality of times while being in contact with the heat transfer portion 5B. If the winding amount is longer than the pulse width, the measurement length can be secured longer than the distance resolution, so that the measurement temperature need not be corrected. In this case, although depending on the number of turns and the radius, the optical fiber 4 may be removed from a protective material such as a metal tube. However, also in this case, it is preferable that the wound optical fiber 4 and the heat transfer section 5B are surrounded by the heat insulating material 6 to be thermally shielded from the outside. Thus, according to the example of FIG. 2, the heat sensitive part is one end of the heat pipe as in FIG. 1, and measurement in a spot-like narrow part is possible, as well as contact with the heat transfer part of the heat pipe. The length of the optical fiber to be measured can be sufficiently secured with respect to the pulse width of the pulse light for measurement.

本発明の一実施形態を示す概要構成図である。It is a schematic block diagram which shows one Embodiment of this invention. 計測要素についての変形例を示す図である。It is a figure which shows the modification about a measurement element. 従来装置についての蓋部材を外したときの平面図である。It is a top view when the cover member about a conventional apparatus is removed. 図3装置の蓋部材を分離して示す斜視図である。3 is a perspective view showing the lid member of the apparatus separately.

符号の説明Explanation of symbols

2 光源装置(レーザ光源)
4 光ファイバ
5 感熱部材(ヒートパイプ)
5A 感熱部
6 断熱材
16,17 検出系(第一光検出器、第二光検出器)
18 処理部
2 Light source device (laser light source)
4 Optical fiber 5 Thermal member (heat pipe)
5A heat sensitive part 6 heat insulating material 16, 17 detection system (first photodetector, second photodetector)
18 Processing unit

Claims (6)

光ファイバの一端からパルス光を投射する光源装置と、光ファイバの各部位で発生した後方散乱光を検出する検出系と、検出系からの出力信号に基いて光ファイバの各部位の温度を決定する処理部とを備えた、被測定部の温度を測定する光ファイバ型温度計測装置において、感熱部材としてヒートパイプを有し、該ヒートパイプが一部に被測定部位と接触する感熱部を有し、上記光ファイバが該ヒートパイプの残部にて所定長にわたり該ヒートパイプと直接もしくは間接に熱的接触した状態で保持されていることを特徴とする光ファイバ型温度計測装置。   A light source device that projects pulsed light from one end of the optical fiber, a detection system that detects backscattered light generated at each part of the optical fiber, and the temperature of each part of the optical fiber is determined based on an output signal from the detection system In the optical fiber type temperature measuring device for measuring the temperature of the part to be measured, the heat pipe has a heat pipe as a heat sensitive member, and the heat pipe partially has a heat sensitive part in contact with the part to be measured. An optical fiber type temperature measuring apparatus, wherein the optical fiber is held in a state of being in direct or indirect thermal contact with the heat pipe over a predetermined length in the remaining portion of the heat pipe. 光ファイバは金属管で保護されていることとする請求項1に記載の光ファイバ型温度計測装置。   The optical fiber type temperature measuring device according to claim 1, wherein the optical fiber is protected by a metal tube. ヒートパイプは略環状部を有し、光ファイバが該環状部に対して接触して複数回巻回されていることとする請求項1又は請求項2に記載の光ファイバ型温度計測装置。   The optical fiber type temperature measuring apparatus according to claim 1 or 2, wherein the heat pipe has a substantially annular portion, and the optical fiber is wound a plurality of times in contact with the annular portion. 光ファイバとヒートパイプは、互いの接触長の範囲にわたり断熱材で被覆されていることとする請求項1ないし請求項3のうちの一つに記載の光ファイバ型温度計測装置。   The optical fiber type temperature measuring device according to any one of claims 1 to 3, wherein the optical fiber and the heat pipe are covered with a heat insulating material over a range of mutual contact length. 処理部は、光ファイバとヒートパイプとの接触範囲長がパルス光のパルス幅よりも短くかつ接触範囲長での測定温度と隣接部での測定温度とに差があるときに、該温度差にパルス幅と接触範囲長との比に基いて温度補正する補正部を有していることとする請求項1ないし請求項5のうちの一つに記載の光ファイバ型温度計測装置。   When the contact range length between the optical fiber and the heat pipe is shorter than the pulse width of the pulsed light and there is a difference between the measured temperature at the contact range length and the measured temperature at the adjacent portion, the processing unit 6. The optical fiber type temperature measuring device according to claim 1, further comprising a correction unit that corrects the temperature based on a ratio between the pulse width and the contact range length. 光ファイバの一端からパルス光を投射し、光ファイバの各部位で発生した後方散乱光を検出し、検出した出力信号に基いて光ファイバの各部位の温度を決定する温度計測方法において、光ファイバとヒートパイプとの接触範囲長とパルス光のパルス幅とを比較すると共に、該接触範囲長での測定温度と隣接部での測定温度とを比較し、上記接触範囲長が上記パルス幅よりも短くかつ上記接触範囲長での測定温度と隣接部での測定温度とに差があるときに、該温度差にパルス幅と接触範囲長との比に基いて温度補正することを特徴とする温度計測方法。   In a temperature measurement method for projecting pulsed light from one end of an optical fiber, detecting backscattered light generated in each part of the optical fiber, and determining the temperature of each part of the optical fiber based on the detected output signal. The contact range length between the heat pipe and the pulse width of the pulsed light is compared, the measured temperature at the contact range length is compared with the measured temperature at the adjacent portion, and the contact range length is greater than the pulse width. A temperature characterized in that, when there is a difference between the measured temperature at the contact range length and the measured temperature at the adjacent portion, the temperature difference is corrected based on the ratio of the pulse width to the contact range length. Measurement method.
JP2004003176A 2004-01-08 2004-01-08 Optical fiber type temperature measuring apparatus and temperature measuring method Pending JP2005195502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003176A JP2005195502A (en) 2004-01-08 2004-01-08 Optical fiber type temperature measuring apparatus and temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003176A JP2005195502A (en) 2004-01-08 2004-01-08 Optical fiber type temperature measuring apparatus and temperature measuring method

Publications (1)

Publication Number Publication Date
JP2005195502A true JP2005195502A (en) 2005-07-21

Family

ID=34818160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003176A Pending JP2005195502A (en) 2004-01-08 2004-01-08 Optical fiber type temperature measuring apparatus and temperature measuring method

Country Status (1)

Country Link
JP (1) JP2005195502A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107279A (en) * 2008-10-29 2010-05-13 Fujitsu Ltd Temperature measuring method
KR102041949B1 (en) * 2018-06-12 2019-11-07 (주)넷케이티아이 System for monitoring temperature of railway through distributed temperature optical sensor
US11035741B2 (en) 2016-04-19 2021-06-15 Tokyo Electron Limited Temperature measurement substrate and temperature measurement system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221628A (en) * 1985-03-28 1986-10-02 Japan Steel & Tube Constr Co Ltd Temperature detecting device for disaster prevention system
JPH03133651A (en) * 1989-10-20 1991-06-06 Canon Inc Ink jet recorder
JPH049595A (en) * 1990-04-25 1992-01-14 Fujikura Ltd Heat pipe including temperature measuring function
JPH0450624A (en) * 1990-06-12 1992-02-19 Asahi Glass Co Ltd Signal processing method and distribution-type optical fiber sensor
JPH0666649A (en) * 1992-08-24 1994-03-11 Hitachi Cable Ltd Optical fiber temperature sensor
JPH0712655A (en) * 1993-06-29 1995-01-17 Toshiba Corp Measurement system
JPH07280665A (en) * 1994-04-08 1995-10-27 Electric Power Dev Co Ltd Temperature distribution detection method
JP2000074697A (en) * 1998-06-19 2000-03-14 Mitsubishi Electric Corp Measuring equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221628A (en) * 1985-03-28 1986-10-02 Japan Steel & Tube Constr Co Ltd Temperature detecting device for disaster prevention system
JPH03133651A (en) * 1989-10-20 1991-06-06 Canon Inc Ink jet recorder
JPH049595A (en) * 1990-04-25 1992-01-14 Fujikura Ltd Heat pipe including temperature measuring function
JPH0450624A (en) * 1990-06-12 1992-02-19 Asahi Glass Co Ltd Signal processing method and distribution-type optical fiber sensor
JPH0666649A (en) * 1992-08-24 1994-03-11 Hitachi Cable Ltd Optical fiber temperature sensor
JPH0712655A (en) * 1993-06-29 1995-01-17 Toshiba Corp Measurement system
JPH07280665A (en) * 1994-04-08 1995-10-27 Electric Power Dev Co Ltd Temperature distribution detection method
JP2000074697A (en) * 1998-06-19 2000-03-14 Mitsubishi Electric Corp Measuring equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107279A (en) * 2008-10-29 2010-05-13 Fujitsu Ltd Temperature measuring method
US11035741B2 (en) 2016-04-19 2021-06-15 Tokyo Electron Limited Temperature measurement substrate and temperature measurement system
KR102041949B1 (en) * 2018-06-12 2019-11-07 (주)넷케이티아이 System for monitoring temperature of railway through distributed temperature optical sensor
WO2019240316A1 (en) * 2018-06-12 2019-12-19 ㈜넷케이티아이 Real-time railway temperature monitoring system using distributed temperature optical sensor

Similar Documents

Publication Publication Date Title
US20140313513A1 (en) Power monitor for optical fiber using background scattering
JP2008249515A (en) Temperature distribution measuring system and temperature distribution measuring method
JP2005195502A (en) Optical fiber type temperature measuring apparatus and temperature measuring method
JP2007198973A (en) Fence vibration sensor unit
JPH0420823A (en) Measuring apparatus for exothermic temperature of axial part
GB2045921A (en) Improvements relating to the measurement of temperature
JPH0474813A (en) Method and instrument for measuring wall thickness in blast furnace
CN105556293B (en) Lamp/subassembly for thermal imagery nondestructive evaluation system
JP2009174987A (en) Distributed optical fiber temperature sensor
JP3404976B2 (en) Conveyor temperature monitoring device
JP3063063B2 (en) Optical fiber temperature distribution measurement system
CN112831623A (en) Method for preventing blast furnace hearth from burning through
JP3370598B2 (en) Fire alarm
JP2003107282A (en) Temperature detector of optical connector for laser
JP4005581B2 (en) Mirror surface dew point meter
JP2004037358A (en) Submerged spot detection method and device for optical fiber cable
JP5467522B2 (en) Temperature distribution measuring instrument
JP3144254B2 (en) Iron skin temperature distribution measurement method
Wakami et al. 1.55-um long-span fiber optic distributed temperature sensor
JP3288006B2 (en) Fire alarm
JP2008101933A (en) Surface temperature measuring method for steel structure
KR20160084228A (en) Optical fiber communication line for detecting fire, fire detection apparatus using the same
JP6483641B2 (en) Blast furnace stave residual thickness measuring apparatus and blast furnace stave residual thickness measuring method
JP3004771B2 (en) Information transmission method using optical fiber device and deflection amount measuring method
JP4565233B2 (en) Flow rate measuring method and measuring apparatus used therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601