JPH0635615B2 - Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds - Google Patents
Manufacturing method of ferritic stainless steel with excellent corrosion resistance of weldsInfo
- Publication number
- JPH0635615B2 JPH0635615B2 JP26194086A JP26194086A JPH0635615B2 JP H0635615 B2 JPH0635615 B2 JP H0635615B2 JP 26194086 A JP26194086 A JP 26194086A JP 26194086 A JP26194086 A JP 26194086A JP H0635615 B2 JPH0635615 B2 JP H0635615B2
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- stainless steel
- ferritic stainless
- atmosphere
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明は、中性塩を若干含む温水環境において用いられ
る容器の材料等で溶接部の耐食性にすぐれたフェライト
系ステンレス鋼に関するものである。Description: FIELD OF THE INVENTION The present invention relates to a ferritic stainless steel having excellent corrosion resistance of a welded portion in a material of a container used in a hot water environment containing a small amount of neutral salt.
水道水のような中性塩を若干含む水を対象とした各種の
温水機器用材料としてステンレス鋼が用いられている。
SUS 304やSUS 316を代表とするホステナイト系ステンレ
ス鋼は、加工性や溶接性が良好なため一般によく用いら
れるが耐食性の面で孔食や隙間腐食を起点とした応力腐
食割れによる損傷が懸念される。一方、鋼中のC,Nを低
め、TiやNbを添加して粒界腐食を抑制し、さらにMoを添
加した SUS 444などのフェライト系ステンレス鋼は応力
腐食割れの心配がない上に、他の局部腐食性もすぐれて
いることから、近年、温水器用材料として多用されるよ
うになった。一般に、温水器缶体の製造は溶接によるも
のがほとんどで、溶接酸化スケールが不可避的に生じか
つこのスケールは除去されずに使用される。溶接スケー
ル直下の素地の耐食性は不安定であり、スケールの形成
条件によっては耐食性の劣化が認められ、とくに溶接隙
間部にこのスケールが発生すると、使用する水質にもよ
るが、隙間腐食が生じ漏水に到る場合がある。Stainless steel is used as a material for various hot water appliances for water containing a small amount of neutral salt such as tap water.
Austenitic stainless steels such as SUS 304 and SUS 316 are generally used because of their good workability and weldability.However, in view of corrosion resistance, damage due to stress corrosion cracking originating from pitting and crevice corrosion is a concern. It On the other hand, ferritic stainless steels such as SUS 444, in which C and N in the steel are lowered, Ti and Nb are added to suppress intergranular corrosion, and Mo is added, do not cause stress corrosion cracking. Due to its excellent local corrosiveness, it has been widely used as a material for water heaters in recent years. In general, most of the water heater cans are manufactured by welding, and weld oxide scale is inevitably produced and this scale is used without being removed. Corrosion resistance of the substrate directly under the welding scale is unstable, and deterioration of corrosion resistance is observed depending on the scale formation conditions.Especially when this scale occurs in the weld gap, crevice corrosion will occur depending on the quality of water used, but water leakage will occur. May be reached.
これを防ぐ手段として、1)外部電源方式もしくはAl合金
やMg合金などの犠性陽極法による防食、2)溶接施工方法
や、缶体の構造を工夫して溶接隙間構造を避ける、3)Cr
やMo添加量の高い、高耐食性ステンレス鋼の使用などが
採られている。1)の防食による場合は、過防食による水
素脆化が懸念され、さらに犠性陽極の溶出に伴う水の白
濁や機器、通水炉等の溢路部でのつまりなどの問題が生
じている。次に2)の溶接施工法の改善による方法は特開
昭59-61579にも開示したが、実施において溶接条件等の
制御を完全に遂行するのは困難であり、しかも生産性が
必然的に低くなる問題がある。3)の高Cr高Mo鋼の使用は
コストの上昇が余儀なくされ、加工性の劣化などの問題
がある。As a means to prevent this, 1) corrosion prevention by external power supply method or sacrificial anodic method such as Al alloy or Mg alloy, 2) avoid welding gap structure by devising welding construction method and can structure, 3) Cr
The use of highly corrosion-resistant stainless steel with a high content of Mo and Mo is adopted. In the case of 1) corrosion prevention, there is concern about hydrogen embrittlement due to over-corrosion, and there are problems such as clouding of water due to elution of the sacrificial anode and clogging in the overflow section of equipment, water reactor, etc. . Next, the method of improving the welding method of 2) was also disclosed in Japanese Patent Laid-Open No. 59-61579, but it is difficult to completely control welding conditions and the like in practice, and moreover, productivity is inevitable. There is a problem of lowering. The use of high Cr, high Mo steel of 3) causes an increase in cost and causes problems such as deterioration of workability.
本発明は、このような問題を解決するもので、溶接施工
による酸化スケールの付着した状態においても耐食性劣
化が極めて小さい、溶接部の耐食性にすぐれたフェライ
ト系ステンレス鋼およびその製造法を提供するものであ
る。The present invention solves such a problem, and provides a ferritic stainless steel excellent in corrosion resistance of a welded portion and a method for producing the same, in which deterioration of corrosion resistance is extremely small even in a state where oxide scale is attached by welding. Is.
本発明者等は溶接酸化スケール部で耐食性が劣化する原
因は、溶接時にステンレス鋼中のCrが酸化し、酸化スケ
ール直下の素材表層部のCr濃度が減少するためと考え、
Crの酸化ロスを防止する方法を詳細に検討した結果、ス
テンレス鋼の表面を予めCr以外の酸化皮膜で覆っておく
と、溶接時に酸化スケールの発生が抑制されることに着
目した。このことはとりもなおさず鋼中Crの酸化による
ロスが少くなることを意味している。そこで本発明者ら
は、フェライト系ステンレス鋼に酸化物形成能の強いAl
を添加し、溶接時の酸化スケールが付着したままでも耐
食性劣化の程度が少く、温水中での耐食性にすぐれたフ
ェライト系ステンレス鋼を開発すべく鋭意検討を重ねた
結果、AlとともにREMを少量含有させるとともに、H2も
しくはH2と非酸化性ガスとの混合ガスの雰囲気中で高温
焼鈍を施し鋼表面にAl酸化物を形成することによって、
低濃度塩化物環境下においてすぐれた溶接部の耐食性が
得られることを見出し、本発明に至ったものである。The present inventors believe that the cause of deterioration of corrosion resistance in the welded oxide scale part is that Cr in the stainless steel is oxidized during welding, and the Cr concentration in the material surface layer part immediately below the oxide scale is reduced,
As a result of detailed examination of the method for preventing the oxidation loss of Cr, it was noted that if the surface of stainless steel was previously covered with an oxide film other than Cr, the generation of oxide scale during welding was suppressed. This means that the loss due to the oxidation of Cr in steel is reduced. Therefore, the present inventors have found that ferritic stainless steel has a strong oxide-forming ability of Al.
As a result of repeated studies to develop a ferritic stainless steel that has excellent corrosion resistance in hot water and has little deterioration in corrosion resistance even with oxide scale adhered during welding, a small amount of REM is included with Al. By performing high temperature annealing in an atmosphere of H 2 or a mixed gas of H 2 and a non-oxidizing gas to form an Al oxide on the steel surface,
The inventors of the present invention have found that excellent corrosion resistance of welded portions can be obtained in a low-concentration chloride environment, and have reached the present invention.
本発明は、C:≦0.03%、Si:≦1.0%、Mn:≦0.4%、
P:≦0.04%、S:≦0.005%、16%≦Cr≦30%、N≦0.03
%、0.15+7(C+N)≦Nb≦0.6%、0.05%≦Al≦5.0%、0.
005%≦REM≦0.1%を基本組成とし、要求される耐食性
レベル等の必要に応じて、0.001%≦B≦0.02%、0.05%
≦Ti≦0.5%、0.4≦Mo≦3.0%および 0.3%≦Cu≦0.8%
から選択される成分を添加し残部Feおよび不可避的不純
物からなるフェライト系ステンレス鋼の鋼材を、露点が
−35℃以下のH2もしくはH2と非酸化性ガスの混合ガス雰
囲気中で、 900〜1100℃の焼鈍を行い、鋼表面にAl酸化
物を主とする酸化物皮膜を形成させることからなる溶接
部の耐食性にすぐれたフェライト系ステンレス鋼材の製
造方法を提供する。The present invention is C: ≤ 0.03%, Si: ≤ 1.0%, Mn: ≤ 0.4%,
P: ≤ 0.04%, S: ≤ 0.005%, 16% ≤ Cr ≤ 30%, N ≤ 0.03
%, 0.15 + 7 (C + N) ≦ Nb ≦ 0.6%, 0.05% ≦ Al ≦ 5.0%, 0.
005% ≤ REM ≤ 0.1% as the basic composition, 0.001% ≤ B ≤ 0.02%, 0.05% depending on the required corrosion resistance level etc.
≦ Ti ≦ 0.5%, 0.4 ≦ Mo ≦ 3.0% and 0.3% ≦ Cu ≦ 0.8%
The steel material of ferritic stainless steel with the balance Fe and unavoidable impurities added with a component selected from the above, in a mixed gas atmosphere of H 2 or H 2 and a non-oxidizing gas with a dew point of −35 ° C. or less, Provided is a method for producing a ferritic stainless steel material excellent in corrosion resistance of a welded part, which is formed by annealing at 1100 ° C. to form an oxide film mainly containing Al oxide on the steel surface.
本発明にかかるフェライト系ステンレス鋼は、溶接部の
耐食性改善のためAlと微量の REMの添加とともに、還元
性の雰囲気中で高温の焼鈍を施し、鋼表面にAl酸化物を
主とする皮膜を形成することによって、溶接時のCrの酸
化を抑制し耐食性の劣化を最小限にとどめるものであ
る。これらの効果は TIG溶接試片を作製し、食塩水溶液
に浸漬し各種合金元素および雰囲気焼鈍条件が耐孔食性
におよぼす影響を詳細に検討した結果見い出したもので
ある。The ferritic stainless steel according to the present invention is subjected to high temperature annealing in a reducing atmosphere together with the addition of Al and a small amount of REM for improving the corrosion resistance of the welded portion, and a film mainly containing Al oxide is formed on the steel surface. By forming it, the oxidation of Cr during welding is suppressed and deterioration of corrosion resistance is minimized. These effects were discovered as a result of detailed examination of the effects of various alloying elements and atmospheric annealing conditions on pitting corrosion resistance after making TIG welding specimens and dipping them in a saline solution.
本発明に係るステンレス鋼の構成成分を上記のごとく限
定した理由を説明する。The reason why the constituent components of the stainless steel according to the present invention are limited as described above will be described.
C,N:これらの元素は、Crと結合して耐粒界腐食性を損
うのでできるだけ低下することが望ましい。ここではC
やNとの結合力の大きいNbを添加するのである程度の量
は許容されるが、多くなるとNbの添加量も増加し、溶接
部の特性が劣化するのでC,Nの上限をそれぞれ0.03%と
した。C, N: These elements combine with Cr and impair the intergranular corrosion resistance, so it is desirable to reduce them as much as possible. Where C
Since Nb, which has a large bonding force with N and N, is added, a certain amount is acceptable, but if it increases, the amount of Nb added will increase and the characteristics of the weld will deteriorate, so the upper limits of C and N should be 0.03% respectively. did.
Si:Siは溶接部耐食性の改善には特に関係しないが、製
鋼過程で脱酸のためある程度必要とするので上限を1.0
%とした。Si: Si is not particularly related to the improvement of the corrosion resistance of welded parts, but the upper limit is 1.0 because it is necessary to some extent for deoxidation in the steelmaking process.
%.
Mn:Mnは脱酸作用の外、硫化物を形成する。鋼中に残存
する MnSは可溶性で孔食等の起点となり耐食性を損うの
で、できるだけ少い方が望ましいが製造原価が上昇する
から0.4%を上限とした。Mn: Mn forms sulfide in addition to deoxidizing action. The MnS remaining in the steel is soluble and acts as a starting point for pitting corrosion, etc., impairing the corrosion resistance. Therefore, it is desirable that the amount be as small as possible, but the manufacturing cost increases, so 0.4% was made the upper limit.
P:Pは不可避的に混入する不純物であるが、フェライト
系ステンレス鋼においてはとくに限定する必要がなく、
通常のJIS規格鋼程度の 0.04%を上限とした。P: P is an unavoidable impurity, but it is not necessary to limit it in ferritic stainless steel.
The upper limit was 0.04%, which is about the level of ordinary JIS standard steel.
S:Sも不可避的に混入する不純物であるが、鋼中では M
nSとして残存し上述のように耐食性を損う。また、本発
明鋼では REMを添加し、Al酸化物の形成をはかり、特性
を改善しているが、 REMはまた、鋼中のSと結合し硫化
物を形成しやすい。したがってSが多いと有効なREMの量
が減少するので上限を0.005%とした。S: S is also an unavoidable impurity, but M in steel
It remains as nS and impairs corrosion resistance as described above. Further, in the steel of the present invention, REM is added to improve the properties by forming Al oxide, but REM is also likely to combine with S in steel to form a sulfide. Therefore, the effective amount of REM decreases with a large amount of S, so the upper limit was made 0.005%.
Cr:Crはステンレス鋼の基本的な元素である。一般に有
効な耐食性を得るには11%以上の添加でよいが、ここで
は温水環境での使用を考慮して下限を16%とする。一
方、Crは多いほど耐食性はよくなるが、多くなると製造
が困難となりコストの上昇を招くとともに製品での加工
性が劣化するので30%を上限とした。Cr: Cr is a basic element of stainless steel. Generally, 11% or more may be added to obtain effective corrosion resistance, but the lower limit is set to 16% in consideration of use in hot water environment. On the other hand, the more Cr is, the better the corrosion resistance is, but if it is too much, the manufacturing becomes difficult and the cost rises, and the workability of the product deteriorates, so the upper limit was made 30%.
Nb:NbはC,Nを固定し粒界腐食を防止するために重要な
元素である。Nb量の下限を0.15+7 (C%+N%)とした
のは、 TIG溶接による鋭敏化を防ぐために必要な量であ
り、上限は溶接部の高温割れを避けるために0.6%とし
た。Nb: Nb is an important element for fixing C and N and preventing intergranular corrosion. The lower limit of the Nb amount was 0.15 + 7 (C% + N%), which was necessary to prevent sensitization due to TIG welding, and the upper limit was set to 0.6% to avoid hot cracking of the weld.
Al:Alは REMの存在において、本発明鋼では酸化スケー
ルのある溶接部の耐食性を確保するために欠かせぬ元素
で、冷間圧延の還元性雰囲気焼鈍により鋼表面にAlの酸
化物皮膜を形成し、溶接施工時のCrの酸化を抑え耐食性
の劣化を防ぐ。この作用を得るためには0.05%以上必要
である。Alの含有量は多ければ多いほど有効な焼鈍温度
の範囲は広くなるが、多くなると製造が困難となる。そ
れに加工性や溶接ビードの形状が悪くなるので5.0%を
上限とする。Al: In the presence of REM, in the steel of the present invention, Al is an element essential for ensuring the corrosion resistance of welds with oxide scale, and an oxide film of Al is formed on the steel surface by reducing atmosphere annealing of cold rolling. Formed to suppress oxidation of Cr during welding and prevent deterioration of corrosion resistance. To obtain this effect, 0.05% or more is required. The higher the Al content, the wider the effective annealing temperature range, but the higher the Al content, the more difficult the production becomes. In addition, the workability and the shape of the weld bead deteriorate, so the upper limit is 5.0%.
REM:REMは還元性ガスの雰囲気焼鈍において、CrやFeの
酸化を抑制しAlの酸化を助長する。したがって比較的少
いAl量で溶接スケール部の耐食性劣化を防ぐことができ
る。 0.005%未満ではこの効果が十分発揮されず、一方
0.1%を越えて添加すると熱間加工性を阻害したり、コ
ストや省資源の観点から好ましくない。REM: REM suppresses the oxidation of Cr and Fe and promotes the oxidation of Al during annealing in a reducing gas atmosphere. Therefore, it is possible to prevent deterioration of the corrosion resistance of the welded scale portion with a relatively small amount of Al. If less than 0.005%, this effect is not fully exerted, while
Addition of more than 0.1% is not preferable from the viewpoints of impairing hot workability and cost and resource saving.
B:Bは REMと同様にAl皮膜の形成を助長する作用を有す
るので、特に少量のAlで耐食性を得る目的で添加するも
のである。 0.001%未満では上記の作用に顕著な効果が
得られず、一方、 0.02%を越えて含有させると窒化物
などの化合物が多くなり鋼塊疵を発生するようになるこ
とから、Bの含有量は0.001〜0.02%と定めた。B: B has a function of promoting the formation of an Al film similarly to REM, so it is added for the purpose of obtaining corrosion resistance with a particularly small amount of Al. If it is less than 0.001%, the above effect is not significantly obtained. On the other hand, if it exceeds 0.02%, the amount of compounds such as nitrides increases and steel ingot defects occur. Was set to 0.001 to 0.02%.
Ti:TiはAlに次ぐ酸化物形成能を有しており、雰囲気の
露点および焼鈍温度に対応する酸化ポテンシャルの比較
的高い領域において、酸化物を生成しAl皮膜をより安定
にする作用を有する。また、Tiは鋼中の Sと化合し化学
的に安定な硫化物をつくり、腐食の起点となりやすい、
MnSの形成を防ぐことにより、鋼の耐食性とくに耐孔食
性や耐隙間腐食性の改善作用も有している。これらの作
用を発揮するためには0.05%以上のTiが必要であり、一
方、多くなると製品の表面疵の問題が表面化するので上
限を0.5%とした。Ti: Ti has the ability to form oxides next to Al, and has the effect of forming oxides and making the Al film more stable in the region with a relatively high oxidation potential corresponding to the dew point of the atmosphere and the annealing temperature. . Further, Ti combines with S in steel to form a chemically stable sulfide, which easily becomes the starting point of corrosion.
By preventing the formation of MnS, it also has the effect of improving the corrosion resistance of steel, especially pitting corrosion resistance and crevice corrosion resistance. In order to exert these effects, 0.05% or more of Ti is required. On the other hand, if the amount of Ti increases, the problem of surface flaws of the product becomes apparent, so the upper limit was made 0.5%.
MoおよびCuはいずれも、塩化物溶液環境における鋼の耐
孔食性、耐隙間腐食性改善のために有効な成分である
が、使用される環境や缶体の隙間構造に応じてそれぞれ
単独あるいは複合で添加する。Moは0.4%未満では耐食性
の改善効果が不充分であり、上限は温水環境が対象であ
ることからコストと耐食性を考慮して 3.0%とした。Cu
については0.3%未満では耐食性の改善効果が得られず、
一方0.8%を越えて添加してもその効果は飽和してしまう
ので含有量を0.3〜0.8%に限定した。Both Mo and Cu are effective components for improving the pitting corrosion resistance and crevice corrosion resistance of steel in chloride solution environment, but they may be used individually or in combination depending on the environment used and the crevice structure of the can body. Add in. If the Mo content is less than 0.4%, the effect of improving the corrosion resistance is insufficient, and the upper limit was set to 3.0% in consideration of cost and corrosion resistance because it is intended for hot water environments. Cu
For less than 0.3%, the effect of improving corrosion resistance cannot be obtained,
On the other hand, even if added over 0.8%, the effect is saturated, so the content was limited to 0.3-0.8%.
次に熱処理条件の限定理由を述べる。Next, the reasons for limiting the heat treatment conditions will be described.
H2あるいはH2とN2などの非酸化性ガスの混合ガス雰囲気
中で焼鈍を行うと、ステンレス鋼板の表面には雰囲気の
酸化ポテンシャル、露点および温度に応じて異なる組成
の酸化物が生成する。雰囲気の酸化ポテンシャル、露点
が高いと焼鈍後の鋼板表面の着色がつよくなる。とくに
本発明鋼においては酸素との親和力がつよいAlを含有す
るので、雰囲気の露点は−35℃以下に管理する必要があ
る。焼鈍温度の下限を900℃としたのは、900℃以下では
十分な再結晶組織が得られず、機械的性質および成形性
が劣化する。しかも鋼板表面の皮膜中のAl酸化物が十分
に形成されず初期の耐食性が発揮されない。一方、1100
℃を越えると結晶粒の粗大化が顕著となり製品加工後の
肌荒れが生じるので好ましくない。When annealing is performed in H 2 or a mixed gas atmosphere of non-oxidizing gas such as H 2 and N 2 , oxides with different composition are generated on the surface of stainless steel sheet depending on the oxidation potential of the atmosphere, dew point and temperature. . If the oxidation potential and the dew point of the atmosphere are high, the steel sheet surface after annealing is strongly colored. In particular, the steel of the present invention contains Al, which has a strong affinity for oxygen, so the dew point of the atmosphere must be controlled at -35 ° C or lower. The lower limit of the annealing temperature is set to 900 ° C, but a sufficient recrystallized structure cannot be obtained at 900 ° C or lower, and mechanical properties and formability are deteriorated. Moreover, the Al oxide in the film on the surface of the steel sheet is not sufficiently formed, and the initial corrosion resistance is not exhibited. On the other hand, 1100
If the temperature exceeds ℃, the coarsening of crystal grains becomes remarkable and the skin becomes rough after processing the product, which is not preferable.
なお、熱処理時間は、長時間の熱処理では酸化皮膜が厚
くなり着色の程度もつよくなり、またコストの上昇を招
くことから好ましくない。通常は光輝焼鈍仕上げのBA
ラインを用いるが、1mm程度の板厚であれば5〜60秒程
度の均熱時間が適当である。It should be noted that the heat treatment time is not preferable because a long heat treatment causes the oxide film to become thicker and the degree of coloring to be improved, and the cost to be increased. BA with bright annealing finish
A line is used, but if the plate thickness is about 1 mm, a soaking time of about 5 to 60 seconds is appropriate.
〔実施例〕 第1表に示す成分の鋼を真空溶解法で溶製し、鍛造、熱
延したのち、1mm厚の冷延鋼板を作製した。[Example] Steels having the components shown in Table 1 were melted by a vacuum melting method, forged and hot rolled, and then cold-rolled steel sheets having a thickness of 1 mm were manufactured.
A鋼およびE〜I鋼は19Cr系鋼で、B〜D鋼およびJ〜
O鋼は18Cr-2Mo系鋼である。Steels A and E to I are 19Cr series steels, and steels B to D and J to
O steel is 18Cr-2Mo steel.
雰囲気焼鈍はH2単独およびH2/N2=3/1の混合ガス中で、
800〜1100℃の範囲に温度をかえて行った。保持時間は
30秒とした。Atmosphere annealing is performed in H 2 alone and in a mixed gas of H 2 / N 2 = 3/1,
The temperature was changed in the range of 800 to 1100 ° C. Retention time
30 seconds.
第1図は供試鋼Iを上述の条件で850℃、900℃および10
00℃で焼鈍した場合の表層の化学組成をESCA(Elec
tron Spectroscopy of Chemical Analysis)で分析した
結果を示す図である。横軸エッチング時間ほ要するに表
面からの深さを代表する。 900℃以上に加熱すると最表
層には多量のAl2O3 が生成することがわかる。同時に、
表層のFe、Crのメタル成分は著しく減少し、1000℃で加
熱したものでは表層には認められない。即ち、本発明方
法は前述の組成の鋼材を、前述の条件のもとで焼鈍し
て、その表面にAl酸化物を形成することを眼目とする。Figure 1 shows the test steel I under the above conditions at 850 ℃, 900 ℃ and 10 ℃.
The chemical composition of the surface layer when annealed at 00 ° C is ESCA (Elec
It is a figure which shows the result analyzed by the tron spectroscopy of chemical analysis. The horizontal axis represents the etching time, that is, the depth from the surface. It can be seen that a large amount of Al 2 O 3 is generated in the outermost layer when heated to 900 ° C or higher. at the same time,
The metal components of Fe and Cr in the surface layer are significantly reduced, and they are not observed in the surface layer when heated at 1000 ° C. That is, the method of the present invention is intended to form an Al oxide on the surface of a steel material having the above composition by annealing it under the above conditions.
第2表はTIG溶接を施した試片の孔食試験の結果を示す。
TIG溶接では試片の溶接裏面へのArガスシールドを行わ
ず、酸化スケールの生成を促した。孔食試験は、溶接後
試片から TIG溶接ビードが中央にくるように50mm×25mm
の形状に切り出し、スケールを除去せずに、2%H2O2を
加えた50℃の5%NaCl溶液に浸漬して行った。浸漬は19
Cr系鋼で4時間、18Cr-2Mo系鋼は24時間行った。耐食性
の評価は、試験前後の重量減から腐食度を算出するとと
もに、酸化スケールのある熱影響部(HAZ) における食孔
(ピット)の有無により行った。Table 2 shows the results of the pitting corrosion test of TIG-welded specimens.
In TIG welding, the Ar gas shield was not applied to the backside of the weld of the specimen, which promoted the formation of oxide scale. The pitting test is 50 mm x 25 mm so that the TIG weld bead is centered from the specimen after welding.
The sample was cut into a shape of No. 1 and was immersed in a 5% NaCl solution containing 2% H 2 O 2 at 50 ° C. without removing the scale. Immersion is 19
The Cr-based steel was used for 4 hours, and the 18Cr-2Mo-based steel was used for 24 hours. The corrosion resistance was evaluated by calculating the degree of corrosion from the weight loss before and after the test, and by checking the presence or absence of pits in the heat affected zone (HAZ) with oxide scale.
0.05%以上のAlと REMを含む鋼を、露点が−35℃以下の
H2あるいはH2/N2混合ガス雰囲気中で900℃〜1100℃の焼
鈍を行うと、19Cr系鋼、18Cr-2Mo系鋼ともに孔食発生に
よる腐食度は低くなる。しかも溶接酸化スケールの厚い
溶接裏面の溶接熱影響部においても孔食の発生がなく、
酸化スケール部での耐食性劣化は認められない。19Cr系
鋼において、F鋼は0.08%AlであるがBの添加により1.
27%Alを含有するE鋼と同等の耐食性を示している。ま
たG鋼はTi添加の効果が表われ、E、F鋼に較べて腐食
度が小さく、さらにCuを添加したH,I鋼の腐食度は低
い。次に、18Cr-2Mo系鋼についてみると、C鋼は本発明
で示した条件で雰囲気焼鈍を行っても、Al量が0.019%
と低いため溶接部での孔食発生が多い。また、D鋼は1.
45%のAlを含有するが REMを含まないためスケール部に
孔食が生じている。J鋼は本発明に規定する鋼である
が、焼鈍温度が 800℃の場合、腐食度が大きくなる傾向
を示しスケール部に孔食が認められた。K鋼はBとTiを
含有しており、すぐれた耐食性を示した。L,M鋼は0.
38%および0.33%のAl量ではあるがBおよびBとCuを含
有していることから、1.21%のAlを含むN鋼と同等もし
くは同等以上の耐食性を示した。O鋼はAl量が4.19%と
高いうえに、Cuを含有することと相俟ってすぐれた耐食
性を示した。Steel containing 0.05% or more of Al and REM has a dew point of -35 ° C or less.
When annealed at 900 ℃ ~ 1100 ℃ in H 2 or H 2 / N 2 mixed gas atmosphere, the corrosion degree due to pitting corrosion is low in both 19Cr and 18Cr-2Mo steels. Moreover, pitting corrosion does not occur even in the heat-affected zone of the weld backside where the weld oxide scale is thick,
No deterioration of corrosion resistance is observed in the oxide scale. In 19Cr steel, F steel is 0.08% Al, but by adding B 1.
It shows the same corrosion resistance as E steel containing 27% Al. Further, the effect of adding Ti is exhibited in the G steel, the corrosion degree is smaller than the E and F steels, and the corrosion rates of the H and I steels to which Cu is added are low. Next, regarding 18Cr-2Mo system steel, even if the C steel is annealed under the conditions shown in the present invention, the Al content is 0.019%.
Since it is low, pitting corrosion often occurs at the weld. Also, D steel is 1.
Pitting corrosion occurs in the scale part because it contains 45% Al but does not contain REM. Steel J is the steel specified in the present invention, but when the annealing temperature was 800 ° C., the degree of corrosion tended to increase and pitting corrosion was observed in the scale. The K steel contained B and Ti and showed excellent corrosion resistance. L, M steel is 0.
Although it contained B and B and Cu, although it contained 38% and 0.33% Al, it showed corrosion resistance equal to or higher than that of N steel containing 1.21% Al. O steel had a high Al content of 4.19% and, in addition to containing Cu, exhibited excellent corrosion resistance.
〔発明の効果〕 以上述べたように本発明方法によって製造される鋼材は
溶接時に生じる酸化スケールによって耐食性が阻害され
ないので、低濃度塩化物環境で優れた耐食性を得ること
ができ、上水道水や中水道水を対象とした温水機器に対
して防食や溶接施工に制約がない上、これらの機器の耐
久性を向上させることができるなど、工業的価値は極め
て高い。 [Effects of the Invention] As described above, the steel material produced by the method of the present invention does not impair the corrosion resistance due to the oxide scale generated during welding, so that it is possible to obtain excellent corrosion resistance in a low-concentration chloride environment, and tap water or medium water. It has extremely high industrial value because there are no restrictions on corrosion protection and welding work for hot water equipment for tap water, and the durability of these equipment can be improved.
第1図は、0.20%のAlと REMを含有する鋼を、露点−38
℃、H2/N2=3/1の混合ガス雰囲気中で850℃×30秒、 90
0℃×30秒および1000℃×30秒の温度で焼鈍して生じた
鋼板表面の組成をESCAによって分析した図である。Figure 1 shows the dew point of -38 for steel containing 0.20% Al and REM.
850 ℃ for 30 seconds in a mixed gas atmosphere of ℃, H 2 / N 2 = 3/1, 90
It is the figure which analyzed the composition of the steel plate surface produced by annealing at the temperature of 0 degreeC x 30 second and 1000 degreeC x 30 second by ESCA.
Claims (7)
ト系ステンレス鋼の鋼材を 炉内雰囲気:H2またはH2と非酸化性ガスの混合ガス 露点:−35℃以下 温度:900〜1100℃ の条件下で雰囲気焼鈍を行い、鋼材表面にAl化物を主と
する酸化物皮膜を形成させることを特徴とする溶接部の
耐食性にすぐれたフェライト系ステンレス鋼材の製造方
法。1. C: <0.03% Si: ≤1.0% Mn: ≤0.4% P: ≤0.04% S: ≤0.005% Cr: 16-30% N: ≤0.03% Nb: 0.15 + 7 (C% + N% ) To 0.6% Al: 0.05 to 5.0% REM: 0.005 to 0.1%, with a balance of Fe and unavoidable impurities and a ferritic stainless steel material in the furnace Atmosphere: H 2 or H 2 mixed with non-oxidizing gas Gas dew point: -35 ° C or less Temperature: 900-1100 ° C Annealing is carried out in the atmosphere to form an oxide film mainly of Al compound on the steel surface. Ferrite with excellent corrosion resistance of welded parts. Of producing stainless steel.
ト系ステンレス鋼の鋼材を 炉内雰囲気:H2またはH2と非酸化性ガスの混合ガス 露点:−35℃以下 温度:900〜1100℃ の条件下で雰囲気焼鈍を行い、鋼材表面にAl酸化物を主
とする酸化物皮膜を形成させることを特徴とする溶接部
の耐食性にすぐれたフェライト系ステンレス鋼材の製造
方法。2. C: ≤0.03% Si: ≤1.0% Mn: ≤0.4% P: ≤0.04% S: ≤0.005% Cr: 16-30% N: ≤0.03% Nb: 0.15 + 7 (C% + N% ) To 0.6% Al: 0.05 to 5.0% REM: 0.005 to 0.1% B: 0.001 to 0.02%, with a balance of Fe and unavoidable impurities, a ferritic stainless steel material with a furnace atmosphere of H 2 or H 2 . Mixed gas of non-oxidizing gas Dew point: -35 ° C or lower Temperature: Welding characterized by forming an oxide film mainly of Al oxides on the surface of steel by annealing in the atmosphere at 900 to 1100 ° C Method for producing ferritic stainless steel material with excellent corrosion resistance in parts.
ト系ステンレス鋼の鋼材を 炉内雰囲気:H2またはH2と非酸化性ガスの混合ガス 露点:−35℃以下 温度:900〜1100℃ の条件下で雰囲気焼鈍を行い、鋼材表面にAl酸化物を主
とする酸化物皮膜を形成させることを特徴とする溶接部
の耐食性にすぐれたフェライト系ステンレス鋼材の製造
方法。3. C: ≤0.03% Si: ≤1.0% Mn: ≤0.4% P: ≤0.04% S: ≤0.005% Cr: 16-30% N: ≤0.03% Nb: 0.15 + 7 (C% + N% ) To 0.6% Al: 0.05 to 5.0% REM: 0.005 to 0.1% Ti: 0.05 to 0.5%, with a balance of Fe and unavoidable impurities, a ferritic stainless steel material in the furnace atmosphere: H 2 or H 2 Mixed gas of non-oxidizing gas Dew point: -35 ° C or lower Temperature: Welding characterized by forming an oxide film mainly of Al oxides on the surface of steel by annealing in the atmosphere at 900 to 1100 ° C Method for producing ferritic stainless steel material with excellent corrosion resistance in parts.
ト系ステンレス鋼の鋼材を 炉内雰囲気:H2またはH2と非酸化性ガスの混合ガス 露点:−35℃以下 温度:900〜1100℃ の条件下で雰囲気焼鈍を行い、鋼材表面にAl酸化物を主
とする酸化物皮膜を形成させることを特徴とする溶接部
の耐食性にすぐれたフェライト系ステンレス鋼材の製造
方法。4. C: ≤0.03% Si: ≤1.0% Mn: ≤0.4% P: ≤0.04% S: ≤0.005% Cr: 16-30% N: ≤0.03% Nb: 0.15 + 7 (C% + N% ) To 0.6% Al: 0.05 to 5.0% REM: 0.005 to 0.1%, Mo: 0.4 to 3.0%, Cu: 0.3 to 0.8%, one or two, and the balance Fe and unavoidable impurities. Steel atmosphere in the furnace: H 2 or a mixed gas of H 2 and non-oxidizing gas Dew point: −35 ° C or less Temperature: 900 to 1100 ° C Annealing is performed in the atmosphere, and Al oxide is mainly applied to the steel surface. A method for producing a ferritic stainless steel material having excellent corrosion resistance of a welded portion, which comprises forming an oxide film.
ト系ステンレス鋼の鋼材を 炉内雰囲気:H2またはH2と非酸化性ガスの混合ガス 露点:−35℃以下 温度:900〜1100℃ の条件下で雰囲気焼鈍を行い、鋼材表面にAl酸化物を主
とする酸化物皮膜を形成させることを特徴とする溶接部
の耐食性にすぐれたフェライト系ステンレス鋼材の製造
方法。5. C: ≤0.03% Si: ≤1.0% Mn: ≤0.4% P: ≤0.04% S: ≤0.005% Cr: 16-30% N: ≤0.03% Nb: 0.15 + 7 (C% + N% ) To 0.6% Al: 0.05 to 5.0% REM: 0.005 to 0.1% B: 0.001 to 0.02%, Mo: 0.4 to 3.0%, Cu: 0.3 to 0.8%, 1 or 2 types, balance Fe and unavoidable A ferritic stainless steel material consisting of impurities in a furnace atmosphere: H 2 or a mixed gas of H 2 and a non-oxidizing gas Dew point: −35 ° C. or less Temperature: 900 to 1100 ° C. Atmosphere annealing is performed and the steel surface A method for producing a ferritic stainless steel material having excellent corrosion resistance of a weld, which comprises forming an oxide film mainly of Al oxide on.
ト系ステンレス鋼の鋼材を 炉内雰囲気:H2またはH2と非酸化性ガスの混合ガス 露点:−35℃以下 温度:900〜1100℃ の条件下で雰囲気焼鈍を行い、鋼材表面にAl酸化物を主
とする酸化物皮膜を形成させることを特徴とする溶接部
の耐食性にすぐれたフェライト系ステンレス鋼材の製造
方法。6. C: ≤0.03% Si: ≤1.0% Mn: ≤0.4% P: ≤0.04% S: ≤0.005% Cr: 16-30% N: ≤0.03% Nb: 0.15 + 7 (C% + N% ) ~ 0.6% Al: 0.05 ~ 5.0% REM: 0.005 ~ 0.1% Ti: 0.05 ~ 0.5% and Mo: 0.4 ~ 3.0%, Cu: 0.3 ~ 0.8% One or two kinds, balance Fe and unavoidable A ferritic stainless steel material consisting of impurities in a furnace atmosphere: H 2 or a mixed gas of H 2 and a non-oxidizing gas Dew point: −35 ° C. or less Temperature: 900 to 1100 ° C. Atmosphere annealing is performed and the steel surface A method for producing a ferritic stainless steel material having excellent corrosion resistance of a weld, which comprises forming an oxide film mainly of Al oxide on.
ト系ステンレス鋼の鋼材を 炉内雰囲気:H2またはH2と非酸化性ガスの混合ガス 露点:−35℃以下 温度:900〜1100℃ の条件下で雰囲気焼鈍を行い、鋼材表面にAl酸化物を主
とする酸化物皮膜を形成させることを特徴とする溶接部
の耐食性にすぐれたフェライト系ステンレス鋼材の製造
方法。7. C: ≤0.03% Si: ≤1.0% Mn: ≤0.4% P: ≤0.04% S: ≤0.005% Cr: 16-30% N: ≤0.03% Nb: 0.15 + 7 (C% + N% ) To 0.6% Al: 0.05 to 5.0% REM: 0.005 to 0.1% B: 0.001 to 0.02% Ti: 0.05 to 0.5%, Mo: 0.4 to 3.0%, Cu: 0.3 to 0.8%, including one or two , A ferritic stainless steel consisting of balance Fe and unavoidable impurities Furnace atmosphere: H 2 or mixed gas of H 2 and non-oxidizing gas Dew point: −35 ° C or less Temperature: 900 to 1100 ° C atmosphere A method for producing a ferritic stainless steel material having excellent corrosion resistance of a weld, which is characterized by forming an oxide film mainly of Al oxide on the surface of the steel material by annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26194086A JPH0635615B2 (en) | 1986-11-05 | 1986-11-05 | Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26194086A JPH0635615B2 (en) | 1986-11-05 | 1986-11-05 | Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63118011A JPS63118011A (en) | 1988-05-23 |
JPH0635615B2 true JPH0635615B2 (en) | 1994-05-11 |
Family
ID=17368789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26194086A Expired - Lifetime JPH0635615B2 (en) | 1986-11-05 | 1986-11-05 | Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0635615B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2085790C (en) * | 1991-12-19 | 2000-03-28 | Masao Koike | Steel for use in exhaust manifolds of automobiles |
JP3064871B2 (en) * | 1995-06-22 | 2000-07-12 | 川崎製鉄株式会社 | Ferritic stainless steel hot-rolled steel sheet with excellent roughening resistance and high temperature fatigue properties after forming |
CN100392137C (en) * | 2005-06-28 | 2008-06-04 | 重庆科技学院 | Iron-base anticorrosive alloy |
JP4742876B2 (en) * | 2006-01-18 | 2011-08-10 | Jfeスチール株式会社 | Heat resistant material with excellent oxidation resistance and brazing |
JP5867243B2 (en) * | 2012-03-30 | 2016-02-24 | Jfeスチール株式会社 | Ferritic stainless steel with excellent corrosion resistance of welds |
JP6878243B2 (en) * | 2017-10-19 | 2021-05-26 | 日鉄ステンレス株式会社 | Nb-containing ferritic stainless steel with excellent corrosion resistance and manufacturing method |
-
1986
- 1986-11-05 JP JP26194086A patent/JPH0635615B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63118011A (en) | 1988-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2100983B1 (en) | Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness | |
JP5793283B2 (en) | Ferritic stainless steel with few black spots | |
EP1918399B9 (en) | Ferritic stainless-steel sheet with excellent corrosion resistance and process for producing the same | |
JP5489759B2 (en) | Ferritic stainless steel with few black spots | |
US5183198A (en) | Method of producing clad steel plate having good low-temperature toughness | |
JP7059357B2 (en) | Duplex stainless clad steel sheet and its manufacturing method | |
JPH06279951A (en) | Ferritic stainless steel for water heater | |
JP4998719B2 (en) | Ferritic stainless steel sheet for water heaters excellent in punching processability and method for producing the same | |
CN102782170A (en) | Low-chromium-content stainless steel with excellent corrosion resistance of weld | |
JPH0570899A (en) | Ferritic stainless steel excellent in corrosion resistance in weld zone | |
JP3217088B2 (en) | Stainless steel multiple winding pipe | |
JP3190290B2 (en) | Ferritic stainless steel with excellent corrosion resistance at welds | |
JPH0635615B2 (en) | Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds | |
JP2021075758A (en) | Fe-Ni-Cr-Mo-Cu ALLOY HAVING EXCELLENT CORROSION RESISTANCE | |
JP6610792B2 (en) | Ferritic stainless steel sheet | |
JP5012194B2 (en) | Ferritic stainless steel sheet for water heater with high welded joint strength and manufacturing method thereof | |
US20030188813A1 (en) | Stainless steel sheet for welded structural components and method for making the same | |
JP3094807B2 (en) | Hot-rolled steel sheet excellent in hot-dip galvanizing property and method for producing the same | |
JPH10102212A (en) | Ferritic stainless steel sheet excellent in penetration at welding | |
JPS6199661A (en) | High strength and high toughness welded clad steel pipe for line pipe | |
JP3705161B2 (en) | High tensile steel plate | |
JPS62134196A (en) | Welding material for austenitic stainless steel | |
JP4254583B2 (en) | Cr-containing alloy with excellent strain aging resistance of welds | |
JP2759222B2 (en) | Austenitic stainless steel with excellent stress corrosion cracking resistance in chloride environment | |
JPH0762218B2 (en) | Ferritic stainless steel with excellent weldability and corrosion resistance |