JPH0711366A - Alloy excellent in hot workability and corrosion resistance in high temperature water - Google Patents
Alloy excellent in hot workability and corrosion resistance in high temperature waterInfo
- Publication number
- JPH0711366A JPH0711366A JP15347993A JP15347993A JPH0711366A JP H0711366 A JPH0711366 A JP H0711366A JP 15347993 A JP15347993 A JP 15347993A JP 15347993 A JP15347993 A JP 15347993A JP H0711366 A JPH0711366 A JP H0711366A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- less
- hot workability
- corrosion resistance
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、原子力あるいは化学プ
ラントにおいて、厚板、丸棒、パイプ、容器などの形態
で使用される材料の素材として好適な、耐食性、特に耐
応力腐食割れ性(以下、耐SCC性と記す)と熱間加工
性に優れたNi−Cr合金に関する。BACKGROUND OF THE INVENTION The present invention relates to corrosion resistance, particularly stress corrosion cracking resistance (hereinafter referred to as stress corrosion cracking resistance), which is suitable as a material for materials used in the form of thick plates, round bars, pipes, containers, etc. in nuclear or chemical plants. , SCC resistance) and hot workability.
【0002】[0002]
【従来の技術】高温高圧水に曝される原子力プラント
(沸騰水型軽水炉)や化学プラントにおいて用いられる
上記の材料として、特公昭62−9186号公報や特開昭59−
232246号公報等に開示されているような、Nb添加改良 A
lloy600 合金(商品名、75%Ni−15%Cr−1.8 %Nb−7
%Fe合金、すべて重量%) や同じく改良Alloy690合金
(同、60%Ni−30%Cr−1.8 %Nb−7%Fe合金、すべて
重量%) などのNi基合金に代表される合金がある。2. Description of the Related Art As the above materials used in a nuclear power plant (boiling water type light water reactor) and a chemical plant exposed to high-temperature high-pressure water, Japanese Patent Publication No. 9186/1987 and Japanese Patent Laid-Open No.
Improvement of Nb addition as disclosed in Japanese Patent No. 232246, etc.
lloy600 alloy (trade name, 75% Ni-15% Cr-1.8% Nb-7
% Fe alloys, all wt%) and similarly improved Alloy 690 alloys (same as above, 60% Ni-30% Cr-1.8% Nb-7% Fe alloys, all wt%).
【0003】しかし、このようなNb添加高CrのNi基合金
では高温延性が低く、熱間加工性が悪いため、熱間加工
時にヒビ割れや端面耳割れが生じ、所定厚さの製品が得
られにくいという問題がある。さらに、上記の合金の溶
接部では熱影響により、Nbを添加して固溶C、NをNb
(C、N)として固定し安定化した効果は消失し、Cは結晶
中に再固溶する。このため溶接熱影響部ではCr炭化物の
粒界析出によって粒界近傍にCr欠乏層が形成され、いわ
ゆる鋭敏化状態が生じて、その部分の耐食性が劣化する
現象が起こる。However, in such a Ni-base alloy containing Nb and having high Cr, the hot ductility is low and the hot workability is poor, so cracks and edge cracks occur during hot working, and a product of a predetermined thickness is obtained. There is a problem that it is hard to be caught. Further, in the welded portion of the above alloy, due to the heat effect, Nb is added to form solid solution C and N.
The effect of fixing and stabilizing as (C, N) disappears, and C re-dissolves in the crystal. Therefore, in the weld heat affected zone, a Cr deficient layer is formed in the vicinity of the grain boundaries due to the precipitation of Cr carbide grain boundaries, and a so-called sensitized state occurs, which causes a phenomenon in which the corrosion resistance of that portion deteriorates.
【0004】特開昭57−161043号公報には、Ni50〜60
%、Cr33〜38%を含有する合金にYを0.010 〜0.10%添
加して熱間加工性を改善する合金が示されている。しか
し、Yのみの添加では熱間加工性に有害なO(酸素)を
適切に抑制することはかなり困難である。Japanese Unexamined Patent Publication No. 57-161043 discloses Ni50-60
%, An alloy containing 33 to 38% Cr and 0.010 to 0.10% Y is added to improve the hot workability. However, it is quite difficult to appropriately suppress O (oxygen) harmful to hot workability by adding only Y.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、熱間
加工性と高温水中の耐食性、特に耐SCC性とに優れた
合金とその製造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an alloy excellent in hot workability and corrosion resistance in high temperature water, especially SCC resistance, and a method for producing the alloy.
【0006】[0006]
【課題を解決するための手段】本発明の要旨は、次の
(1)、(2) の合金と(3) のそれらの合金の製造方法にあ
る。The summary of the present invention is as follows.
The method of manufacturing the alloys of (1) and (2) and those of (3).
【0007】(1) 重量%で、C:0.03%以下、Si: 1.0
%以下、Mn: 1.0%以下、Cr:35〜43%、Ni:40〜57
%、Al: 0.5%以下、Ti: 0.5%以下、N:0.03%以
下、Ca、Mg:それぞれ単独で0.0004%以上、合計で 0.0
01〜0.03%およびNb: 0.1〜3.0 %を含有し、残部がFe
および不可避不純物からなり、不純物中のO(酸素)は
0.002%以下、Sは 0.001%以下である熱間加工性およ
び高温水中の耐食性に優れた合金。(1) C: 0.03% or less by weight%, Si: 1.0
% Or less, Mn: 1.0% or less, Cr: 35 to 43%, Ni: 40 to 57
%, Al: 0.5% or less, Ti: 0.5% or less, N: 0.03% or less, Ca, Mg: each independently 0.0004% or more, total 0.0
01-0.03% and Nb: 0.1-3.0%, balance Fe
And unavoidable impurities. O (oxygen) in the impurities is
An alloy with excellent hot workability and corrosion resistance in high temperature water, 0.002% or less and S 0.001% or less.
【0008】(2) 上記 (1)記載の成分に加えてさらに、
重量%で、Mo、WおよびVの1種または2種以上を合計
で 0.5〜5.0 %含有する上記 (1)の熱間加工性および高
温水中の耐食性に優れた合金。(2) In addition to the components described in (1) above,
An alloy excellent in hot workability and corrosion resistance in high temperature water according to (1) above, which contains 0.5 to 5.0% by weight of one or more of Mo, W and V in total.
【0009】(3) 熱間加工を少なくとも1020℃以上の温
度で終了させることを特徴とする上記(1) または上記
(2) に記載の合金の製造方法。(3) The above (1) or the above characterized in that the hot working is terminated at a temperature of at least 1020 ° C. or higher.
The method for producing the alloy according to (2).
【0010】本発明でいう「高温水」とは、耐SCC性
に有害なイオン種であるCl- イオンを含有する温度 250
〜350 ℃程度の水を意味する。The term "high temperature water" as used in the present invention means a temperature of 250 that contains Cl - ion which is an ionic species harmful to SCC resistance.
It means water at about 350 ° C.
【0011】[0011]
【作用】本発明者らは、次の〜の知見に基づいて本
発明をなした。The present inventors have made the present invention based on the following findings.
【0012】前記特開昭58−153763号公報に示される
合金(Cr:15〜35%、Nb:0.10〜2.0 %)よりもさらに
Cr含有量を高める(Cr:35〜43%)ことで、溶接熱影響
部の鋭敏化を格段に軽減することができる。このため応
力腐食割れなどの局部腐食が生じず、耐食性が劣化する
ことはない。More than the alloy (Cr: 15 to 35%, Nb: 0.10 to 2.0%) disclosed in the above-mentioned Japanese Patent Laid-Open No. 153763/58.
By increasing the Cr content (Cr: 35 to 43%), the sensitization of the weld heat affected zone can be significantly reduced. Therefore, local corrosion such as stress corrosion cracking does not occur, and the corrosion resistance does not deteriorate.
【0013】かつ、Nb含有量とNb/Cを適正にするこ
とで、上記効果が向上する。Further, the above effects are improved by making the Nb content and Nb / C proper.
【0014】熱間加工性を向上させるには、不純物成
分であるOとSとを同時に適正な含有量に抑制する必要
がある。In order to improve the hot workability, it is necessary to suppress the impurity components, O and S, to the proper contents at the same time.
【0015】OとSとを適正に抑制するには、前記特
開昭57−161043号公報に示されるようなY(希土類元
素)添加では困難であり、Oとの親和力が大きいMgおよ
びSとの親和力が大きいCaを適正量で複合添加する方が
有効である。It is difficult to properly suppress O and S by adding Y (rare earth element) as disclosed in the above-mentioned Japanese Patent Laid-Open No. 57-161043, and Mg and S which have a large affinity with O. It is more effective to add a proper amount of Ca, which has a high affinity for, in combination.
【0016】熱間加工終了温度には、割れ発生を少な
くする好適な温度がある。The hot working end temperature has a suitable temperature for reducing the occurrence of cracks.
【0017】以下、本発明の合金の化学組成と熱間加工
終了温度を前記のように限定した理由を説明する。%は
重量%を意味する。The reasons why the chemical composition and the hot working finish temperature of the alloy of the present invention are limited as described above will be explained below. % Means% by weight.
【0018】C:0.03%以下 Cは溶接の際の熱影響により、クロムカーバイド(Cr23
C6)を析出させて粒界でのCr欠乏層を生じさせ、耐食性
劣化をもたらす元素である。C含有量が0.03%を超える
と粒界での耐食性が劣化するので、その含有量は0.03%
以下とした。C: 0.03% or less C is chrome carbide (Cr 23
It is an element that precipitates C 6 ) to form a Cr-deficient layer at the grain boundary, and causes deterioration of corrosion resistance. If the C content exceeds 0.03%, the corrosion resistance at grain boundaries deteriorates, so the content is 0.03%.
Below.
【0019】Si、Mn:それぞれ 1.0%以下 Si、Mnはいずれも合金の脱酸剤として作用する元素であ
り、それぞれ、ある程度含有させることが必要である。
しかし、いずれも含有量が 1.0%を超えると合金の溶接
性や清浄度を低下させるので、それぞれ含有量は 1.0%
以下とした。Si and Mn: 1.0% or less for each Si and Mn are elements that act as a deoxidizing agent for the alloy, and it is necessary to contain each of them to some extent.
However, in all cases, if the content exceeds 1.0%, the weldability and cleanliness of the alloy will deteriorate, so the content of each will be 1.0%.
Below.
【0020】Cr:35〜43% Crは耐SCC性を維持するために必要不可欠な元素であ
る。この含有量が35%以下であると、溶接熱影響部にお
いてCr欠乏層が生じるのを防止することができず、鋭敏
化が顕著となる。このため耐応力腐食割れ性や耐食性が
確保できない。Cr: 35 to 43% Cr is an essential element for maintaining SCC resistance. If this content is 35% or less, it is not possible to prevent the formation of a Cr-deficient layer in the heat-affected zone of the welding, and the sensitization becomes remarkable. Therefore, stress corrosion cracking resistance and corrosion resistance cannot be secured.
【0021】一方、43%を超えると金属間化合物が生成
して熱間加工性の劣化を招く。よって、Cr含有量の範囲
は35%以上43%以下とした。On the other hand, if it exceeds 43%, an intermetallic compound is formed and the hot workability is deteriorated. Therefore, the range of the Cr content is 35% or more and 43% or less.
【0022】Ni:40〜57% Niは耐食性の向上に有効な元素であり、特に耐酸性およ
び塩素イオン( Cl- )を含有する高温水中における耐S
CC性を向上させる。この効果を得るためにNi含有量は
40%以上とすることが必要である。一方、耐食性のみの
観点からは特に上限を設ける必要はないが、Crなどの他
元素の含有量を考慮すれば、Ni含有量の上限は57%とす
ることで十分である。Ni: 40 to 57% Ni is an element effective for improving the corrosion resistance, and particularly resistance to acid and S resistance in high temperature water containing chloride ion (Cl − ).
Improve CC property. To obtain this effect, the Ni content is
It is necessary to be 40% or more. On the other hand, it is not necessary to set an upper limit from the viewpoint of only corrosion resistance, but considering the contents of other elements such as Cr, it is sufficient to set the upper limit of the Ni content to 57%.
【0023】Al: 0.5%以下 AlもSi、Mnと同様、脱酸剤として有効な元素であるが、
その含有量が 0.5%を超えると合金の清浄度を低下させ
るため 0.5%以下とした。Al: 0.5% or less Al, like Si and Mn, is an element effective as a deoxidizing agent.
If its content exceeds 0.5%, the cleanliness of the alloy is reduced, so the content was made 0.5% or less.
【0024】Ti: 0.5%以下 TiはNと化合しTiN またはTi(C、N)としてNを固定し、
熱間加工性を改善するのに有効な元素である。Ti含有量
が 0.5%を超えるとその効果が飽和するため、上限は0.
5 %とした。Ti: 0.5% or less Ti combines with N to fix N as TiN or Ti (C, N),
It is an effective element for improving hot workability. The effect is saturated when the Ti content exceeds 0.5%, so the upper limit is 0.
It was set to 5%.
【0025】N:0.03%以下 Nは、その含有量が多くなるとTiN 系介在物が増加し、
合金の清浄度を悪化させるとともに、孔食の起点になり
やすいため、N含有量は0.03%以下に抑制する必要があ
る。N: 0.03% or less When N content increases, TiN-based inclusions increase,
The N content must be suppressed to 0.03% or less because it deteriorates the cleanliness of the alloy and easily becomes the starting point of pitting corrosion.
【0026】Nb: 0.1〜3.0 % Ni基合金(Ni含有量が40%以上)では、TiよりもNbの方
がCの固定効果が大きい。したがって、NbはCを固定し
Cr炭化物の生成を抑制するために含有させる。Nb: In a 0.1 to 3.0% Ni-based alloy (Ni content of 40% or more), Nb has a larger effect of fixing C than Ti. Therefore, Nb fixes C
Cr is included to suppress the formation of carbides.
【0027】この効果を得るにはNb含有量を 0.1〜3.0
%とする必要がある。To obtain this effect, the Nb content should be 0.1-3.0.
Must be set to%.
【0028】Nb含有量が0.1 %未満では、上記Cの固定
効果が不十分となるため、鋭敏化が生じ粒界腐食が起こ
りやすくなる。一方、3.0 %を超えるとその固定効果が
飽和する上に、高温延性を大きく低下させる。よって、
Nb含有量の範囲は 0.1〜3.0%とした。When the Nb content is less than 0.1%, the effect of fixing C is insufficient, so that sensitization occurs and intergranular corrosion easily occurs. On the other hand, if it exceeds 3.0%, the fixing effect is saturated, and the hot ductility is greatly reduced. Therefore,
The range of Nb content was 0.1 to 3.0%.
【0029】Ca、Mg:それぞれ単独で0.0004%以上、合
計で 0.001〜0.03% Ca、Mgはそれぞれ、熱間加工性に有害なSとOとの親和
力が大きい元素である。熱間加工性を良好にするには、
合金中に存在するSとOを低減するとともに、Caおよび
Mgを複合含有させることにより、SとOとをそれぞれCa
S 、MgO として固定することが必要である。この効果を
得るためには、Ca、Mgのそれぞれ単独で0.0004%以上、
CaとMgの合計で 0.001%以上含有させなければならな
い。一方、合計で0.03%を超えるとその効果が飽和する
だけでなく、介在物が増加して合金の清浄度を劣化させ
るので、これらの合計含有量の上限は0.03%とした。Ca and Mg: 0.0004% or more alone, and 0.001 to 0.03% in total Ca and Mg are elements having a large affinity for S and O, which are harmful to hot workability. To improve hot workability,
S and O existing in the alloy are reduced and Ca and
By including Mg in combination, S and O are respectively Ca
It is necessary to fix it as S and MgO. To obtain this effect, Ca and Mg alone should be 0.0004% or more,
The total amount of Ca and Mg must be 0.001% or more. On the other hand, if the total amount exceeds 0.03%, not only the effect is saturated, but also inclusions increase and the cleanliness of the alloy deteriorates, so the upper limit of the total content of these is set to 0.03%.
【0030】O(酸素): 0.002%以下 合金中に存在する量が多くなると熱間加工性を劣化させ
る元素であり、0.002%以下に抑制する。O (oxygen): 0.002% or less It is an element that deteriorates the hot workability when the amount thereof present in the alloy increases, and is suppressed to 0.002% or less.
【0031】S: 0.001%以下 Oと同様に、合金中に存在する量が多くなると熱間加工
性を劣化させる元素であり、0.001 %以下に抑制する。S: 0.001% or less Like O, it is an element that deteriorates the hot workability when the amount present in the alloy is large, and is suppressed to 0.001% or less.
【0032】粒界に偏析して粒界脆化を起こしやすいO
とSとを同時に上記の範囲に抑制し、かつ前記のCa、Mg
でSとOとをそれぞれCaS 、MgO として固定すること
で、結晶粒界で発生する熱間加工時のヒビ割れや端面耳
割れを防止することができる。O that easily segregates at grain boundaries and causes grain boundary embrittlement
And S are simultaneously suppressed within the above range, and the above-mentioned Ca, Mg
By fixing S and O as CaS and MgO, respectively, it is possible to prevent cracks and edge cracks at the grain boundaries during hot working.
【0033】本発明の合金では、必要に応じて次の元素
の内から選んだ1種または2種以上を含有させることが
できる。The alloy of the present invention may contain one or more selected from the following elements, if necessary.
【0034】Mo、W、V:これらの元素は耐孔食性の向
上に有効な元素である。これらの元素のそれぞれ1種の
含有量または2種以上の合計含有量が 0.5〜5.0 %とな
るように添加する。 0.5%未満では、表面の不働態皮膜
が強化されないので耐孔食性の十分な向上が望めない。
一方、5.0 %を超えるとこの効果が飽和するだけでな
く、熱間加工性を著しく劣化させる。Mo, W, V: These elements are effective for improving pitting corrosion resistance. Each of these elements is added so that the content of one kind or the total content of two or more kinds is 0.5 to 5.0%. If it is less than 0.5%, the passivation film on the surface is not strengthened, so that sufficient improvement in pitting corrosion resistance cannot be expected.
On the other hand, if it exceeds 5.0%, not only this effect is saturated, but also the hot workability is significantly deteriorated.
【0035】熱間加工終了温度:1020℃以上 高Cr高Ni合金は高温においても変形抵抗が高く、熱間加
工が困難である。したがって、熱間加工性は加工の終了
温度に敏感である。熱間加工終了温度が1020℃未満では
合金素地(粒内)の変形抵抗が著しく高く、粒内強度が
粒界強度に比べて高くなって粒界強度が相対的に低下す
る結果、粒界割れが発生しやすくなる。Hot working end temperature: 1020 ° C. or higher The high Cr, high Ni alloy has high deformation resistance even at high temperatures, and hot working is difficult. Therefore, hot workability is sensitive to the end temperature of processing. When the hot working finish temperature is less than 1020 ° C, the deformation resistance of the alloy base (inside the grain) is remarkably high, the intragranular strength becomes higher than the intergranular strength, and the intergranular strength relatively decreases, resulting in intergranular cracking. Is likely to occur.
【0036】このため、熱間加工の終了温度は1020℃以
上とした。この上限は特に限定しないが、あまり高温度
になると結晶粒の粗大化を招き、合金の機械的性質を劣
化させるので1100℃以下とするのが望ましい。Therefore, the end temperature of hot working is set to 1020 ° C. or higher. The upper limit is not particularly limited, but if the temperature is too high, the crystal grains are coarsened and the mechanical properties of the alloy are deteriorated.
【0037】本発明合金は前記の成分を含有するもので
ある。本発明合金の望ましい組織は、結晶粒界へのCr23
C6の析出を抑制し、結晶粒界近傍のCr欠乏層の生成や、
これによるSCC発生を防止することができるようにし
た組織である。このため、適切な熱処理を施すことが望
ましい。The alloy of the present invention contains the above components. The desirable structure of the alloy of the present invention is Cr 23 to the grain boundary.
Suppresses the precipitation of C 6 and forms a Cr-deficient layer near the grain boundaries,
This is an organization that can prevent the occurrence of SCC due to this. Therefore, it is desirable to perform an appropriate heat treatment.
【0038】本発明合金の熱処理には機械的性質を調整
するための焼鈍と、その後必要に応じて施されるCr欠乏
層をなくする熱処理とがある。The heat treatment of the alloy of the present invention includes annealing for adjusting the mechanical properties and heat treatment for removing the Cr-deficient layer, which is subsequently performed as necessary.
【0039】本発明の合金を焼鈍する際の温度は1000〜
1200℃とするのがよい。焼鈍温度が1000℃未満では、引
張り強さ、耐力、硬さなどが必要以上に大きくなる。一
方、1200℃を超えると結晶粒が著しく粗大化するととも
に、引張強さ、耐力、硬さなどについて所定の特性が得
られなくなる。The temperature for annealing the alloy of the present invention is 1000-
1200 ℃ is recommended. If the annealing temperature is less than 1000 ° C, the tensile strength, proof stress, hardness, etc. will be unnecessarily high. On the other hand, when the temperature exceeds 1200 ° C., the crystal grains are remarkably coarsened, and predetermined properties such as tensile strength, proof stress and hardness cannot be obtained.
【0040】本発明の合金は、このような焼鈍のままで
も十分に耐食性に優れたものであるが、さらに800 ℃以
下の温度で 0.1時間以上の熱処理を施すと、Crが結晶粒
内から粒界へ拡散して粒界近傍のCr欠乏層が回復される
ので、Cr23C6の粒界析出があっても高温高濃度のアルカ
リ存在下における粒界型SCCも発生しなくなる。The alloy of the present invention has excellent corrosion resistance even in such an annealed state. However, when heat treatment is further performed at a temperature of 800 ° C. or lower for 0.1 hour or longer, Cr is converted into grains from within the crystal grains. Since the Cr-deficient layer near the grain boundary is recovered by diffusion into the grain boundary, grain boundary type SCC in the presence of alkali at high temperature and high concentration does not occur even if grain boundary precipitation of Cr 23 C 6 occurs.
【0041】[0041]
【実施例】表1(1) および表1(2) に示す化学組成の合
金を真空溶解法で溶製し、150 mm角×長さ1000mmの鋼塊
とした。表1のNo.1〜5、 No.13〜19、No.24 およびN
o.29 が本発明合金、No.6〜12、 No.20〜23および No.2
5〜28が比較合金である。[Examples] Alloys having the chemical compositions shown in Tables 1 (1) and 1 (2) were melted by a vacuum melting method to obtain steel ingots of 150 mm square and 1000 mm long. No. 1 to 5 in Table 1, No. 13 to 19, No. 24 and N
o.29 is the alloy of the present invention, No. 6 to 12, No. 20 to 23 and No. 2
5 to 28 are comparative alloys.
【0042】これらの合金を用いて、熱間加工性試験お
よびCl- を含有する高温水中での耐粒界応力腐食割れ性
試験を行った。Using these alloys, a hot workability test and an intergranular stress corrosion cracking resistance test in high temperature water containing Cl − were carried out.
【0043】(1) 熱間加工性試験 上記鋼塊を1200℃で5時間加熱した後、熱間で厚さ50mm
の板に仕上げた。このときの各合金の熱間加工の終了温
度を表2に示す。(1) Hot workability test The above steel ingot was heated at 1200 ° C. for 5 hours, and then hot-worked to a thickness of 50 mm.
Finished in the plate. Table 2 shows the end temperature of the hot working of each alloy at this time.
【0044】このようにして得られた厚板の表面の割れ
の有無をPT(浸透探傷法)で調べるとともに、割れの
あるものについては切断、研磨した後、光学顕微鏡で割
れ深さを測定する方法で熱間加工性を評価した。これら
の試験結果を表2および図1に示す。The presence of cracks on the surface of the thick plate thus obtained is examined by PT (penetration flaw detection method), and those with cracks are cut and polished, and then the crack depth is measured with an optical microscope. The hot workability was evaluated by the method. The results of these tests are shown in Table 2 and FIG.
【0045】(2) 耐粒界応力腐食割れ性(耐SCC性)
試験 上記(1) で得られた厚さ50mmの板を1200℃に再加熱した
後、厚さ7mmまで熱間圧延した。さらに、アルゴン雰囲
気中で1100℃、30分空冷の焼鈍後、 700℃、1時間の鋭
敏化処理を施した。耐SCC試験片は、この鋭敏化処理
を施した板材から作製した厚さ2mm×幅10mm×長さ75mm
の短冊状試験片を用いた。(2) Grain boundary stress corrosion cracking resistance (SCC resistance)
Test The 50 mm thick plate obtained in (1) above was reheated to 1200 ° C. and then hot rolled to a thickness of 7 mm. Further, after annealing in an argon atmosphere at 1100 ° C. for 30 minutes in air, a sensitization treatment was performed at 700 ° C. for 1 hour. The SCC resistance test piece was made from this sensitized plate material, thickness 2 mm x width 10 mm x length 75 mm.
The strip-shaped test piece was used.
【0046】耐SCC性は、これらの試験片をエメリー
紙 320番で研磨した後、U字型に曲げてボルト、ナット
で拘束し、オートクレーブ容器内で350 ℃の3%のNaCl
を含有する高温水中に1000時間浸漬した後、最大割れ深
さを光学顕微鏡で測定する方法で評価した。これらの結
果を表2に示す。The SCC resistance was determined by polishing these test pieces with No. 320 emery paper, bending them into a U-shape, restraining them with bolts and nuts, and then, in an autoclave container, 3% NaCl at 350 ° C.
After immersing in high temperature water containing TiO2 for 1000 hours, the maximum crack depth was evaluated by a method of measuring with an optical microscope. The results are shown in Table 2.
【0047】図1は、熱間割れ深さに及ぼすSおよびO
含有量の影響を示す図である。図中の番号は表1の合金
No. と対応し、縦軸と横軸はWtppm で表示している。FIG. 1 shows the effect of S and O on the hot crack depth.
It is a figure which shows the influence of content. The numbers in the figure are alloys in Table 1.
Corresponding to No., the vertical axis and horizontal axis are displayed in Wtppm.
【0048】表2および図1からわかるように、S含有
量が10ppm 以下、O含有量が20ppm以下、(Ca+Mg)含
有量が10ppm 以上で、かつ熱間加工終了温度を1020℃以
上とした本発明合金(No.1〜5、 No.13〜19、No.24 、
No.29 )では、熱間割れは認められず、また高温水中の
耐SCC性も良好である。As can be seen from Table 2 and FIG. 1, the S content is 10 ppm or less, the O content is 20 ppm or less, the (Ca + Mg) content is 10 ppm or more, and the hot working finish temperature is 1020 ° C. or more. Invention alloys (No.1-5, No.13-19, No.24,
No. 29) shows no hot cracking and good SCC resistance in high temperature water.
【0049】一方、S、O、(Ca+Mg)およびNbの各含
有量のうちのいずれか一つまたは二つ以上が本発明で定
める範囲を外れる比較合金(No.6〜12、 No.20〜23、N
o.28)では、熱間加工終了温度が1020℃以上の場合であ
っても、熱間割れが発生する。化学組成が本発明で定め
る範囲であっても、熱間加工終了温度が低い比較合金(N
o.25〜27)では、同様に熱間割れが発生する。On the other hand, comparative alloys (Nos. 6-12, No. 20-) in which any one or more of the contents of S, O, (Ca + Mg) and Nb are out of the range defined by the present invention. 23, N
In o.28), hot cracking occurs even when the hot working finish temperature is 1020 ° C or higher. Even if the chemical composition is within the range defined in the present invention, the comparative alloy (N
25 to 27), hot cracking similarly occurs.
【0050】Nb含有量が本発明で定める下限0.1 %より
低い比較合金(No.28 )では、S、O、(Ca+Mg)の各
含有量および熱間加工終了温度が本発明で定める範囲内
であれば、熱間割れは発生しないが、鋭敏化処理の影響
を強く受けて耐食性が劣化し、Cl- 含有高温水中で応力
腐食割れを生ずる。In the comparative alloy (No. 28) whose Nb content is lower than the lower limit of 0.1% defined by the present invention, the contents of S, O, (Ca + Mg) and the hot working finish temperature are within the ranges defined by the present invention. If so, hot cracking does not occur, but the corrosion resistance deteriorates under the influence of sensitization treatment, and stress corrosion cracking occurs in Cl - containing high temperature water.
【0051】[0051]
【表1(1)】 [Table 1 (1)]
【0052】[0052]
【表1(2)】 [Table 1 (2)]
【0053】[0053]
【表2】 [Table 2]
【0054】[0054]
【発明の効果】本発明の合金は、Cl- 含有高温水中にお
ける耐SCC性に優れるとともに、良好な熱間加工性を
有する。この合金は、高温高圧水に曝される化学プラン
トや原子力プラント(沸騰水型軽水炉)の炉心などの構
造部材として好適なものである。The alloys of the present invention exhibits, Cl - excellent in SCC resistance in containing high-temperature water, have good hot workability. This alloy is suitable as a structural member such as a core of a chemical plant or a nuclear plant (boiling water type light water reactor) exposed to high temperature and high pressure water.
【図1】熱間割れ深さに及ぼすSおよびO含有量の影響
を示す図である。FIG. 1 is a diagram showing the influence of S and O contents on hot cracking depth.
Claims (3)
下、Mn: 1.0%以下、Cr:35〜43%、Ni:40〜57%、A
l: 0.5%以下、Ti: 0.5%以下、N:0.03%以下、C
a、Mg:それぞれ単独で0.0004%以上、合計で 0.001〜
0.03%およびNb: 0.1〜3.0 %を含有し、残部がFeおよ
び不可避不純物からなり、不純物中のO(酸素)は 0.0
02%以下、Sは 0.001%以下である熱間加工性および高
温水中の耐食性に優れた合金。1. By weight%, C: 0.03% or less, Si: 1.0% or less, Mn: 1.0% or less, Cr: 35 to 43%, Ni: 40 to 57%, A
l: 0.5% or less, Ti: 0.5% or less, N: 0.03% or less, C
a, Mg: 0.0004% or more for each, 0.001-
0.03% and Nb: 0.1 to 3.0%, the balance consisting of Fe and unavoidable impurities, and O (oxygen) in the impurities is 0.0
02% or less, S is 0.001% or less, an alloy with excellent hot workability and corrosion resistance in high temperature water.
%で、Mo、WおよびVの1種または2種以上を合計で
0.5〜5.0 %含有する請求項1の熱間加工性および高温
水中の耐食性に優れた合金。2. In addition to the components according to claim 1, further, in weight%, one or more of Mo, W and V in total.
An alloy excellent in hot workability and corrosion resistance in high temperature water according to claim 1, containing 0.5 to 5.0%.
終了させることを特徴とする請求項1または請求項2に
記載の合金の製造方法。3. The method for producing an alloy according to claim 1, wherein the hot working is terminated at a temperature of at least 1020 ° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15347993A JPH0711366A (en) | 1993-06-24 | 1993-06-24 | Alloy excellent in hot workability and corrosion resistance in high temperature water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15347993A JPH0711366A (en) | 1993-06-24 | 1993-06-24 | Alloy excellent in hot workability and corrosion resistance in high temperature water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0711366A true JPH0711366A (en) | 1995-01-13 |
Family
ID=15563477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15347993A Pending JPH0711366A (en) | 1993-06-24 | 1993-06-24 | Alloy excellent in hot workability and corrosion resistance in high temperature water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0711366A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0909830A1 (en) * | 1997-10-14 | 1999-04-21 | Inco Alloys International, Inc. | Hot working high chromium alloy |
WO2003057933A1 (en) * | 2002-01-08 | 2003-07-17 | Mitsubishi Materials Corporation | Nickel-based alloy with excellent corrosion resistance in inorganic-acid-containing supercritical water environment |
WO2008064214A1 (en) * | 2006-11-21 | 2008-05-29 | Huntington Alloys Corporation | Filler metal composition and method for overlaying low nox power boiler tubes |
CN100434784C (en) * | 2007-03-06 | 2008-11-19 | 江阴市龙山管业有限公司 | Nickel chromium and molybdenum alloy steel pipe fitting and producing method thereof |
JP2014145107A (en) * | 2013-01-29 | 2014-08-14 | Mmc Superalloy Corp | Ni BASED ALLOY CORROSIONPROOF PLATE EXCELLENT IN HIGH-TEMPERATURE CORROSION RESISTANCE, AND EXHAUST VALVE FOR DIESEL ENGINE WITH THE CORROSIONPROOF PLATE JOINED THEREON |
JP2014145108A (en) * | 2013-01-29 | 2014-08-14 | Mmc Superalloy Corp | Ni-BASED ALLOY EXCELLENT IN EROSION RESISTANCE TO HYDROGEN SULFIDE AND HYDROGEN SELENIDE AS WELL AS DEVICE COMPONENT MADE OF THE SAME |
US9650698B2 (en) | 2012-06-05 | 2017-05-16 | Vdm Metals International Gmbh | Nickel-chromium alloy having good processability, creep resistance and corrosion resistance |
US9657373B2 (en) | 2012-06-05 | 2017-05-23 | Vdm Metals International Gmbh | Nickel-chromium-aluminum alloy having good processability, creep resistance and corrosion resistance |
US10870908B2 (en) | 2014-02-04 | 2020-12-22 | Vdm Metals International Gmbh | Hardening nickel-chromium-iron-titanium-aluminium alloy with good wear resistance, creep strength, corrosion resistance and processability |
US11098389B2 (en) | 2014-02-04 | 2021-08-24 | Vdm Metals International Gmbh | Hardened nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and workability |
-
1993
- 1993-06-24 JP JP15347993A patent/JPH0711366A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0909830A1 (en) * | 1997-10-14 | 1999-04-21 | Inco Alloys International, Inc. | Hot working high chromium alloy |
US6106643A (en) * | 1997-10-14 | 2000-08-22 | Inco Alloys International, Inc. | Hot working high-chromium alloy |
US7485199B2 (en) | 2002-01-08 | 2009-02-03 | Mitsubishi Materials Corporation | Ni based alloy with excellent corrosion resistance to supercritical water environments containing inorganic acids |
CN100338247C (en) * | 2002-01-08 | 2007-09-19 | 三菱麻铁里亚尔株式会社 | Nickel-based alloy with excellent corrosion resistance in inorganic-acid-containing supercritical water environment |
WO2003057933A1 (en) * | 2002-01-08 | 2003-07-17 | Mitsubishi Materials Corporation | Nickel-based alloy with excellent corrosion resistance in inorganic-acid-containing supercritical water environment |
WO2008064214A1 (en) * | 2006-11-21 | 2008-05-29 | Huntington Alloys Corporation | Filler metal composition and method for overlaying low nox power boiler tubes |
JP2010510074A (en) * | 2006-11-21 | 2010-04-02 | ハンチントン、アロイス、コーポレーション | Filler composition and method for low NOx power boiler tube overlay |
US8568901B2 (en) | 2006-11-21 | 2013-10-29 | Huntington Alloys Corporation | Filler metal composition and method for overlaying low NOx power boiler tubes |
CN100434784C (en) * | 2007-03-06 | 2008-11-19 | 江阴市龙山管业有限公司 | Nickel chromium and molybdenum alloy steel pipe fitting and producing method thereof |
US9650698B2 (en) | 2012-06-05 | 2017-05-16 | Vdm Metals International Gmbh | Nickel-chromium alloy having good processability, creep resistance and corrosion resistance |
US9657373B2 (en) | 2012-06-05 | 2017-05-23 | Vdm Metals International Gmbh | Nickel-chromium-aluminum alloy having good processability, creep resistance and corrosion resistance |
JP2014145107A (en) * | 2013-01-29 | 2014-08-14 | Mmc Superalloy Corp | Ni BASED ALLOY CORROSIONPROOF PLATE EXCELLENT IN HIGH-TEMPERATURE CORROSION RESISTANCE, AND EXHAUST VALVE FOR DIESEL ENGINE WITH THE CORROSIONPROOF PLATE JOINED THEREON |
JP2014145108A (en) * | 2013-01-29 | 2014-08-14 | Mmc Superalloy Corp | Ni-BASED ALLOY EXCELLENT IN EROSION RESISTANCE TO HYDROGEN SULFIDE AND HYDROGEN SELENIDE AS WELL AS DEVICE COMPONENT MADE OF THE SAME |
US10870908B2 (en) | 2014-02-04 | 2020-12-22 | Vdm Metals International Gmbh | Hardening nickel-chromium-iron-titanium-aluminium alloy with good wear resistance, creep strength, corrosion resistance and processability |
US11098389B2 (en) | 2014-02-04 | 2021-08-24 | Vdm Metals International Gmbh | Hardened nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and workability |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6576068B2 (en) | Method of producing stainless steels having improved corrosion resistance | |
AU2002256261A1 (en) | Method of producing stainless steels having improved corrosion resistance | |
EP3693484A1 (en) | Austenitic stainless steel weld metal and welded structure | |
JP3976003B2 (en) | Nickel-based alloy and method for producing the same | |
JPH0711366A (en) | Alloy excellent in hot workability and corrosion resistance in high temperature water | |
JP4062190B2 (en) | Austenitic stainless steel pipe for nuclear power | |
KR101495483B1 (en) | Method for producing austenitic stainless steel | |
JPS6184348A (en) | Ni alloy having superior resistance to intergranular corrosion and stress corrosion cracking and superior hot workability | |
JPH083670A (en) | Nickel-base alloy excellent in workability and corrosion resistance | |
JP3382834B2 (en) | Filler for Ni-base high Cr alloy | |
JP5070831B2 (en) | Austenitic stainless steel | |
JP3263378B2 (en) | Heat treatment method for Co-based alloy | |
JPH0635615B2 (en) | Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds | |
JP2834982B2 (en) | Alloy with excellent hot workability and corrosion resistance in high temperature water | |
JP3210255B2 (en) | Ferritic stainless steel with excellent corrosion resistance and manufacturability | |
JP3352857B2 (en) | Ni-base alloy TIG welding wire for cryogenic steel | |
JPH05112842A (en) | Ni-cr alloy low in exposing property and good in alkali corrosion resistance | |
JPH08239739A (en) | Heat tratment for ni-base alloy excellent in corrosion resistance | |
JPH06128671A (en) | Alloy excellent in resistance to stress corrosion cracking | |
JP2677135B2 (en) | Alloy with excellent resistance to stress corrosion cracking | |
JPS6211059B2 (en) | ||
JP4254583B2 (en) | Cr-containing alloy with excellent strain aging resistance of welds | |
JPS60159151A (en) | Fe-ni alloy having superior weldability | |
JPH05117793A (en) | High strength ni-cr alloy having low degree of exposure and satisfactory resistance to stress corrosion cracking | |
JPH08225893A (en) | Austenitic stainless steel for shielding neutron |