JP2003257869A - Method for manufacturing silicon wafer and for silicon epitaxial wafer - Google Patents
Method for manufacturing silicon wafer and for silicon epitaxial waferInfo
- Publication number
- JP2003257869A JP2003257869A JP2002053991A JP2002053991A JP2003257869A JP 2003257869 A JP2003257869 A JP 2003257869A JP 2002053991 A JP2002053991 A JP 2002053991A JP 2002053991 A JP2002053991 A JP 2002053991A JP 2003257869 A JP2003257869 A JP 2003257869A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- vapor phase
- phase growth
- single crystal
- crystal substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、シリコンウェーハ
の製造方法およびシリコンエピタキシャルウェーハの製
造方法に関する。TECHNICAL FIELD The present invention relates to a method for manufacturing a silicon wafer and a method for manufacturing a silicon epitaxial wafer.
【0002】[0002]
【従来の技術】従来より、例えば、シリコン単結晶基板
(以下、単にシリコン基板ともいう。)の主表面上に原
料ガスを供給することによって、該主表面上にシリコン
エピタキシャル層(以下、単にエピタキシャル層ともい
う。)を気相成長させて、シリコンエピタキシャルウェ
ーハ(以下、単にエピタキシャルウェーハともいう。)
を製造するといったように、シリコン基板の主表面上に
シリコン薄膜を気相成長させてシリコンウェーハを製造
する方法が知られている。この気相成長の際には、例え
ば、シリコン基板をその主表面が上向きとなるよう略円
板状のサセプタ上に載置し、該サセプタを板面方向に回
転させるのに伴わせてシリコン基板も板面方向に回転さ
せながら、該シリコン基板の主表面上に原料ガスを供給
するようにしている。2. Description of the Related Art Conventionally, for example, by supplying a source gas onto the main surface of a silicon single crystal substrate (hereinafter, also simply referred to as a silicon substrate), a silicon epitaxial layer (hereinafter, simply referred to as an epitaxial layer) is formed on the main surface. (Also referred to as a layer) by vapor phase growth to obtain a silicon epitaxial wafer (hereinafter, also simply referred to as an epitaxial wafer).
There is known a method of manufacturing a silicon wafer by vapor-depositing a silicon thin film on the main surface of a silicon substrate, such as manufacturing a silicon wafer. In this vapor phase growth, for example, a silicon substrate is placed on a substantially disk-shaped susceptor with its main surface facing upward, and the silicon substrate is rotated as the susceptor is rotated in the plate surface direction. Also, the source gas is supplied onto the main surface of the silicon substrate while rotating in the plate surface direction.
【0003】[0003]
【発明が解決しようとする課題】ここで、気相成長によ
り得られるシリコンウェーハ(例えばエピタキシャルウ
ェーハ)のシリコン薄膜(例えばエピタキシャル層)の
膜厚は、供給される原料ガスの量と相関がある。このた
め、従来は、上記のように、気相成長の際にシリコン基
板を回転させるほか、シリコン基板の中央部と周縁部と
で供給する原料ガス流量に格差を設定したりすること
で、膜厚分布を調整するといった手段を講じる場合があ
る。しかしながら、このような手段を講じても、シリコ
ン薄膜の膜厚に、例えば円環状の分布を生じてしまうこ
とがある。The film thickness of the silicon thin film (eg, epitaxial layer) of the silicon wafer (eg, epitaxial wafer) obtained by vapor phase growth has a correlation with the amount of the source gas supplied. Therefore, conventionally, as described above, in addition to rotating the silicon substrate during the vapor phase growth, by setting the difference in the flow rate of the source gas supplied between the central portion and the peripheral portion of the silicon substrate, There are cases where measures such as adjusting the thickness distribution are taken. However, even if such measures are taken, the film thickness of the silicon thin film may have, for example, an annular distribution.
【0004】この発明は、上記のような問題点を解決す
るためになされたもので、シリコンウェーハ(例えばエ
ピタキシャルウェーハ)のシリコン薄膜(例えばエピタ
キシャル層)の膜厚分布をより均一化することを可能と
するシリコンウェーハの製造方法およびシリコンエピタ
キシャルウェーハの製造方法を提供することを目的とす
る。The present invention has been made in order to solve the above problems, and it is possible to make the film thickness distribution of a silicon thin film (for example, an epitaxial layer) of a silicon wafer (for example, an epitaxial wafer) more uniform. An object of the present invention is to provide a method for manufacturing a silicon wafer and a method for manufacturing a silicon epitaxial wafer.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するた
め、本発明のシリコンウェーハの製造方法は、略水平状
態に配されたシリコン単結晶基板を板面方向に回転させ
つつ、該シリコン単結晶基板の主表面に対して略平行に
原料ガスを供給することによって、該主表面上にシリコ
ン薄膜を気相成長させるシリコンウェーハの製造方法に
おいて、前記気相成長中に原料ガスの進路を変更するこ
とを特徴としている。つまり、気相成長中における原料
ガスの進路を、シリコン単結晶基板の板面に平行な面内
において変更することを特徴としている。In order to solve the above-mentioned problems, a method of manufacturing a silicon wafer according to the present invention is a method for manufacturing a silicon single crystal substrate while rotating a silicon single crystal substrate arranged in a substantially horizontal state in a plate surface direction. In a method for manufacturing a silicon wafer in which a silicon thin film is vapor-phase grown on a main surface of the substrate by supplying the raw material gas substantially parallel to the main surface of the substrate, the course of the raw material gas is changed during the vapor-phase growth. It is characterized by that. That is, it is characterized in that the course of the source gas during vapor phase growth is changed within a plane parallel to the plate surface of the silicon single crystal substrate.
【0006】より具体的には、本発明でシリコン単結晶
基板の主表面上に気相成長させるシリコン薄膜として
は、例えば、シリコンエピタキシャル層が挙げられ、従
って、この場合、気相成長により製造するシリコンウェ
ーハは、シリコンエピタキシャルウェーハとなる。即
ち、本発明は、略水平状態に配されたシリコン単結晶基
板を板面方向に回転させつつ該シリコン単結晶基板の主
表面に対して略平行に原料ガスを供給することによっ
て、該主表面上にシリコンエピタキシャル層を気相成長
させて、シリコンエピタキシャルウェーハを製造するシ
リコンエピタキシャルウェーハの製造方法において、前
記気相成長中に原料ガスの進路を変更することが好まし
い一例である。なお、本発明は、これに限らず、例え
ば、シリコン単結晶基板の主表面上に、多結晶薄膜、窒
化物、あるいは、酸化物のいずれかのシリコン薄膜を気
相成長させてシリコンウェーハを製造する場合に適用し
ても良い。More specifically, the silicon thin film vapor-deposited on the main surface of the silicon single crystal substrate according to the present invention includes, for example, a silicon epitaxial layer, and in this case, therefore, it is produced by vapor phase epitaxy. The silicon wafer becomes a silicon epitaxial wafer. That is, according to the present invention, a silicon single crystal substrate arranged in a substantially horizontal state is rotated in the plate surface direction, and a source gas is supplied substantially in parallel to the main surface of the silicon single crystal substrate, thereby In a method for manufacturing a silicon epitaxial wafer in which a silicon epitaxial layer is vapor-phase grown on the silicon wafer to manufacture a silicon epitaxial wafer, it is a preferable example to change the course of the source gas during the vapor phase growth. Note that the present invention is not limited to this, and for example, a silicon wafer is manufactured by vapor-depositing a silicon thin film of either a polycrystalline thin film, a nitride, or an oxide on the main surface of a silicon single crystal substrate. You may apply when you do.
【0007】また、原料ガスの進路の変更は、例えば、
シリコン単結晶基板の回転速度を変更することにより行
うことが好ましい。また、この場合、より具体的には、
気相成長を行う期間が、シリコン単結晶基板の回転速度
の互いに異なる複数の期間からなるように、該回転速度
を変更しても良いし、或いは、気相成長を行う期間中、
シリコン単結晶基板の回転速度を徐々に変更しても良
い。なお、原料ガスの進路の変更は、他にも、例えば、
原料ガスの導入路(例えば、ノズルにより構成する)の
向きを、シリコン単結晶基板の板面方向に平行な面内で
変更することにより行っても良い。また、原料ガスの進
路の変更は、他にも、例えば、サセプタを、シリコン単
結晶基板の板面方向に平行な面内において、原料ガス流
と交差する方向に移動させることにより行っても良い。
また、原料ガスの進路の変更は、他にも、例えば、キャ
リアガス流量を変更することにより行っても良い。すな
わち、キャリアガス流量が大きい場合には、該キャリア
ガスと原料ガスとを含む気相成長用ガスの流速が大きく
なり、従って、該気相成長用ガスの進路は、シリコン基
板の回転による影響を受けにくくなる。対して、キャリ
アガス流量が小さい場合には、気相成長用ガスの流速が
小さくなり、従って、該気相成長用ガスの進路は、シリ
コン基板の回転による影響を受けやすくなる(シリコン
基板の回転方向に引きずられやすくなる)。従って、キ
ャリアガス流量を増減するのに伴わせて、原料ガスの進
路を変更することができる。The change of the course of the raw material gas can be performed by, for example,
It is preferable to change the rotation speed of the silicon single crystal substrate. Also, in this case, more specifically,
The period of performing the vapor phase growth may be changed so that the period of time during which the rotational speed of the silicon single crystal substrate is different from each other may be changed, or during the period of performing the vapor phase growth,
The rotation speed of the silicon single crystal substrate may be gradually changed. In addition, the change of the course of the raw material gas can also be performed by, for example,
It may be performed by changing the direction of the introduction path of the source gas (for example, constituted by a nozzle) within a plane parallel to the plate surface direction of the silicon single crystal substrate. In addition, the course of the source gas may be changed by moving the susceptor in a direction intersecting the source gas flow in a plane parallel to the plate surface direction of the silicon single crystal substrate, for example. .
In addition, the course of the raw material gas may be changed by changing the carrier gas flow rate, for example. That is, when the carrier gas flow rate is large, the flow velocity of the vapor growth gas containing the carrier gas and the raw material gas is high, and therefore the course of the vapor growth gas is affected by the rotation of the silicon substrate. It becomes difficult to receive. On the other hand, when the carrier gas flow rate is small, the flow velocity of the vapor phase growth gas is low, and thus the course of the vapor phase growth gas is easily affected by the rotation of the silicon substrate (rotation of the silicon substrate). Easy to be dragged in the direction). Therefore, it is possible to change the course of the raw material gas as the carrier gas flow rate is increased or decreased.
【0008】本発明によれば、気相成長中に原料ガスの
進路を変更することにより、シリコン単結晶基板の主表
面上において、シリコン薄膜(例えばシリコンエピタキ
シャル層)の成長速度の大きい位置を変更させることが
できる。その結果、シリコン薄膜の膜厚分布をより均一
化できる。According to the present invention, by changing the course of the source gas during vapor phase growth, the position where the growth rate of the silicon thin film (eg, silicon epitaxial layer) is large on the main surface of the silicon single crystal substrate is changed. Can be made. As a result, the film thickness distribution of the silicon thin film can be made more uniform.
【0009】[0009]
【発明の実施の形態】以下、図面を参照して、本発明に
係る実施の形態について説明する。本実施の形態では、
本発明に係るシリコンエピタキシャルウェーハの製造方
法を実施するための気相成長装置として、いわゆる枚葉
式の気相成長装置を適用する例について説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In this embodiment,
An example of applying a so-called single wafer type vapor phase growth apparatus as a vapor phase growth apparatus for carrying out the method for manufacturing a silicon epitaxial wafer according to the present invention will be described.
【0010】先ず、図1を参照して、枚葉式の気相成長
装置1について説明する。図1に示すように、気相成長
装置1は、気相成長の際にシリコン単結晶基板2(以
下、単にシリコン基板2ともいう。)が内部に配される
反応容器3と、この反応容器3内に略水平状態に配され
上面にシリコン基板2が載置される略円盤状のサセプタ
4と、該反応容器3内に原料ガス(例えばトリクロロシ
ラン等)およびキャリアガス(例えば水素ガス)を含む
気相成長用ガスを導入するための導入路5と、該反応容
器3よりガスを排気するための排気路6とを備えてい
る。他に、気相成長装置1は、反応容器3内のサセプタ
4上のシリコン基板2を所望の温度に加熱するための加
熱装置(図示略)と、気相成長の際にサセプタ4をその
板面方向に回転させるのに伴わせて、シリコン基板2も
その板面方向に回転させるための駆動装置7を備えてい
る。この駆動装置7は、サセプタ4の回転速度を(従っ
て、シリコン基板2の回転速度も)変更可能に構成され
ている。First, a single wafer type vapor phase growth apparatus 1 will be described with reference to FIG. As shown in FIG. 1, a vapor phase growth apparatus 1 includes a reaction vessel 3 in which a silicon single crystal substrate 2 (hereinafter, also simply referred to as a silicon substrate 2) is disposed during vapor phase growth, and a reaction vessel 3 3, a substantially disk-shaped susceptor 4 on which the silicon substrate 2 is placed in a substantially horizontal state, and a raw material gas (eg, trichlorosilane) and a carrier gas (eg, hydrogen gas) are placed in the reaction vessel 3. An introduction path 5 for introducing the vapor phase growth gas containing the gas and an exhaust path 6 for exhausting the gas from the reaction container 3 are provided. In addition, the vapor phase growth apparatus 1 includes a heating device (not shown) for heating the silicon substrate 2 on the susceptor 4 in the reaction container 3 to a desired temperature, and a susceptor 4 for the plate during the vapor phase growth. The silicon substrate 2 is also provided with a drive device 7 for rotating in the plate surface direction as the silicon substrate 2 is rotated in the surface direction. The drive device 7 is configured to be able to change the rotation speed of the susceptor 4 (and thus the rotation speed of the silicon substrate 2).
【0011】本実施の形態では、上記のような構成の気
相成長装置1を用いて、以下に説明するようにして気相
成長を行う。In the present embodiment, the vapor phase growth apparatus 1 having the above-mentioned structure is used to perform vapor phase growth as described below.
【0012】先ず、反応容器3内のサセプタ4上に、シ
リコン基板2をその主表面が上向きとなるように載置す
る。すなわち、シリコン基板2を略水平状態に配置す
る。次に、該シリコン基板2を加熱装置により供給律速
領域の所望の温度(例えば1100℃)に加熱するとと
もにその板面方向に回転させつつ、導入路5を介して気
相成長用ガスをシリコン基板2の主表面に対して略平行
に供給することにより、該主表面上へのシリコンエピタ
キシャル層(以下、単にエピタキシャル層ともいう。)
の気相成長を行う。そして、本実施形態では、この気相
成長を行う期間の、例えば前半では低速(例えば10回
転/分)で、後半では高速(例えば35回転/分)で、
それぞれシリコン基板2を回転させる(図2(b))。
なお、この気相成長を行う期間全体の長さは、気相成長
させる必要のあるエピタキシャル層の膜厚に基づき予め
求めることができるので、この求めた期間の前半分を低
速で回転させる期間とし、残りの半分を高速で回転させ
る期間とすれば良い。First, the silicon substrate 2 is placed on the susceptor 4 in the reaction vessel 3 with its main surface facing upward. That is, the silicon substrate 2 is arranged in a substantially horizontal state. Next, while heating the silicon substrate 2 to a desired temperature (for example, 1100 ° C.) in the supply rate-controlling region by a heating device and rotating the silicon substrate 2 in the plate surface direction, the gas for vapor phase growth is supplied to the silicon substrate 2 through the introduction path 5. The silicon epitaxial layer (hereinafter, also simply referred to as an epitaxial layer) on the main surface by supplying the silicon epitaxial layer substantially parallel to the main surface.
Vapor growth. In the present embodiment, during the vapor phase growth period, for example, at the low speed (for example, 10 rotations / minute) in the first half, and at the high speed (for example, 35 rotations / minute) in the second half,
The silicon substrate 2 is rotated (FIG. 2 (b)).
Since the entire length of the vapor phase growth period can be obtained in advance based on the film thickness of the epitaxial layer that needs to be vapor phase grown, the first half of the obtained period is set as the low speed rotation period. The period for rotating the other half at high speed may be set.
【0013】ここで、図5を参照して、導入路5より矢
印A方向に従って反応容器3内に導入され、サセプタ4
上のシリコン基板2の主表面上に供給される気相成長用
ガス(原料ガスを含む)の流れについて説明する。図5
に示すように、シリコン基板2(およびサセプタ4)の
回転速度が低速(例えば10回転/分)の場合には、シ
リコン基板2の主表面上における気相成長用ガス流の進
路は、シリコン基板2(およびサセプタ4)の回転によ
る影響を殆ど受けない。このため、気相成長用ガス流
は、シリコン基板2の主表面上においても、矢印A方向
とほぼ同方向の矢印C方向に沿う進路となる。これに対
し、シリコン基板2(およびサセプタ4)の回転速度が
高速(例えば35回転/分)の場合には、シリコン基板
2の主表面上における気相成長用ガス流の進路は、シリ
コン基板2(およびサセプタ4)の回転による影響を大
きく受ける。具体的には、例えば、シリコン基板2(お
よびサセプタ4)の回転方向が、平面視において時計回
り(図5の矢印B方向)であるとすれば、回転速度を上
記高速とした場合の気相成長用ガス流の進路は、図5の
矢印Dに示すように、矢印Cと比べて変化する。これ
は、シリコン基板2の主表面上において、回転するシリ
コン基板2およびサセプタ4に引きずられて、気相成長
用ガス流の進路が変化するためである(具体的には、例
えば上流側部分(図5のE部分)では、矢印Cから離れ
るように進路が変化し、下流側部分(図5のF部分)で
は、矢印Cに近づくように進路が変更する等)。Referring to FIG. 5, the susceptor 4 is introduced into the reaction vessel 3 through the introduction path 5 in the direction of arrow A.
The flow of the vapor phase growth gas (including the source gas) supplied onto the main surface of the upper silicon substrate 2 will be described. Figure 5
As shown in, when the rotation speed of the silicon substrate 2 (and the susceptor 4) is low (for example, 10 rotations / minute), the course of the gas flow for vapor phase growth on the main surface of the silicon substrate 2 is 2 (and susceptor 4) is hardly affected by the rotation. Therefore, the gas flow for vapor phase growth has a path along the arrow C direction which is substantially the same as the arrow A direction on the main surface of the silicon substrate 2. On the other hand, when the rotation speed of the silicon substrate 2 (and the susceptor 4) is high (for example, 35 rotations / minute), the course of the gas flow for vapor phase growth on the main surface of the silicon substrate 2 is (And susceptor 4) is greatly affected by rotation. Specifically, for example, if the rotation direction of the silicon substrate 2 (and the susceptor 4) is clockwise (in the direction of arrow B in FIG. 5) in a plan view, the gas phase when the rotation speed is the above-mentioned high speed The course of the growth gas flow changes as shown by arrow D in FIG. This is because on the main surface of the silicon substrate 2, the course of the vapor phase growth gas flow is changed by being dragged by the rotating silicon substrate 2 and the susceptor 4 (specifically, for example, the upstream portion ( In the portion (E in FIG. 5), the course changes so as to move away from the arrow C, and in the downstream side (the portion F in FIG. 5), the course changes so as to approach the arrow C).
【0014】また、例えば図3(b)或いは図4(b)
に示すように、気相成長を行う期間の全てで、シリコン
基板2の回転速度を一定に設定して、エピタキシャルウ
ェーハを製造した場合は、図3(a)或いは図4(a)
に示すように、エピタキシャル層の膜厚に、円環状の分
布が生じる。具体的には、シリコン基板2の回転速度
を、例えば10回転/分(低速)に設定した場合には、
エピタキシャル層の膜厚は、図3(a)に示すように、
中央部と周縁部で大きく、中央部と周縁部との間で小さ
くなる。他方、シリコン基板2の回転速度を、例えば3
5回転/分(高速)に設定した場合には、エピタキシャ
ル層の膜厚は、図4(a)に示すように、中央部で小さ
く、その両側部分で大きく、さらにその両側部分で小さ
く、周縁部で再び大きくなる。ここで、気相成長を行う
期間の全てでシリコン基板2の回転速度が一定の場合に
は、いずれの場合にも、エピタキシャル層の膜厚の均一
性が良くないという点では同じであるが、エピタキシャ
ルウェーハの直径方向の位置による膜厚の大きさが、シ
リコン基板2の回転速度に応じて異なることが分かる
(例えば、シリコン基板2の回転速度が上記低速の場合
には、膜厚が中央部で大きいのに対し、上記高速の場合
には、中央部で小さい等。)。Further, for example, FIG. 3 (b) or FIG. 4 (b)
As shown in FIG. 3, when the epitaxial wafer is manufactured by setting the rotation speed of the silicon substrate 2 to be constant during the entire period of the vapor phase growth, FIG. 3A or FIG.
As shown in FIG. 5, an annular distribution is generated in the film thickness of the epitaxial layer. Specifically, when the rotation speed of the silicon substrate 2 is set to, for example, 10 rotations / minute (low speed),
The thickness of the epitaxial layer is, as shown in FIG.
It is large at the central portion and the peripheral portion, and becomes small between the central portion and the peripheral portion. On the other hand, the rotation speed of the silicon substrate 2 is, for example, 3
When the rotation speed is set to 5 revolutions / minute (high speed), the film thickness of the epitaxial layer is small in the central part, large in both side parts and small in both side parts, as shown in FIG. Will grow again in the department. Here, when the rotation speed of the silicon substrate 2 is constant during the entire period of vapor phase growth, the same is true in all cases in that the uniformity of the film thickness of the epitaxial layer is not good. It can be seen that the size of the film thickness depending on the position in the diameter direction of the epitaxial wafer varies depending on the rotation speed of the silicon substrate 2 (for example, when the rotation speed of the silicon substrate 2 is the above low speed, the film thickness is in the central portion). In the case of the above high speed, it is small in the central part, etc.).
【0015】これに対し、本実施の形態のように、気相
成長を行う期間の前半では低速(例えば10回転/分)
で、後半では高速(例えば35回転/分)で、それぞれ
シリコン基板2を回転させると、例えば図2(a)に示
すように、図3(a)と図4(a)の膜厚を合成したよ
うな膜厚分布となり、図3(a)、図4(a)のいずれ
の場合と比べてもエピタキシャル層の膜厚分布が均一化
される。これは、シリコン基板2の回転速度の変更に伴
わせて原料ガス(気相成長用ガス)の進路を変更させる
ことができる結果、シリコン基板2の主表面上におい
て、エピタキシャル層の成長速度の大きい位置を変更さ
せることができるためである。従って、本実施の形態の
ように気相成長中にシリコン基板2の回転速度を変更す
ることにより、気相成長を行う期間の全体では、シリコ
ン基板2の主表面上におけるエピタキシャル層の成長量
を、該主表面全体で均一に近づけることができる。その
結果、エピタキシャルウェーハにおけるエピタキシャル
層の膜厚分布を均一化できる。On the other hand, as in the present embodiment, the speed is low (for example, 10 revolutions / minute) in the first half of the period of vapor phase growth.
Then, in the latter half, when the silicon substrate 2 is rotated at high speed (for example, 35 rpm), the film thicknesses of FIG. 3A and FIG. 4A are combined as shown in FIG. 2A, for example. The film thickness distribution is as described above, and the film thickness distribution of the epitaxial layer is made uniform as compared with the case of either FIG. 3A or FIG. This is because the course of the source gas (gas for vapor phase growth) can be changed in accordance with the change of the rotation speed of the silicon substrate 2, and as a result, the growth rate of the epitaxial layer is high on the main surface of the silicon substrate 2. This is because the position can be changed. Therefore, by changing the rotation speed of the silicon substrate 2 during the vapor phase growth as in the present embodiment, the growth amount of the epitaxial layer on the main surface of the silicon substrate 2 is changed over the entire period of the vapor phase growth. , And can be made to approach uniformly over the entire main surface. As a result, the film thickness distribution of the epitaxial layer in the epitaxial wafer can be made uniform.
【0016】なお、上記の実施の形態では、気相成長を
行う期間が、シリコン基板の回転速度が低速と高速との
2つの期間からなる例について説明したが、シリコン基
板の回転速度が互いに異なる3つ以上の期間からなるこ
ととしても良く、この場合、一層、エピタキシャル層の
膜厚の均一化が図れる。さらに、上記のように、気相成
長を行う期間が、シリコン基板の回転速度が互いに異な
る複数の期間からなる例に限らず、気相成長を行う期間
中、シリコン基板の回転速度を徐々に変更するようにし
ても良く、このようにすれば、より一層エピタキシャル
層の膜厚の均一化が図れる。なお、この場合、シリコン
基板の回転速度を低速から高速へと(或いは、高速から
低速へと)徐々に変更しても良いし、低速から高速へと
徐々に変更した後、再び低速へと徐々に変更しても良い
(或いは、高速から低速へと徐々に変更した後、再び高
速へと徐々に変更しても良い。)。要するに、気相成長
装置に起因する要因等を考慮して、膜厚がより均一にな
るように、シリコン基板の回転速度の変更態様を適宜設
定すればよい。In the above embodiment, the example in which the period for vapor phase growth is two periods, that is, the rotation speed of the silicon substrate is low and the rotation speed of the silicon substrate is high, but the rotation speeds of the silicon substrate are different from each other. The period may be three or more, and in this case, the film thickness of the epitaxial layer can be made more uniform. Further, as described above, the period for performing the vapor phase growth is not limited to the example in which the rotational speeds of the silicon substrate are different from each other, and the rotational speed of the silicon substrate is gradually changed during the period for performing the vapor phase growth. Alternatively, the film thickness of the epitaxial layer can be made more uniform. In this case, the rotation speed of the silicon substrate may be gradually changed from low speed to high speed (or from high speed to low speed), or after gradually changing from low speed to high speed, it is gradually changed to low speed again. (Or, the speed may be gradually changed from high speed to low speed and then to high speed again). In short, the mode of changing the rotation speed of the silicon substrate may be set appropriately so that the film thickness becomes more uniform in consideration of factors and the like caused by the vapor phase growth apparatus.
【0017】また、上記においては、シリコン基板の回
転速度を変更することにより原料ガスの進路の変更を行
う例について説明したが、これに限らず、原料ガスの導
入路5(例えば、ノズルにより構成する)の向きを、シ
リコン基板の板面方向に平行な面内で変更することによ
り原料ガスの進路を変更しても良い。この場合、具体的
には、例えば、モータ駆動を、シリコン基板の板面方向
に平行な面内での導入路5の揺動に変換する駆動伝達部
材(ギア等により構成される)を介して、導入路5に伝
達するようにすることが挙げられる。あるいは、サセプ
タを、シリコン基板の板面方向に平行な面内において、
原料ガス流と交差(例えば、略直交)する方向に移動さ
せることにより行っても良い。この場合も、例えばモー
タ駆動を、駆動伝達部材により変換および駆動伝達すれ
ばよい。In the above description, the example in which the course of the raw material gas is changed by changing the rotation speed of the silicon substrate has been described, but the present invention is not limited to this, and the introduction path 5 of the raw material gas (for example, a nozzle is configured. It is also possible to change the direction of the source gas by changing the direction of (1) in a plane parallel to the plate surface direction of the silicon substrate. In this case, specifically, for example, via a drive transmission member (composed of a gear or the like) that converts the motor drive into the swing of the introduction path 5 in a plane parallel to the plate surface direction of the silicon substrate. It can be mentioned that the signal is transmitted to the introduction path 5. Alternatively, the susceptor in a plane parallel to the plate surface direction of the silicon substrate,
It may be performed by moving in a direction intersecting (for example, substantially orthogonal to) the raw material gas flow. Also in this case, for example, the motor drive may be converted and drive-transmitted by the drive transmission member.
【0018】また、上記においては、枚葉式の気相成長
装置を用いて気相成長を行う場合に、本発明を適用する
例について説明したが、これに限らない。例えばパンケ
ーキ型の気相成長装置のように、略円盤状のサセプタ上
面において互いに異なる位置にそれぞれシリコン基板を
略水平状態に載置し、該サセプタをその板面方向に回転
させるのに伴わせてシリコン基板もその板面方向に回転
させつつ、これらシリコン基板の主表面に対して略平行
に原料ガスを供給することによって、これら多数枚のシ
リコン基板に対し一度に気相成長を行って、一度に多数
枚のエピタキシャルウェーハを製造する多数枚式の気相
成長装置に適用しても良い。この場合、上記の場合と同
様の効果に加えて、一度に気相成長を行うシリコン基板
どうしでの、供給される原料ガス量の格差を低減できる
ので、一度に製造されるエピタキシャルウェーハどうし
でエピタキシャル層の膜厚を均一化できる。In the above description, an example in which the present invention is applied to the case of performing vapor phase growth using a single wafer type vapor phase growth apparatus has been described, but the present invention is not limited to this. For example, like a pancake type vapor phase growth apparatus, the silicon substrates are placed in substantially horizontal states at different positions on the upper surface of the substantially disk-shaped susceptor, and the susceptor is rotated in the plate surface direction. While also rotating the silicon substrate in the plate surface direction, by supplying the raw material gas substantially parallel to the main surface of these silicon substrates, vapor phase growth is performed on these many silicon substrates at once, It may be applied to a multi-plate type vapor phase growth apparatus for manufacturing a large number of epitaxial wafers at a time. In this case, in addition to the same effects as in the above case, it is possible to reduce the difference in the amount of source gas supplied between silicon substrates that undergo vapor phase growth at once, so that epitaxial wafers that are manufactured at The layer thickness can be made uniform.
【0019】また、上記においては、シリコン単結晶基
板の主表面上にエピタキシャル層を気相成長させてエピ
タキシャルウェーハを製造する場合に本発明を適用する
例について説明したが、これに限らず、シリコン単結晶
基板の主表面上に、シリコン多結晶薄膜(多結晶薄
膜)、窒化珪素(窒化物)、あるいは、酸化珪素(酸化
物)のいずれかのシリコン薄膜を気相成長させてシリコ
ンウェーハを製造する場合に適用しても良い。In the above description, an example in which the present invention is applied when an epitaxial wafer is manufactured by vapor phase growing an epitaxial layer on the main surface of a silicon single crystal substrate has been described, but the present invention is not limited to this. A silicon wafer is manufactured by vapor-depositing a silicon thin film (polycrystalline thin film), silicon nitride (nitride), or silicon oxide (oxide) on the main surface of a single crystal substrate by vapor phase growth. You may apply when you do.
【0020】[0020]
【発明の効果】本発明のシリコンウェーハの製造方法お
よびシリコンエピタキシャルウェーハの製造方法によれ
ば、気相成長中に原料ガスの進路を変更することによ
り、シリコン単結晶基板の主表面上において、シリコン
薄膜(例えばシリコンエピタキシャル層)の成長速度の
大きい位置を変更させることができる。従って、気相成
長を行う期間の全体では、シリコン単結晶基板の主表面
上におけるシリコン薄膜の成長量を、該主表面全体で均
一に近づけることができる。その結果、シリコン薄膜の
膜厚分布をより均一化できる。According to the method for producing a silicon wafer and the method for producing a silicon epitaxial wafer of the present invention, by changing the course of the raw material gas during vapor phase growth, silicon can be formed on the main surface of the silicon single crystal substrate. The position where the growth rate of the thin film (eg, silicon epitaxial layer) is large can be changed. Therefore, during the entire period of vapor phase growth, the growth amount of the silicon thin film on the main surface of the silicon single crystal substrate can be made uniform close to the entire main surface. As a result, the film thickness distribution of the silicon thin film can be made more uniform.
【図1】本発明に係る実施の形態に用いられる気相成長
装置の好適な一例を示す模式的な正面断面図である。FIG. 1 is a schematic front sectional view showing a preferred example of a vapor phase growth apparatus used in an embodiment according to the present invention.
【図2】(a)は気相成長中にシリコン単結晶基板の回
転速度を変更する場合の膜厚分布の一例を示す図であ
り、(b)はこの場合の回転速度の変更態様を示す図で
ある。FIG. 2A is a diagram showing an example of a film thickness distribution when the rotation speed of a silicon single crystal substrate is changed during vapor phase growth, and FIG. 2B is a view showing a mode of changing the rotation speed in this case. It is a figure.
【図3】(a)は気相成長中のシリコン単結晶基板の回
転速度が一定の場合の膜厚分布の一例を示す図であり、
(b)はこの場合の回転速度を示す図である。FIG. 3A is a diagram showing an example of a film thickness distribution when the rotation speed of a silicon single crystal substrate during vapor phase growth is constant,
(B) is a diagram showing a rotation speed in this case.
【図4】気相成長中のシリコン単結晶基板の回転速度が
一定の場合の膜厚分布の他の一例を示す図であり、
(b)はこの場合の回転速度を示す図である。FIG. 4 is a diagram showing another example of the film thickness distribution when the rotation speed of the silicon single crystal substrate during vapor phase growth is constant,
(B) is a diagram showing a rotation speed in this case.
【図5】シリコン単結晶基板の回転速度に応じた原料ガ
ス流の変化態様を説明するための模式的な平面図であ
る。FIG. 5 is a schematic plan view for explaining how the source gas flow changes in accordance with the rotation speed of the silicon single crystal substrate.
2 シリコン単結晶基板 2 Silicon single crystal substrate
Claims (5)
板を板面方向に回転させつつ、該シリコン単結晶基板の
主表面に対して略平行に原料ガスを供給することによっ
て、該主表面上にシリコン薄膜を気相成長させるシリコ
ンウェーハの製造方法において、前記気相成長中に原料
ガスの進路を変更することを特徴とするシリコンウェー
ハの製造方法。1. A main surface of a silicon single crystal substrate arranged in a substantially horizontal state is rotated substantially in parallel with the main surface of the silicon single crystal substrate while rotating in the plate surface direction. A method of manufacturing a silicon wafer in which a silicon thin film is vapor-deposited thereon, characterized in that the course of the source gas is changed during the vapor phase growth.
単結晶基板の回転速度を変更することにより行うことを
特徴とする請求項1に記載のシリコンウェーハの製造方
法。2. The method for manufacturing a silicon wafer according to claim 1, wherein the course of the source gas is changed by changing the rotation speed of the silicon single crystal substrate.
結晶基板の回転速度が互いに異なる複数の期間からなる
ことを特徴とする請求項2に記載のシリコンウェーハの
製造方法。3. The method of manufacturing a silicon wafer according to claim 2, wherein the period for performing the vapor phase growth includes a plurality of periods in which the rotation speeds of the silicon single crystal substrate are different from each other.
結晶基板の回転速度を徐々に変更することを特徴とする
請求項2に記載のシリコンウェーハの製造方法。4. The method of manufacturing a silicon wafer according to claim 2, wherein the rotation speed of the silicon single crystal substrate is gradually changed during the vapor phase growth.
板を板面方向に回転させつつ該シリコン単結晶基板の主
表面に対して略平行に原料ガスを供給することによっ
て、該主表面上にシリコンエピタキシャル層を気相成長
させて、シリコンエピタキシャルウェーハを製造するシ
リコンエピタキシャルウェーハの製造方法において、前
記気相成長中に原料ガスの進路を変更することを特徴と
するシリコンエピタキシャルウェーハの製造方法。5. A silicon single crystal substrate arranged in a substantially horizontal state is rotated in the plate surface direction, and a source gas is supplied substantially parallel to the main surface of the silicon single crystal substrate, whereby A method of manufacturing a silicon epitaxial wafer, comprising: vapor-depositing a silicon epitaxial layer on a substrate to manufacture a silicon epitaxial wafer, wherein the course of the source gas is changed during the vapor phase growth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002053991A JP3731550B2 (en) | 2002-02-28 | 2002-02-28 | Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002053991A JP3731550B2 (en) | 2002-02-28 | 2002-02-28 | Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003257869A true JP2003257869A (en) | 2003-09-12 |
JP3731550B2 JP3731550B2 (en) | 2006-01-05 |
Family
ID=28665266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002053991A Expired - Fee Related JP3731550B2 (en) | 2002-02-28 | 2002-02-28 | Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3731550B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012054310A (en) * | 2010-08-31 | 2012-03-15 | Shin Etsu Handotai Co Ltd | Manufacturing method of epitaxial wafer, and epitaxial growth apparatus |
CN103337506A (en) * | 2013-06-17 | 2013-10-02 | 中国电子科技集团公司第四十六研究所 | Preparation technology of silicon epitaxial wafer for CCD device |
KR20180123444A (en) * | 2017-05-08 | 2018-11-16 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
-
2002
- 2002-02-28 JP JP2002053991A patent/JP3731550B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012054310A (en) * | 2010-08-31 | 2012-03-15 | Shin Etsu Handotai Co Ltd | Manufacturing method of epitaxial wafer, and epitaxial growth apparatus |
CN103337506A (en) * | 2013-06-17 | 2013-10-02 | 中国电子科技集团公司第四十六研究所 | Preparation technology of silicon epitaxial wafer for CCD device |
KR20180123444A (en) * | 2017-05-08 | 2018-11-16 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
KR102648942B1 (en) | 2017-05-08 | 2024-03-18 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
Also Published As
Publication number | Publication date |
---|---|
JP3731550B2 (en) | 2006-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI335945B (en) | Vapor-phase epitaxial growth method and vapor-phase epitaxy apparatus | |
JPH051380A (en) | Silicon carbide film forming method | |
JP2007210875A (en) | Vapor phase deposition apparatus and vapor phase deposition method | |
JP2003257869A (en) | Method for manufacturing silicon wafer and for silicon epitaxial wafer | |
JPS6090894A (en) | Vapor phase growing apparatus | |
JP5306432B2 (en) | Vapor growth method | |
JPH05275355A (en) | Vapor growth device | |
JPS62263629A (en) | Vapor growth device | |
JP4443689B2 (en) | Film forming method and film forming apparatus | |
JPH01253229A (en) | Vapor growth device | |
JPH08250430A (en) | Manufacture of single-crystal thin film | |
JPS6316617A (en) | Vapor growth equipment | |
JP2001168034A (en) | Compound semiconductor crystal growing device and method of forming compound semiconductor layer | |
JPH06349748A (en) | Vapor growth device for semiconductor | |
WO2023199656A1 (en) | Method for producing polysilicon wafer | |
JP2013016562A (en) | Vapor-phase growth method | |
JPH02212393A (en) | Vapor growth method and its device | |
JP3184550B2 (en) | Vapor phase growth method and apparatus | |
JP4613325B2 (en) | Nitride single crystal manufacturing method and manufacturing apparatus | |
JP2000091237A (en) | Manufacture of semiconductor wafer | |
JP2022159954A (en) | Susceptor | |
JP3112796B2 (en) | Chemical vapor deposition method | |
JPH0710689A (en) | Device for growth of semiconductor in gaseous phase | |
JPH0385724A (en) | Method and device for semiconductor vapor growth | |
JPH06291066A (en) | Semiconductor vapor growth device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040729 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051003 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3731550 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081021 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081021 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091021 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101021 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111021 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121021 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131021 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |