Nothing Special   »   [go: up one dir, main page]

JPH0710689A - Device for growth of semiconductor in gaseous phase - Google Patents

Device for growth of semiconductor in gaseous phase

Info

Publication number
JPH0710689A
JPH0710689A JP17115193A JP17115193A JPH0710689A JP H0710689 A JPH0710689 A JP H0710689A JP 17115193 A JP17115193 A JP 17115193A JP 17115193 A JP17115193 A JP 17115193A JP H0710689 A JPH0710689 A JP H0710689A
Authority
JP
Japan
Prior art keywords
susceptor
growth
substrates
semiconductor
donut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17115193A
Other languages
Japanese (ja)
Inventor
Nozomi Matsuo
望 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP17115193A priority Critical patent/JPH0710689A/en
Publication of JPH0710689A publication Critical patent/JPH0710689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a semiconductor gas phase growth device enabling the formation of a crystal thin film good in the uniformity of the film thickness, the quality, etc., on plural simultaneously treated growth substrates in improved productivity. CONSTITUTION:A semiconductor gas phase growth device having a mechanism for substantially horizontally holding plural growth substrates 4 in a reaction oven 1 and for revolving the plural substrates at a rate of 300-2000rpm on a revolution shaft is characterized in that a revolution susceptor for holding the growth substrates 4 is a doughnut-shaped susceptor 10 and that a disk 11 is rotatably disposed in the central hole of the doughnut.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数枚の被成長基板上
に結晶薄膜を同時に気相成長させる際の生成結晶膜の均
一性を高める半導体気相成長装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor vapor phase growth apparatus for enhancing the uniformity of a crystal film produced when a crystal thin film is vapor-phase grown on a plurality of substrates to be grown at the same time.

【0002】[0002]

【従来の技術】図4により従来の半導体気相成長装置を
説明する。図4(a)において、1は石英等で作られる
反応管、2は被成長基板を保持するカーボン等で作られ
たサセプタ、3は前記サセプタの回転を行う回転軸、4
はサセプタ上に載置された被成長基板であり、その表面
に半導体の結晶膜が成長する。5はサセプタの加熱を行
うカーボン等で作られたヒーター、6は前記ヒーターの
支持台である。本例ではヒーター5によって、被成長基
板4を載置したサセプタ2を500〜700℃に加熱
し、かつ、回転軸3によってサセプタ2を600〜12
00rpmで回転させながら、原料ガス7の熱分解を利
用して被成長基板4上に膜厚数μm以下の半導体薄膜が
形成されるものであり、図4(b)に示すように被成長
基板4は、サセプタ2上に形成された溝内にほぼ水平に
載置される。例えば、基板は直径50mm、反応炉の圧
力は例えば76torrで、ガス流量は約30L/mi
n、基板表面付近におけるガス流速12cm/secで
ある。本例は4枚の被成長基板を同時に処理するもので
あり、言うまでもなく、量産を目的とした半導体気相成
長装置であり、従って被成長基板面内での結晶膜厚や結
晶中の組成等が均一であることが要求されることはもち
ろん、同時に処理される4枚の被成長基板上に形成され
る半導体薄膜の膜厚、組成等の特性が同一である必要が
ある。前記サセプタの回転はこれらの均一性を実現する
ために実施されるものであり、また、前記600〜12
00rpmの回転数により原料ガスの使用効率も、回転
が低速の場合に比べて増大することが知られている。均
一性を実現するため、前記サセプタの回転数をはじめと
して、反応炉内の圧力、反応炉へのガス供給量、加熱温
度等の作製条件を調整することが試みられている。
2. Description of the Related Art A conventional semiconductor vapor phase growth apparatus will be described with reference to FIG. In FIG. 4A, 1 is a reaction tube made of quartz or the like, 2 is a susceptor made of carbon or the like for holding a growth substrate, 3 is a rotating shaft for rotating the susceptor, 4
Is a growth substrate placed on a susceptor, and a semiconductor crystal film grows on its surface. 5 is a heater made of carbon or the like for heating the susceptor, and 6 is a support base for the heater. In this example, the heater 5 heats the susceptor 2 on which the growth substrate 4 is placed to 500 to 700 ° C., and the rotating shaft 3 rotates the susceptor 2 to 600 to 12 ° C.
A semiconductor thin film having a film thickness of several μm or less is formed on the substrate to be grown 4 by utilizing thermal decomposition of the source gas 7 while rotating at 00 rpm. As shown in FIG. 4 is placed almost horizontally in a groove formed on the susceptor 2. For example, the substrate has a diameter of 50 mm, the reactor pressure is, for example, 76 torr, and the gas flow rate is about 30 L / mi.
n, the gas flow rate near the substrate surface is 12 cm / sec. In this example, four growth substrates are processed at the same time. Needless to say, this is a semiconductor vapor phase growth apparatus intended for mass production. Therefore, the crystal film thickness in the plane of the growth substrate, the composition in the crystal, etc. Are required to be uniform, and the characteristics such as the film thickness and composition of the semiconductor thin films formed on the four growth substrates to be processed at the same time must be the same. The rotation of the susceptor is performed to achieve these uniformity, and the 600 to 12
It is known that the use efficiency of the raw material gas is increased by the rotation speed of 00 rpm as compared with the case where the rotation speed is low. In order to achieve uniformity, attempts have been made to adjust the manufacturing conditions such as the number of revolutions of the susceptor, the pressure inside the reaction furnace, the gas supply amount to the reaction furnace, and the heating temperature.

【0003】[0003]

【発明が解決しようとする課題】しかし、原料ガスとし
て、水素中に、TMIn(トリメチルインジウム)等の
有機金属ガスとPH3 等のハイドライドガスを含ませて
供給するいわゆるMOCVD(有機金属化学気相成長)
法において、上記の反応炉を採用すると、被成長基板上
に形成される半導体薄膜の特性に分布が生じる。例えば
膜厚を例にとると、図4(c)に示すように、サセプタ
の回転中心からサセプタの外周方向へ向かい、成長膜厚
が薄くなる傾向を呈し、反応炉圧力やガス供給量等の作
製条件や、回転数等を調整しても、例えば直径50mm
の被成長基板上における膜厚分布は±5%以下には改善
されない。また、膜厚以外の例えば結晶組成や結晶中の
不純物の分布も膜厚と同様にサセプタの回転中心からサ
セプタの外周方向に向かう分布を示し、量産に向けてよ
り均一性を向上する必要がある。本発明の目的は上記の
問題を解決して結晶膜の均一性を向上し、量産に適した
半導体気相気相装置を提供することにある。
However, the so-called MOCVD (Metal Organic Chemical Vapor Deposition) method, in which hydrogen is used as a source gas, and an organic metal gas such as TMIn (trimethylindium) and a hydride gas such as PH 3 are contained in the hydrogen gas and supplied. growth)
In the method, when the above-mentioned reaction furnace is adopted, the characteristics of the semiconductor thin film formed on the growth substrate are distributed. Taking the film thickness as an example, as shown in FIG. 4C, the growth film thickness tends to become thinner from the rotation center of the susceptor toward the outer peripheral direction of the susceptor. Even if the manufacturing conditions and the number of rotations are adjusted, for example, the diameter is 50 mm.
The film thickness distribution on the substrate to be grown is not improved to ± 5% or less. In addition to the film thickness, for example, the crystal composition and the distribution of impurities in the crystal also show the distribution from the rotation center of the susceptor toward the outer peripheral direction of the susceptor like the film thickness, and it is necessary to further improve the uniformity for mass production. . An object of the present invention is to solve the above problems, improve the uniformity of a crystal film, and provide a semiconductor vapor phase vapor phase apparatus suitable for mass production.

【0004】[0004]

【課題を解決するための手段】本発明は上記事情に鑑み
てなされたものであり、本発明の目的は、下記の半導体
気相成長装置によって達成できる。すなわち、反応炉中
で複数の被成長基板を概略水平に保持し、少なくとも前
記複数の基板を回転軸を中心に300rpm以上200
0rpm以下の速度で公転させる機構を有する半導体気
相成長装置において、前記被成長基板を保持する回転サ
セプタをドーナツ状サセプタとし、かつ、前記ドーナツ
状サセプタの中央孔部に、円板を回転可能に設けてなる
ことを特徴とする半導体気相成長装置によって達成する
ことができる。この半導体気相成長装置の回転円板の回
転速度は前記ドーナツ状のサセプタの回転速度よりも低
速であることが望ましい。
The present invention has been made in view of the above circumstances, and the object of the present invention can be achieved by the following semiconductor vapor phase growth apparatus. That is, a plurality of substrates to be grown are held substantially horizontally in a reaction furnace, and at least the plurality of substrates are kept at 300 rpm or more about 200 rpm around a rotation axis.
In a semiconductor vapor phase growth apparatus having a mechanism for revolving at a speed of 0 rpm or less, a rotating susceptor for holding the growth substrate is a donut-shaped susceptor, and a disk is rotatable in a central hole of the donut-shaped susceptor. This can be achieved by a semiconductor vapor phase growth apparatus characterized by being provided. The rotation speed of the rotating disk of this semiconductor vapor phase growth apparatus is preferably lower than the rotation speed of the donut-shaped susceptor.

【0005】[0005]

【実施例】次に本発明を図示の実施例に従って説明す
る。図1は本発明の半導体気相成長装置の一実施例の断
面図である。図中、10は、回転軸12により回転され
る平面形状がドーナツ状のサセプタ、11は前記ドーナ
ツ状のサセプタの中央孔部の内部に設けられ、回転軸1
3により回転される回転円板、14はサセプタ10の加
熱を行うヒーター、15は前記ヒーターの支持台、16
はヒーター14に電力を供給する電極棒である。17は
反応炉外部から反応炉内部の前記電極棒16に電流を導
入するための端子である。19はベルト20により回転
軸12を回転させる第1の回転モーター、21はベルト
22により回転軸13を回転させる第2の回転モーター
である。また18は反応炉内部を気密に保ちつつ、回転
軸12及び13を支える回転導入機であり、本実施例で
は、磁性流体を用いたいわゆる磁気シール型の回転導入
機を採用している。24は排気口である。なお、図4と
同様1は反応管、4は被成長基板を示す。
The present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a sectional view of an embodiment of the semiconductor vapor phase growth apparatus of the present invention. In the figure, 10 is a susceptor having a donut-shaped planar shape rotated by a rotating shaft 12, 11 is provided inside a central hole of the donut-shaped susceptor, and the rotating shaft 1
A rotating disk rotated by 3; 14 a heater for heating the susceptor 10; 15 a support base for the heater;
Is an electrode rod for supplying electric power to the heater 14. Reference numeral 17 is a terminal for introducing a current from outside the reaction furnace to the electrode rod 16 inside the reaction furnace. Reference numeral 19 is a first rotary motor that rotates the rotary shaft 12 with the belt 20, and 21 is a second rotary motor that rotates the rotary shaft 13 with the belt 22. Further, reference numeral 18 denotes a rotation introducing machine that supports the rotating shafts 12 and 13 while keeping the inside of the reaction chamber airtight. In this embodiment, a so-called magnetic seal type rotation introducing machine using magnetic fluid is adopted. 24 is an exhaust port. As in FIG. 4, 1 is a reaction tube, and 4 is a growth substrate.

【0006】図2は前記図1の反応炉を用いてMOCV
D法を用いてInP基板上にInP薄膜を形成した際の
InP膜厚分布について検討した例であり、前記ドーナ
ツ状サセプタ10の回転数を1000rpmに固定し
て、回転円板11の回転数を変えた場合である。前記回
転円板11の回転数を前記ドーナツ状サセプタと同じ1
000rpmにすると、図4(c)同様に基板面内にお
ける膜厚はサセプタ周方向に向かい薄くなる傾向を示
し、一方、前記回転円板を0rpmにした場合にはほぼ
均一であるが、逆にサセプタ周方向に向かい若干膜厚が
増加する傾向が見られた。回転円板を400rpmとす
ることにより図2に示すような均一な膜厚分布が得られ
た。回転円板11の回転方向はドーナツ状サセプタ10
のそれと同じとするのが好ましい。また本発明において
回転円板11の回転をドーナツ状サセプタ10より低速
にするとは、下限として、回転数0の場合も包含する意
味である。
FIG. 2 shows the MOCV using the reaction furnace of FIG.
It is an example of studying the InP film thickness distribution when an InP thin film is formed on an InP substrate by using the D method. The rotation speed of the donut-shaped susceptor 10 is fixed at 1000 rpm, and the rotation speed of the rotating disk 11 is changed. It is when changing. The rotation speed of the rotating disk 11 is the same as that of the donut-shaped susceptor.
At 000 rpm, as in FIG. 4 (c), the film thickness on the substrate surface tends to decrease in the circumferential direction of the susceptor. On the other hand, when the rotating disk is set at 0 rpm, it is almost uniform, but conversely. There was a tendency for the film thickness to increase slightly in the circumferential direction of the susceptor. By setting the rotating disk to 400 rpm, a uniform film thickness distribution as shown in FIG. 2 was obtained. The rotating disc 11 rotates in the donut-shaped susceptor 10.
It is preferably the same as that of. Further, in the present invention, making the rotation speed of the rotating disk 11 slower than that of the donut-shaped susceptor 10 includes the case where the rotation speed is 0 as the lower limit.

【0007】このような回転円板11の作用については
次のように考えられる。すなわち、従来構造ではサセプ
タの回転により原料ガスがサセプタ中央部に集中するた
め、サセプタ中央寄りで原料ガス濃度が高くなり、サセ
プタ周辺部で相対的にサセプタ中央寄りよりも膜厚が薄
くなる。一方、本発明では中央部の回転円板を比較的低
速回転にすることにより、前記従来構造で見られたガス
流の集中が抑制され、回転円板の回転速度の調整によっ
て膜の均一性が向上する。以上説明したように、本発明
における回転円板の回転速度は、サセプタの回転速度よ
りも低速であることが望ましく、その回転速度は反応炉
構造や結晶成長条件によって最適値に設定することがで
き、条件によっては上述の如く回転数0でも構わない。
The action of such a rotating disk 11 is considered as follows. That is, in the conventional structure, since the raw material gas is concentrated in the central portion of the susceptor due to the rotation of the susceptor, the raw material gas concentration becomes high near the central portion of the susceptor, and the film thickness becomes relatively thinner in the peripheral portion of the susceptor than near the central portion of the susceptor. On the other hand, in the present invention, by rotating the rotating disc in the central portion at a relatively low speed, the concentration of the gas flow seen in the conventional structure is suppressed, and the uniformity of the film is improved by adjusting the rotating speed of the rotating disc. improves. As described above, the rotation speed of the rotating disk in the present invention is preferably lower than the rotation speed of the susceptor, and the rotation speed can be set to an optimum value depending on the reactor structure and crystal growth conditions. Depending on the conditions, the rotational speed may be 0 as described above.

【0008】図3は本発明の他の実施例を示すものであ
る。本実施例では図1に示す実施例と異なり、被成長基
板4を、ドーナツ状のトレー23上に載置し、このトレ
ー23をドーナツ状のサセプタ10上に載せて回転する
構造としてある。トレーの採用によって、サセプタ上へ
のウエハーの入れかえが容易となり、予備室を用いた自
動搬送方式の採用も可能となる。トレーを用いることに
よっても、本発明の基本的な効果は全く阻害されない。
図3において、図1と同符号は図1と同じものを示す。
FIG. 3 shows another embodiment of the present invention. In the present embodiment, unlike the embodiment shown in FIG. 1, the growth substrate 4 is placed on a doughnut-shaped tray 23, and the tray 23 is placed on a toroidal susceptor 10 and rotated. By adopting the tray, it becomes easy to replace the wafers on the susceptor, and it becomes possible to adopt the automatic transfer method using the preliminary chamber. The use of trays does not impair the basic effects of the present invention.
3, the same reference numerals as those in FIG. 1 indicate the same parts as those in FIG.

【0009】なお、本発明は以上に示した実施例に限定
されるものではなく、様々な変更が可能であることは言
うまでもない。実施例では結晶成長法としてTMIn、
PH3 を用いたMOCVD法を例にとって説明したが、
原料はこれに制限されずTEGa(トリエチルガリウ
ム)、AsH3 (アルシン)、TBP(ターシャリ・ブ
チルホスフィン)等々を用いることが可能であり、Ga
As(ガリウム・ヒ素)、InGaAsP(インジウム
・ガリウム・ヒ素・リン)等、様々な結晶材料を均一に
作製するために本発明は有効である。また、実施例では
膜厚分布について説明を行ったが、原料ガスの集中を抑
えて、原料ガス濃度の分布を調整することにより、結晶
中の構成元素の組成分布や不純物濃度分布をも均一化で
きることはいうまでもない。さらに、本発明の実施例で
は4枚の被成長基板を図示したが、本発明は複数枚の被
成長基板の取扱いを対象としたものであり、枚数は4枚
に限られたものでなく、また基板は図示したような円形
である必要は全くない。加えて、本発明は反応炉の作製
に用いる部品の材質等にも制限を加えるものではなく、
例えば反応管も、実施例で説明した石英製にとらわれる
ことはなく、ステンレス等の他の材質で作製しても問題
はない。
It is needless to say that the present invention is not limited to the above-mentioned embodiments and various modifications can be made. In the embodiment, TMIn is used as the crystal growth method,
The MOCVD method using PH 3 has been described as an example.
The raw material is not limited to this, and TEGa (triethylgallium), AsH 3 (arsine), TBP (tertiary butylphosphine), etc. can be used.
The present invention is effective for uniformly producing various crystal materials such as As (gallium / arsenic) and InGaAsP (indium / gallium / arsenic / phosphorus). Although the film thickness distribution has been described in the embodiment, the concentration of the raw material gas is suppressed and the distribution of the raw material gas concentration is adjusted to make the composition distribution of the constituent elements in the crystal and the impurity concentration distribution uniform. It goes without saying that you can do it. Further, although four growth substrates are illustrated in the embodiments of the present invention, the present invention is intended for handling a plurality of growth substrates, and the number is not limited to four, Also, the substrate need not be circular as shown. In addition, the present invention does not limit the material etc. of the parts used for manufacturing the reactor,
For example, the reaction tube is not limited to the quartz tube described in the embodiment, and there is no problem if it is made of other material such as stainless steel.

【0010】[0010]

【発明の効果】以上、本発明によれば、同時に処理され
る複数の被成長基板上に膜厚、品質などの均一性良好な
結晶薄膜を形成することが可能となり、量産性向上に直
結することから、産業上の有益性は極めて大きい。
As described above, according to the present invention, it becomes possible to form a crystal thin film having a good uniformity of film thickness, quality, etc. on a plurality of substrates to be grown simultaneously, which directly leads to improvement in mass productivity. Therefore, the industrial benefit is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】本発明の一実施例の装置を採用して得られた回
転円板の回転数と結晶膜の膜厚との関係を説明する図で
ある。
FIG. 2 is a diagram for explaining the relationship between the number of rotations of a rotating disk and the thickness of a crystal film obtained by adopting the device of one example of the present invention.

【図3】本発明の他の実施例を示す断面図である。FIG. 3 is a sectional view showing another embodiment of the present invention.

【図4】(a)は従来の半導体気相成長装置の一例の説
明図、(b)は該装置のサセプタの断面図、(c)は該
装置より得られた被成長基板上に形成された膜厚分布を
示す図である。
4A is an explanatory view of an example of a conventional semiconductor vapor phase growth apparatus, FIG. 4B is a cross-sectional view of a susceptor of the apparatus, and FIG. 4C is formed on a substrate to be grown obtained by the apparatus. It is a figure which shows the different film thickness distribution.

【符号の説明】[Explanation of symbols]

1 反応管 2 サセプタ 3 回転軸 4 被成長基板 5 ヒーター 6 支持台 7 原料ガス 10 ドーナツ状サセプタ 11 回転円板 12 回転軸 13 回転軸 14 加熱用ヒーター 15 ヒーター支持台 16 ヒーター用電極棒 17 電流導入端子 18 回転導入機 19 第1の回転モータ 20 ベルト 21 第2の回転モータ 22 ベルト 23 トレー 24 排気口 1 Reaction Tube 2 Susceptor 3 Rotating Shaft 4 Growth Substrate 5 Heater 6 Supporting Stand 7 Raw Material Gas 10 Donut Susceptor 11 Rotating Disc 12 Rotating Shaft 13 Rotating Shaft 14 Heating Heater 15 Heater Supporting Stand 16 Heater Electrode 17 Current Introducing Terminal 18 Rotation Introducer 19 First Rotation Motor 20 Belt 21 Second Rotation Motor 22 Belt 23 Tray 24 Exhaust Port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反応炉中で複数の被成長基板を略水平に
保持し、少なくとも前記複数の基板を回転軸を中心に3
00rpm以上2000rpm以下の速度で公転させる
機構を有する半導体気相成長装置において、前記被成長
基板を保持する回転サセプタをドーナツ状サセプタと
し、かつ、前記ドーナツ状サセプタの中央孔部に、円板
を回転可能に設けてなることを特徴とする半導体気相成
長装置。
1. A plurality of substrates to be grown are held substantially horizontally in a reaction furnace, and at least the plurality of substrates are placed about a rotation axis.
In a semiconductor vapor phase growth apparatus having a mechanism for revolving at a speed of 00 rpm or more and 2000 rpm or less, a rotating susceptor for holding the growth substrate is a donut-shaped susceptor, and a disk is rotated in a central hole portion of the donut-shaped susceptor. A semiconductor vapor phase growth apparatus characterized by being provided as much as possible.
【請求項2】 前記回転円板の回転速度が前記ドーナツ
状のサセプタの回転速度よりも低速であることを特徴と
する請求項1記載の半導体気相成長装置。
2. The semiconductor vapor phase epitaxy apparatus according to claim 1, wherein the rotation speed of the rotating disk is lower than the rotation speed of the donut-shaped susceptor.
JP17115193A 1993-06-17 1993-06-17 Device for growth of semiconductor in gaseous phase Pending JPH0710689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17115193A JPH0710689A (en) 1993-06-17 1993-06-17 Device for growth of semiconductor in gaseous phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17115193A JPH0710689A (en) 1993-06-17 1993-06-17 Device for growth of semiconductor in gaseous phase

Publications (1)

Publication Number Publication Date
JPH0710689A true JPH0710689A (en) 1995-01-13

Family

ID=15917941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17115193A Pending JPH0710689A (en) 1993-06-17 1993-06-17 Device for growth of semiconductor in gaseous phase

Country Status (1)

Country Link
JP (1) JPH0710689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036708A1 (en) * 1999-11-15 2001-05-25 Ionas A/S A method for depositing layers on a substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036708A1 (en) * 1999-11-15 2001-05-25 Ionas A/S A method for depositing layers on a substrate

Similar Documents

Publication Publication Date Title
JPH06310438A (en) Substrate holder and apparatus for vapor growth of compound semiconductor
KR100765866B1 (en) A method for growing a thin film in gaseous phase, and apparatus for growing a thin film in gaseous phase adapted to conducting the above method
EP1151155B1 (en) Cdv method of and reactor for silicon carbide monocrystal growth
WO1996030564A1 (en) Method and apparatus for configuring an epitaxial reactor for reduced set-up time and improved layer quality
JPH0786173A (en) Film deposition
JPS6090894A (en) Vapor phase growing apparatus
JPH0639358B2 (en) Metalorganic vapor phase growth equipment
JPH0710689A (en) Device for growth of semiconductor in gaseous phase
JP2009038294A (en) Output adjustment method, manufacturing method of silicon epitaxial wafer, and susceptor
JPH05275355A (en) Vapor growth device
JPH06349748A (en) Vapor growth device for semiconductor
CN116555904A (en) Base and device for epitaxial growth of silicon wafer
JPH02212393A (en) Vapor growth method and its device
JPH08250430A (en) Manufacture of single-crystal thin film
JPS6316617A (en) Vapor growth equipment
JPH06291066A (en) Semiconductor vapor growth device
WO2023199656A1 (en) Method for producing polysilicon wafer
JP3071591U (en) Vapor phase epitaxial growth equipment
JP2000031064A (en) Method and device for horizontal vapor phase epitaxial growth
CN115506013B (en) Epitaxial production process of SiC wafer
JP2000091237A (en) Manufacture of semiconductor wafer
JP2003257869A (en) Method for manufacturing silicon wafer and for silicon epitaxial wafer
JP3743945B2 (en) Vapor growth method
JPH09246190A (en) Multi-charge lateral gas phase growing method and its device
JPS63307192A (en) Production of compound crystal and apparatus therefor