Nothing Special   »   [go: up one dir, main page]

JPH06347996A - Dry etching method for photomask - Google Patents

Dry etching method for photomask

Info

Publication number
JPH06347996A
JPH06347996A JP13219593A JP13219593A JPH06347996A JP H06347996 A JPH06347996 A JP H06347996A JP 13219593 A JP13219593 A JP 13219593A JP 13219593 A JP13219593 A JP 13219593A JP H06347996 A JPH06347996 A JP H06347996A
Authority
JP
Japan
Prior art keywords
etching
photomask
magnetic field
dry etching
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13219593A
Other languages
Japanese (ja)
Other versions
JP3355444B2 (en
Inventor
Nobuyuki Yoshioka
信行 吉岡
Satoru Aoyama
哲 青山
Yaichiro Watakabe
弥一郎 渡壁
Akihiko Toku
昭彦 悳
Yasuo Tokoro
康生 所
Atsushi Hayashi
厚 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Seimaku KK
Mitsubishi Electric Corp
Original Assignee
Ulvac Seimaku KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Seimaku KK, Mitsubishi Electric Corp filed Critical Ulvac Seimaku KK
Priority to JP13219593A priority Critical patent/JP3355444B2/en
Publication of JPH06347996A publication Critical patent/JPH06347996A/en
Application granted granted Critical
Publication of JP3355444B2 publication Critical patent/JP3355444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To provide the etching method which makes it possible to obtain a photomask having high accuracy by using a dry etching device having rotating magnetic fields. CONSTITUTION:A photomask substrate 11 is mounted on an RF electrode 10 surface in an etching chamber 2 of the dry etching device 1 having the rotating magnetic fields by electromagnets 5 to 8 and a pattern material is etched by reactive ion etching under the conditions of 50 to 150 gauss magnetic field intensity of the electromagnets, 0.03 to 0.3Torr reactive gaseous pressure in the etching chamber and 0.20 to 0.32W/cm<2> RF electric power density of the electrodes. The controllability of plasma is good and selection ratios are improved. The pattern material of the photomask is subjected to the etching with small CD loss, good intra-surface uniformity and high accuracy by setting magnetic field intensity, reactive gaseous pressure and RF electric power density to the values described above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子等の製造に
使用されるフォトマスクの製造プロセスに適用されるド
ライエッチング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dry etching method applied to a photomask manufacturing process used for manufacturing semiconductor devices and the like.

【0002】[0002]

【従来の技術】従来よりIC基板のドライエッチングに於
いて、エッチング室内に電磁コイルによる回転磁界を形
成し、そこでパターン材料で覆ったIC基板をエッチング
することは行なわれている。これに使用されるIC基板は
Siウエハで、これにパターン材料としてポリSi、酸化物
層+ポリSiが層状に形成されている(Kevin G. Donoho
e:“Precision 5000 EtchによるSiトレンチエッチン
グ”Semiconductor World 7(8)pp.97〜103(1988))。
フォトマスクの場合は、基板が石英基板でパターン材料
がCr膜、反射防止膜付Cr膜、或いはSOG(スピンコーテ
ィングによるゾルゲルSiO2)などのSiO2膜であり、この
場合の回転磁界を有するドライエッチング装置によるエ
ッチング方法は提案されていない。一般にパターン材料
が異なると、エッチング条件にも違いが生じるのは言う
までもないが、エッチングに対する要求や性能目標の違
いによる最適なエッチング条件の違いは大きく、従来の
パターン材料とIC基板に関するエッチング方法から種類
の異なるパターン材料とフォトマスク基板を使用しての
フォトマスク用のエッチング方法を推定することは不可
能であった。
2. Description of the Related Art Conventionally, in dry etching of an IC substrate, a rotating magnetic field is formed by an electromagnetic coil in an etching chamber, and the IC substrate covered with a pattern material is etched therein. The IC board used for this is
A Si wafer, on which poly-Si and an oxide layer + poly-Si are formed in layers as pattern material (Kevin G. Donoho
e: “Si trench etching by Precision 5000 Etch”, Semiconductor World 7 (8) pp.97-103 (1988)).
In the case of a photomask, the substrate is a quartz substrate and the pattern material is a Cr film, a Cr film with an antireflection film, or an SiO 2 film such as SOG (sol-gel SiO 2 by spin coating). No etching method using an etching apparatus has been proposed. It goes without saying that different pattern materials generally have different etching conditions, but there are large differences in the optimal etching conditions due to differences in etching requirements and performance goals. It was impossible to estimate the etching method for photomasks using different pattern materials and photomask substrates.

【0003】電磁コイルによる回転磁界を有するドライ
エッチング装置を用いてエッチングを行なうと、磁場に
よるマグネトロン放電により低圧でもプラズマのイオン
化と解離効率が高まり、磁界強度を増大させることによ
り基板にかかるDCバイアスが低下し、比較的高いRFパワ
ーでもDCバイアスを下げることが可能で、高いエッチン
グ速度でしかも低ダメージのエッチングが可能であるこ
とが知られている。また、磁界を回転させることにより
基板全体にわたって均一なエッチングが期待できる。
When etching is performed using a dry etching apparatus having a rotating magnetic field by an electromagnetic coil, the ionization and dissociation efficiency of plasma is enhanced even at low pressure due to the magnetron discharge by the magnetic field, and the DC bias applied to the substrate is increased by increasing the magnetic field strength. It is known that the DC bias can be lowered even with a relatively high RF power, and etching with high etching rate and low damage can be performed. Further, by rotating the magnetic field, uniform etching can be expected over the entire substrate.

【0004】[0004]

【発明が解決しようとする課題】エッチングされるべき
構造体は、従来はSiウエハの基板上にポリSi層、酸化物
層+ポリSi層等のパターン材料が形成されたものであ
り、エッチングに対する要求や性能目標は、例えばシリ
コントレンチエッチングの場合、開口幅≧0.5μm、
開口深さ≧10μm、選択比(Si対熱酸化膜)≧20:
1、均一性はウエハ内が≦±3%、CDロス(クリティカ
ルデメンションロス)<0.1μm、形状制御で側壁角
度85〜90°等であるが、フォトマスク用のエッチン
グでは、エッチングされる構造体が石英基板の上にCr
膜、Cr酸化物系反射防止膜付Cr膜、或いはSOGなどのSiO
2膜で、例えばパターンは線状パターンで線幅が2〜4
μm、面内均一性が120mm×120mm角内で線幅の3
σ≦0.06μm、CDロスが0.08μm、エッチング
深さが0.1〜0.4μm、選択比(CrあるいはSiO2
レジスト)が1.4〜3以上であり、著しくSiウエハの
従来例とエッチング内容を異にしている。従って、フォ
トマスク独自のドライエッチング条件の最適化を計る必
要があり、従来例のエッチング条件からの類推により、
所期のドライエッチング条件を見出すことは困難であ
る。
The structure to be etched is conventionally one in which a pattern material such as a poly-Si layer, an oxide layer + a poly-Si layer is formed on a substrate of a Si wafer, and The requirements and performance targets are, for example, in the case of silicon trench etching, opening width ≧ 0.5 μm,
Opening depth ≧ 10 μm, selection ratio (Si vs. thermal oxide film) ≧ 20:
1. The uniformity is ≦ ± 3% in the wafer, CD loss (critical dimension loss) <0.1 μm, sidewall angle is 85 to 90 ° by shape control, but it is etched by photomask etching. The structure is Cr on the quartz substrate
Film, Cr film with Cr oxide antireflection film, or SiO such as SOG
Two films, for example, the pattern is a linear pattern and the line width is 2 to 4
μm, in-plane uniformity is 120 mm x 120 mm, and the line width is 3
σ ≦ 0.06μm, CD loss 0.08μm, etching depth 0.1-0.4μm, selection ratio (Cr or SiO 2 to resist) 1.4-3 or more, which is remarkable for Si wafers. The etching content is different from the example. Therefore, it is necessary to optimize the dry etching conditions unique to the photomask, and by analogy with the etching conditions of the conventional example,
It is difficult to find the desired dry etching conditions.

【0005】本発明は、電磁コイルによる回転磁界を有
するドライエッチング装置を用いて、高精度のフォトマ
スクを得ることの可能なフォトマスクのエッチング方法
を提供することを目的とするものである。
It is an object of the present invention to provide a photomask etching method capable of obtaining a highly accurate photomask by using a dry etching apparatus having a rotating magnetic field by an electromagnetic coil.

【0006】[0006]

【課題を解決するための手段】本発明では、反応ガス導
入口と真空排気口及び2対の電磁石による回転磁界を有
するドライエッチング装置のエッチング室内のRF電極面
に、Cr、反射防止膜付Cr、SiO2等のパターン材料で覆わ
れ且つその上にパターンを形成したフォトレジストを設
けたフォトマスク基板を取付け、該電磁石の磁場強度を
50〜150ガウス、該エッチング室内の反応ガス圧力
を0.03〜0.3Torr(4〜40Pa)、該電極のRF電
力密度を0.20〜0.32W/cm2の条件で、反応性イ
オンエッチングにより該パターン材料をエッチングする
ようにした。
According to the present invention, Cr and Cr with an antireflection film are formed on an RF electrode surface in an etching chamber of a dry etching apparatus having a reaction gas introduction port, a vacuum exhaust port, and a rotating magnetic field formed by two pairs of electromagnets. , A photomask substrate covered with a pattern material such as SiO 2 and provided with a photoresist having a pattern formed thereon, the magnetic field strength of the electromagnet is 50 to 150 gauss, and the reaction gas pressure in the etching chamber is 0. The pattern material was etched by reactive ion etching under conditions of 03 to 0.3 Torr (4 to 40 Pa) and RF power density of the electrode of 0.20 to 0.32 W / cm 2 .

【0007】[0007]

【作用】回転磁界を有するドライエッチング装置を用い
てフォトマスク基板のドライエッチングを行なうと、プ
ラズマの制御性が良く、フォトマスク基板表面の磁場強
度が高く、従ってプラズマのイオン化と解離効率が高
く、低圧であってもフォトマスク基板にかかるDCバイア
ス電圧を低く抑えられるという回転磁界を有するドライ
エッチング装置から一般的に期待される作用が得られる
が、磁場強度、反応ガス圧力、RF電力密度、更には反応
ガス組成のエッチング条件を上記の如く設定することに
より、エッチング材料のレジストに対する選択比が向上
し、パターンの加工精度が向上してフォトマスクの寸法
面内均一性が向上し、高精度のフォトマスクが得られる
ようになる。
When the dry etching apparatus having a rotating magnetic field is used to dry-etch the photomask substrate, the controllability of the plasma is good, the magnetic field strength on the surface of the photomask substrate is high, and thus the ionization and dissociation efficiency of the plasma is high. The effects expected from a dry etching device with a rotating magnetic field that can suppress the DC bias voltage applied to the photomask substrate even at low voltage can be obtained, but the magnetic field strength, reaction gas pressure, RF power density, and By setting the etching conditions of the reaction gas composition as described above, the selection ratio of the etching material to the resist is improved, the pattern processing accuracy is improved, and the in-plane uniformity of the photomask is improved. A photomask can be obtained.

【0008】[0008]

【実施例】本発明の実施例を図面に基づき説明すると、
図1及び図2に於いて符号1は本発明の実施に使用した
ドライエッチング装置を示す。該ドライエッチング装置
1の外周を構成するパネル12内には、エッチング室
2、搬送室3、基板カセット台4を収め、該エッチング
室2をその外周に設けた電磁石5、6、7、8の中に設
けるようにした。該電磁石は角型リング状のコイルで、
電磁石5と6、7と8は互いに対をなし、これら電磁石
には例えば位相を90°ずらした低周波電流を流す。各
対の電磁石のコイルは、それぞれ同一方向に巻かれてお
り、電磁石5と6、及び電磁石7と8による合成磁場
は、図1、図2の点線の矢印が示すように、基板に平行
な面内で上記低周波電流の周波数と同じ周波数で回転す
るように構成されている。該エッチング室2内にはRF電
源9にコンデンサー13を介して接続された平板状のRF
電極10と平板状の対向電極14とを設け、フォトマス
ク基板11が該エッチング室2の側方に形成した基板受
渡口15を介して該RF電極10の上に置かれるようにし
た。
Embodiments of the present invention will be described with reference to the drawings.
In FIGS. 1 and 2, reference numeral 1 indicates a dry etching apparatus used for implementing the present invention. An etching chamber 2, a transfer chamber 3 and a substrate cassette stand 4 are housed in a panel 12 which constitutes the outer periphery of the dry etching apparatus 1, and electromagnets 5, 6, 7, 8 provided with the etching chamber 2 on the outer periphery thereof. I decided to set it inside. The electromagnet is a rectangular ring-shaped coil,
The electromagnets 5 and 6, and 7 and 8 are paired with each other, and low-frequency currents whose phases are shifted by 90 °, for example, are passed through these electromagnets. The coils of the electromagnets of each pair are wound in the same direction, and the combined magnetic field generated by the electromagnets 5 and 6 and the electromagnets 7 and 8 is parallel to the substrate, as indicated by the dotted arrows in FIGS. It is configured to rotate at the same frequency as the frequency of the low frequency current in the plane. In the etching chamber 2, a flat-plate RF connected to an RF power source 9 via a capacitor 13
The electrode 10 and the flat counter electrode 14 were provided so that the photomask substrate 11 was placed on the RF electrode 10 through the substrate delivery port 15 formed on the side of the etching chamber 2.

【0009】該フォトマスク基板11は、図3に示す1
つの例のように、合成石英等の透明基板11aに、Cr、
反射防止膜付Cr、SiO2等のパターン材料11bが薄く塗
布され、その上にパターンを形成したフォトレジスト1
1cが設けられた一般的なものである。該フォトレジス
ト11cにはIC基板と同様のAZ−1350(市販品)等
が使用される。該対向電極14とエッチング室2はアー
ス電位に保たれる。該エッチング室2内へCl2+O2等の
エッチング用反応ガスを供給するため、反応ガス導入口
30にガスボンベやマスフローコントローラーを備えた
ガス供給系16が設けられ、また、該エッチング室2内
のガス圧を制御するために真空ポンプを備えた排気系1
7を該エッチング室2の真空排気口18に接続した。該
反応ガスとしては、前記Cl2+O2の他にCHF3+O2が使
用される。
The photomask substrate 11 is shown in FIG.
As shown in one example, a transparent substrate 11a such as synthetic quartz is coated with Cr,
A photoresist 1 in which a pattern material 11b such as Cr or SiO 2 with an antireflection film is thinly applied and a pattern is formed thereon.
1c is a common one. For the photoresist 11c, AZ-1350 (commercial item) similar to the IC substrate is used. The counter electrode 14 and the etching chamber 2 are kept at the ground potential. In order to supply a reaction gas for etching such as Cl 2 + O 2 into the etching chamber 2, a gas supply system 16 equipped with a gas cylinder or a mass flow controller is provided at the reaction gas inlet port 30. Exhaust system 1 equipped with a vacuum pump for controlling gas pressure
7 was connected to the vacuum exhaust port 18 of the etching chamber 2. As the reaction gas, CHF 3 + O 2 is used in addition to Cl 2 + O 2 .

【0010】該フォトマスク基板11の複数枚をカセッ
トケース19に収め、これを基板カセット台4の上に載
せ、エッチングの際には該カセットケース19から仕切
バルブ20を介して搬送ロボット21により搬送室3内
へ持ち込まれ、次いで真空バルブ22と基板受渡口15
を介してエッチング室2内のRF電極10の上に置かれ
る。該搬送ロボット21は公知のもので、結節26と結
節28を有する二関節ロボットであり、モーター軸24
と結節26と結節28のそれぞれの回転運動の合成によ
って搬送腕29の先端部の往復回転運動が行なわれるよ
うに構成されている。第1腕25、第2腕27は水平面
内に運動が拘束されている。仕切バルブ20を介しての
カセットケース19と搬送室3の間の搬送腕29の先端
の運動、及び基板受渡口15を介してのエッチング室2
内のRF電極10と搬送室3の間の該搬送腕29の先端の
運動は、モーター軸24と結節26及び結節28におけ
るロボットの各腕25、27、29の回転運動の合成に
よる直進往復運動により行なわれる。また、基板受渡口
15前面の真空バルブ22とカセットケース19側の仕
切バルブ20の間の基板搬送は、モーター軸24を回転
軸とした搬送ロボットの搬送腕29の水平面内半回転運
動により行なわれる。該搬送室3の外部に設けたモータ
ー23が回転されると、平板状の該搬送腕29がフォト
マスク基板11を載せてカセットケース19とRF電極1
0の間を搬送すべく往復回転動する。
A plurality of the photomask substrates 11 are housed in a cassette case 19, which is placed on the substrate cassette base 4, and is transferred from the cassette case 19 through a partition valve 20 by a transfer robot 21 during etching. Brought into chamber 3, then vacuum valve 22 and substrate transfer port 15
Is placed on the RF electrode 10 in the etching chamber 2 via. The transfer robot 21 is a known robot, which is a two-joint robot having a nodule 26 and a nodule 28, and has a motor shaft 24.
The reciprocating rotary motion of the tip portion of the transport arm 29 is performed by combining the rotary motions of the knot 26 and the knot 28. The movements of the first arm 25 and the second arm 27 are restricted in the horizontal plane. Movement of the tip of the transfer arm 29 between the cassette case 19 and the transfer chamber 3 via the partition valve 20, and the etching chamber 2 via the substrate transfer port 15.
The movement of the tip of the transfer arm 29 between the RF electrode 10 inside the transfer chamber 3 and the transfer chamber 3 is a rectilinear reciprocating motion due to the combination of the rotational movements of the robot arms 25, 27 and 29 at the motor shaft 24 and the nodes 26 and 28. Performed by. Substrate transfer between the vacuum valve 22 on the front surface of the substrate transfer port 15 and the partition valve 20 on the cassette case 19 side is performed by half-rotational movement of the transfer arm 29 of the transfer robot about the motor shaft 24 in the horizontal plane. . When the motor 23 provided outside the transfer chamber 3 is rotated, the plate-shaped transfer arm 29 mounts the photomask substrate 11 on the cassette case 19 and the RF electrode 1.
It rotates reciprocally to convey between 0.

【0011】該RF電極10上のフォトマスク基板11の
パターン材料をエッチングするときは、エッチング室2
内を排気系17により排気し、反応ガス導入口30から
反応ガスを導入し、2対の電磁石5、6、7、8を励磁
し、RF電極10へRF電力を投入してプラズマ励起する過
程を経る。該2対の電磁石5と6、及び7と8には夫々
同じ向きに同じ低周波交流電流が流され、且つ電磁石5
と6、及び7と8に流す電流の位相を90°ずらすこと
により、フォトマスク基板11に平行な面内に回転磁場
が形成される。RF電極10と対向電極14との間に発生
するプラズマは、回転磁界によりフォトマスク基板11
の表面に集まってその密度が高まり、導入した反応ガス
を効率良く解離し、フォトマスク基板11にわずかなDC
バイアス電圧しか発生しない状態で反応性イオンエッチ
ングが行なわれる。この場合、フォトマスク基板11は
IC基板と異なり、シリコンではなく、合成石英であり、
基板に塗布されたパターン材料はIC基板のようにポリS
i、酸化物層+ポリSiではなく、Cr、反射防止膜付Cr、S
iO2等であるから、反応ガスを導入してIC基板に対する
ドライエッチングと同じ条件でエッチングしても、エッ
チング材料のレジストに対する選択比と、フォトマスク
の寸法面内均一性が悪いが、磁場強度を50〜150ガ
ウス、該エッチング室2内の反応ガス圧力を0.03〜
0.3Torr(4〜40Pa)、該電極10のRF電力密度を
0.20〜0.32W/cm2の条件に設定することによ
り、該選択比と寸法面内均一性が向上し、高精度のフォ
トマスクが得られる。
When etching the pattern material of the photomask substrate 11 on the RF electrode 10, the etching chamber 2 is used.
A process of exhausting the inside by an exhaust system 17, introducing a reaction gas from a reaction gas introducing port 30, exciting two pairs of electromagnets 5, 6, 7, 8 and applying RF power to the RF electrode 10 to excite plasma. Go through. The same low-frequency alternating current is applied to the two pairs of electromagnets 5 and 6 and 7 and 8 in the same direction, and the electromagnet 5
By shifting the phases of the currents applied to the electrodes 6 and 7 and 7 and 8 by 90 °, a rotating magnetic field is formed in a plane parallel to the photomask substrate 11. Plasma generated between the RF electrode 10 and the counter electrode 14 is generated by the rotating magnetic field in the photomask substrate 11
Collected on the surface of the substrate, its density increases, the introduced reaction gas is efficiently dissociated, and a slight DC
Reactive ion etching is performed in a state where only a bias voltage is generated. In this case, the photomask substrate 11
Unlike IC substrates, it is synthetic quartz, not silicon,
The pattern material applied to the substrate is made of poly-S like the IC substrate.
i, oxide layer + polySi, not Cr, antireflection film Cr, S
Since it is iO 2 etc., even if the reaction gas is introduced under the same conditions as the dry etching for the IC substrate, the selectivity of the etching material to the resist and the in-plane uniformity of the photomask are poor, but the magnetic field strength 50 to 150 gauss, and the reaction gas pressure in the etching chamber 2 is 0.03 to
By setting the RF power density of the electrode 10 to 0.3 Torr (4 to 40 Pa) and 0.20 to 0.32 W / cm 2 , the selection ratio and the in-plane uniformity of dimensions are improved, and high precision is achieved. The photomask of is obtained.

【0012】本発明の具体的な実施例は次の通りであ
る。
A specific embodiment of the present invention is as follows.

【0013】実施例1 フォトマスク基板11として、厚さ6.35mm、152
×152mmの正方形の合成石英基板の表面にパターン材
料として膜厚約750オングストロームのCr層を1層設
け、或いは更にその上に膜厚約300オングストローム
のCr酸化物系反射防止膜付Cr層を1層または2層設け、
このパターン材料の層の上にAZ−1350のフォトレジ
ストを塗布したものを使用した。該フォトレジストには
線幅2〜4μmの線状パターンを形成した。エッチング
条件を表1のように設定してフォトマスク基板11の反
応性イオンエッチングを行なった。
Example 1 As a photomask substrate 11, a thickness of 6.35 mm, 152
On the surface of a synthetic quartz substrate having a size of × 152 mm, one Cr layer having a film thickness of about 750 Å is provided as a pattern material, or a Cr layer with a Cr oxide-based antireflection film having a film thickness of about 300 Å is further formed thereon. Layer or two layers,
A layer of this pattern material coated with AZ-1350 photoresist was used. A linear pattern having a line width of 2 to 4 μm was formed on the photoresist. The etching conditions were set as shown in Table 1 and the photomask substrate 11 was subjected to reactive ion etching.

【0014】[0014]

【表1】 [Table 1]

【0015】このフォトマスク基板11を図1、図2に
示すエッチング室2内のRF電極10の表面に取付け、反
応ガス導入口30から反応ガスとしてCl2+O2を導入す
るようにし、そのガス組成比O2/(Cl2+O2)を10
〜25%、反応ガス圧力を0.05〜0.3Torr(6.
7〜40Pa)、磁場強度(回転磁場の振幅)を57〜1
10ガウス、磁場回転数を1Hz、RF電極10の電力密度
を0.2〜0.32W/cm2に変化させて該フォトマスク
基板11の反応性イオンエッチングを行なった。この場
合のパターン材料とフォトレジストのエッチング速度及
び選択比の磁場依存性を図4に、反応ガス組成比依存性
を図5に、反応ガス圧力依存性を図6に、そして、RF電
極10の電力密度依存性を図7にそれぞれ示す。また、
DC自己バイアス及びプラズマの電子密度の磁場依存性
を図8に、反応ガス組成比依存性を図9に、反応ガス圧
力依存性を図10に、そして、RF電極10の電力密度依
存性を図11にそれぞれ示す。面内均一性3σの磁場強
度依存性を図12に、CDゲイン(CDロスに負の符号をつ
けたもの)と面内均一性3σの圧力依存性を図13に、
RF電力密度依存性を図14に、そして、電極間隔依存性
を図15にそれぞれ示す。
This photomask substrate 11 is attached to the surface of the RF electrode 10 in the etching chamber 2 shown in FIGS. 1 and 2, and Cl 2 + O 2 is introduced as a reaction gas from the reaction gas inlet 30. The composition ratio O 2 / (Cl 2 + O 2 ) is 10
-25%, the reaction gas pressure is 0.05-0.3 Torr (6.
7-40 Pa), magnetic field strength (amplitude of rotating magnetic field) 57-1
Reactive ion etching was performed on the photomask substrate 11 while changing the magnetic field rotation speed to 10 Hz and the power density of the RF electrode 10 to 0.2 to 0.32 W / cm 2 . In this case, the magnetic field dependence of the etching rate and the selection ratio of the pattern material and the photoresist is shown in FIG. 4, the reaction gas composition ratio dependence is shown in FIG. 5, the reaction gas pressure dependence is shown in FIG. The power density dependence is shown in FIG. 7, respectively. Also,
The magnetic field dependence of the DC self-bias and plasma electron density is shown in FIG. 8, the reaction gas composition ratio dependence is shown in FIG. 9, the reaction gas pressure dependence is shown in FIG. 10, and the power density dependence of the RF electrode 10 is shown. 11 respectively. FIG. 12 shows the magnetic field strength dependence of the in-plane uniformity 3σ, and FIG. 13 shows the CD gain (CD loss with a negative sign) and the pressure dependence of the in-plane uniformity 3σ.
The RF power density dependency is shown in FIG. 14, and the electrode spacing dependency is shown in FIG.

【0016】この場合のパターン材料とフォトレジスト
(AZ−1350)のエッチング速度はそれぞれ22〜3
5mn/min及び6〜27nm/minで、パターン材料とフォト
レジストの選択比はエッチングのパターン断面形状の観
察で1.3〜1.8以上になり(図4〜7)、パターン
線幅寸法の面内均一性3σ(線幅実測値−線幅平均値の
分散の3倍)は0.06μm以下であった。更に、CDロ
ス(クリティカルデメンションロス=設計寸法−実測寸
法)は0.08μmよりも小さく(図13〜14)、DC
バイアス電圧は15〜150V、電子密度は(2.8〜
8)×109/cm3で(図8〜図10)、パターン形状は
良好であった。
In this case, the etching rates of the pattern material and the photoresist (AZ-1350) are 22 to 3 respectively.
At 5 mn / min and 6 to 27 nm / min, the selection ratio of the pattern material and the photoresist becomes 1.3 to 1.8 or more by observing the pattern cross section of the etching (FIGS. 4 to 7), and the pattern line width The in-plane uniformity 3σ (measured value of line width-three times the variance of average value of line width) was 0.06 μm or less. Furthermore, CD loss (critical dimension loss = design dimension-measured dimension) is smaller than 0.08 μm (Figs. 13 to 14), and DC
Bias voltage is 15 to 150 V, electron density is (2.8 to
8) × 10 9 / cm 3 (FIGS. 8 to 10), the pattern shape was good.

【0017】図24に、磁場強度100ガウス、磁場回
転数を1Hz、ガス組成比O2/(Cl2+O2)を20%、
反応ガス圧力を0.10Torr(13Pa)、RF電力密度
0.22W/cm2で、石英基板11の表面にパターン材料
として膜厚約750オングストロームのCr層を1層だ
け設け、このパターン材料の上にAZ−1350のフォト
レジストを塗布したものにパターンを形成し、反応性イ
オンエッチングを行なったもののSEM(走査電子顕微
鏡)写真による断面形状の1例を示した。また、図25
に上記のフォトレジストの代りにZEP 810電子線レジ
ストを塗布してパターンを形成し、上記と同一条件で反
応性イオンエッチングを行なったもののSEM写真によ
る断面形状の1例を示す。
In FIG. 24, the magnetic field strength is 100 gauss, the magnetic field rotation speed is 1 Hz, the gas composition ratio O 2 / (Cl 2 + O 2 ) is 20%,
The reaction gas pressure is 0.10 Torr (13 Pa), the RF power density is 0.22 W / cm 2 , and only one Cr layer having a thickness of about 750 Å is provided as a pattern material on the surface of the quartz substrate 11. An example of a cross-sectional shape of a SEM (scanning electron microscope) photograph of a product obtained by applying a photoresist of AZ-1350 to form a pattern and performing reactive ion etching is shown. In addition, FIG.
An example of a cross-sectional shape by an SEM photograph of a product obtained by applying a ZEP 810 electron beam resist instead of the above photoresist to form a pattern and performing reactive ion etching under the same conditions as above is shown in FIG.

【0018】これに対し、反応ガスはCl2+O2で、反応
ガス圧力を上記の場合と同様に0.05〜0.3Torr
(6.7〜40Pa)、磁場回転数を1Hzとしても、その
ガス組成比O2/(Cl2+O2)を10%以下あるいは2
5%以上とし、磁場強度を57ガウス以下あるいは11
0ガウス以上、RF電力密度を0.20W/cm2以下あるい
は0.32W/cm2以上にすると、選択比は0.8〜2.
8、面内均一性も0.05〜0.13となるが、いずれ
かが前記の場合よりも悪化し、CDロスは1μm以上、DC
バイアス電圧は40〜300V、電子密度は(3〜7.
7)×109/cm3でこれらの数値も前記の場合よりもい
づれかが悪く、パターン形状も悪かった。
On the other hand, the reaction gas is Cl 2 + O 2 , and the reaction gas pressure is 0.05 to 0.3 Torr as in the above case.
(6.7 to 40 Pa), the gas composition ratio O 2 / (Cl 2 + O 2 ) is 10% or less or 2 even when the magnetic field rotation speed is 1 Hz.
5% or more and magnetic field strength of 57 gauss or less or 11
0 gauss, when the RF power density 0.20 W / cm 2 or less, or 0.32 W / cm 2 or more, the selectivity of 0.8 to 2.
8. The in-plane uniformity is 0.05 to 0.13, but one of them is worse than the above case, the CD loss is 1 μm or more, DC
The bias voltage is 40 to 300 V, and the electron density is (3 to 7.
7) × 10 9 / cm 3 , and these numerical values were inferior to those in the above case, and the pattern shape was also inferior.

【0019】尚、この実施例1に於いて、RF電極10と
対向電極14との間隔を40〜80mmの範囲で変化さ
せ、この間隔と面内均一性のCDロスの増減を調べたとこ
ろ、この間隔は40〜60mmが適切であることが判明し
た(図15)。
In Example 1, the distance between the RF electrode 10 and the counter electrode 14 was changed in the range of 40 to 80 mm, and the increase and decrease of the CD loss of this distance and in-plane uniformity were examined. It has been found that this gap is suitably 40 to 60 mm (Fig. 15).

【0020】実施例2 フォトマスク基板11の材質および形状寸法は実施例1
のものと同じものを使用し、基板表面にエッチングスト
ッパー層として150オングストローム厚のSnO2層を設
け、更にその表面に第2のパターン材料としてSOG(ス
ピンコーティングによるゾルゲルSiO2)を厚さ4000
オングストロームに塗布した。次に実施例1の条件で第
1のパターン材料であるCrのパターンを形成した。第
2のパターン材料の上にはAZ−1350のフォトレジス
トを塗布してそこに線幅2〜4μmの線状パターンを予
め形成した。そしてエッチング条件を表2のように設定
して反応性イオンエッチングを行なった。
Example 2 The material and shape of the photomask substrate 11 are the same as those of Example 1.
The same material as that of No. 1 was used, a SnO 2 layer with a thickness of 150 Å was provided as an etching stopper layer on the surface of the substrate, and SOG (sol-gel SiO 2 by spin coating) as a second pattern material had a thickness of 4000 on the surface.
It was applied to Angstrom. Next, a pattern of Cr, which is the first pattern material, was formed under the conditions of Example 1. A photoresist of AZ-1350 was applied on the second pattern material, and a linear pattern having a line width of 2 to 4 μm was previously formed thereon. Then, the reactive ion etching was performed by setting the etching conditions as shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】このフォトマスク基板11を実施例1の場
合と同じく図1、図2に示すエッチング室2内のRF電極
10の表面に取付け、反応ガス導入口30から反応ガス
としてCHF3+O2を導入するようにし、そのガス組成比
2/(CHF3+O2)を5〜8%、反応ガス圧力を0.0
3〜0.05Torr(4〜7Pa)、磁場強度(回転磁場の
振幅)を50〜150ガウス、磁場回転数を1Hz、RF電
極10の電力密度を0.2〜0.30W/cm2に変化させ
て該フォトマスク基板11の反応性イオンエッチングを
行なった。この場合のパターン材料とフォトレジスト
(AZ−1350)のエッチング速度はそれぞれ23〜4
8nm/min及び0.8〜15nm/minで、パターン材料とフ
ォトレジストの選択比は3以上になった。DCバイアス電
圧は70〜220V、電子密度は(7〜11)×109
/cm3で、パターン形状は良好であった。
This photomask substrate 11 is attached to the surface of the RF electrode 10 in the etching chamber 2 shown in FIGS. 1 and 2 as in the case of the first embodiment, and CHF 3 + O 2 as a reaction gas is introduced from the reaction gas inlet 30. The gas composition ratio O 2 / (CHF 3 + O 2 ) is 5 to 8%, and the reaction gas pressure is 0.0
3 to 0.05 Torr (4 to 7 Pa), magnetic field strength (amplitude of rotating magnetic field) 50 to 150 gauss, magnetic field rotation speed 1 Hz, power density of RF electrode 10 changed to 0.2 to 0.30 W / cm 2 . Then, the reactive ion etching of the photomask substrate 11 was performed. In this case, the etching rate of the pattern material and the photoresist (AZ-1350) is 23 to 4 respectively.
At 8 nm / min and 0.8-15 nm / min, the selection ratio between the pattern material and the photoresist became 3 or more. DC bias voltage is 70-220V, electron density is (7-11) × 10 9
/ Cm 3 , the pattern shape was good.

【0023】また、フォトマスク基板11の表面にはエ
ッチングストッパーとして150オングストローム厚の
SnO2層を設け、この上に第2のパターン材料として40
60オングストローム厚のSOG層を塗布し、更にこの上
に第1のパターン材料として1000オングストローム
厚のCr層を設け、AZ−1350のフォトレジスト(レ
ジストA)を塗布して線幅2〜4μmの線状パターンを
形成した。次に実施例1の条件で第1のパターン材料で
あるCrのパターンの上にAZ−1350のフォトレジス
ト(レジストB)を塗布して線幅2〜4μmの線状パタ
ーンを形成してSOGの反応性エッチングを行なった。エ
ッチング条件を、磁場100ガウス、反応ガス組成比O
2/(CHF3+O2)=7%、反応ガス圧力0.10Torr
(13Pa)、RF電力密度0.22W/cm2とした。これ
のSEM写真によるパターン形状の例を図26に示し
た。
Further, the surface of the photomask substrate 11 has a thickness of 150 Å as an etching stopper.
An SnO 2 layer is provided, and a second pattern material 40 is formed on the layer.
A 60 Å thick SOG layer is applied, and a 1000 Å thick Cr layer is further provided as a first pattern material on this, and a AZ-1350 photoresist (resist A) is applied to form a line having a line width of 2 to 4 μm. Pattern was formed. Next, under the conditions of Example 1, a photoresist (resist B) of AZ-1350 was applied on the pattern of Cr, which is the first pattern material, to form a linear pattern having a line width of 2 to 4 μm. Reactive etching was performed. The etching conditions are a magnetic field of 100 gauss and a reaction gas composition ratio O.
2 / (CHF 3 + O 2 ) = 7%, reaction gas pressure 0.10 Torr
(13 Pa) and RF power density was 0.22 W / cm 2 . FIG. 26 shows an example of the pattern shape of this SEM photograph.

【0024】これに対し、CHF3+O2の反応ガス圧力を
上記の場合と同様に0.03〜0.05Torr、磁場回転
数を1Hzとしても、そのガス組成比O2/(Cl2+O2
を5%以下あるいは8%以上とし、磁場強度を50ガウ
ス以下あるいは150ガウス以上、RF電力密度を0.2
0W/cm2以下あるいは0.30W/cm2以上にすると、選択
比は0.6〜3となり、いずれも前記の場合よりも悪化
し、DCバイアス電圧は20〜450V、電子密度は(5
〜11)×109/cm3でこれらの数値も前記の場合より
も全体として悪く、パターン形状も悪かった。
On the other hand, even if the reaction gas pressure of CHF 3 + O 2 is 0.03 to 0.05 Torr and the magnetic field rotation speed is 1 Hz, the gas composition ratio O 2 / (Cl 2 + O 2 )
Of less than 5% or more than 8%, magnetic field strength of less than 50 gauss or more than 150 gauss, RF power density of 0.2
When the 0 W / cm 2 or less, or 0.30 W / cm 2 or more, selectivity ratio becomes 0.6 to 3, both worse than for the, DC bias voltage 20~450V, electron density (5
To 11) in × 10 9 / cm 3 even these numbers worse overall than in the case of the pattern shape was also poor.

【0025】これらの実施例に於いては、いずれも磁場
強度を増加させると、電子密度は単調に増加しDCバイア
ス電圧は単調に減少した。これは、磁場強度の増加によ
りプラズマのイオン化と解離効率が向上していることを
示している(図8、図20)。また、磁場強度を増加さ
せたとき、実施例1のCrのエッチング速度は磁場強度範
囲0〜150ガウスで一つの極大値を示し(図4)、実
施例2のSOGのエッチング速度は単調に減少した(図1
6)。これは前記したKevin G. Donohoeの資料のシリコ
ンのエッチング速度が磁場強度の増大に伴い単調に増大
する傾向からは全く予測できない挙動である。更にこれ
らの実施例1、2共に反応ガス組成に対して電子密度と
DCバイアス電圧は大きくは変化しないが(図9、図2
1)、実施例1のCrとフォトレジストのエッチング速度
及び選択比は比較的ゆるやかに変化し(図5)、実施例
2のSOGとフォトレジストのエッチング速度及び選択比
は大きく変化し、選択比が3以上になるガス組成比の範
囲は5〜8%と著しく狭い(図17)。
In all of these examples, when the magnetic field strength was increased, the electron density monotonically increased and the DC bias voltage monotonically decreased. This shows that the ionization and dissociation efficiency of plasma is improved by the increase of the magnetic field strength (FIGS. 8 and 20). Further, when the magnetic field strength was increased, the Cr etching rate of Example 1 showed one maximum value in the magnetic field strength range of 0 to 150 Gauss (FIG. 4), and the SOG etching rate of Example 2 monotonically decreased. (Fig. 1
6). This is a behavior which cannot be predicted at all from the tendency of the etching rate of silicon monotonically increasing with increasing magnetic field strength in the above-mentioned material of Kevin G. Donohoe. Furthermore, in each of these Examples 1 and 2, the electron density and the
The DC bias voltage does not change significantly (Figs. 9 and 2).
1), the etching rate and the selection ratio of Cr and the photoresist in Example 1 change relatively slowly (FIG. 5), and the etching rate and the selection ratio of SOG and the photoresist in Example 2 change greatly and the selection ratio The range of the gas composition ratio in which the ratio is 3 or more is 5 to 8%, which is extremely narrow (FIG. 17).

【0026】以上の実施例では、パターン材料としてC
r、Crの酸化物系反射防止膜付Crを使用したが、Crの窒
化物系反射防止膜付Crなどの他の公知の反射防止膜付の
パターン材料を使用してもよい。また、上記実施例で使
用したSOGのパターン材料の代わりにスパッタや蒸着に
よるSiO2膜を使用してもよい。フォトレジストにもAZ−
1350以外のフォトレジストあるいはZEP810以外
のエレクトロンビームレジストの使用が可能である。更
に、上記実施例ではフォトレジストに線状パターンを形
成した例で説明したが、線状以外の例えばコンタクトホ
ールを形成したパターンでも本発明の方法は適用でき
る。
In the above embodiments, C is used as the pattern material.
Although Cr with an oxide type antireflection film of r, Cr is used, other known pattern materials with an antireflection film such as Cr with a nitride type antireflection film of Cr may be used. Further, a SiO 2 film formed by sputtering or vapor deposition may be used instead of the SOG pattern material used in the above-mentioned embodiment. AZ- for photoresist
Photoresists other than 1350 or electron beam resists other than ZEP810 can be used. Furthermore, in the above-described embodiment, the example in which the linear pattern is formed on the photoresist has been described, but the method of the present invention can be applied to a pattern other than the linear pattern in which a contact hole is formed.

【0027】[0027]

【発明の効果】以上のように本発明によれば、電磁石に
よる回転磁界を有するドライエッチング装置をフォトマ
スク基板のドライエッチングに使用したので、プラズマ
の制御性が良く、低圧であってもDCバイアス電圧が低く
なり、フォトレジストに対するダメージが小さいので、
選択比が向上し、磁場強度を50〜150ガウス、反応
ガス圧力を0.03〜0.3Torr、RF電力密度を0.2
0〜0.32W/cm2とすることにより、フォトマスクの
パターン材料にCDロスが小さく、面内均一性のよい高精
度のエッチングを施せて高精度のフォトマスクが得られ
る等の効果がある。
As described above, according to the present invention, since the dry etching apparatus having the rotating magnetic field by the electromagnet is used for the dry etching of the photomask substrate, the controllability of the plasma is good and the DC bias is applied even at the low pressure. Since the voltage is low and the damage to the photoresist is small,
Improved selection ratio, magnetic field strength of 50 to 150 gauss, reaction gas pressure of 0.03 to 0.3 Torr, RF power density of 0.2
By setting it to 0 to 0.32 W / cm 2, there is an effect that the CD loss is small in the pattern material of the photomask and highly accurate etching with good in-plane uniformity can be performed to obtain a highly accurate photomask. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施に使用したドライエッチング装
置の一部を截除した平面図
FIG. 1 is a plan view in which a part of a dry etching apparatus used for implementing the present invention is cut away.

【図2】 図1のA−A線断面図FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】 フォトマスク基板の断面図FIG. 3 is a cross-sectional view of a photomask substrate

【図4】 エッチング速度及び選択比と磁場との関係を
示す特性線図
FIG. 4 is a characteristic diagram showing a relationship between an etching rate and a selection ratio and a magnetic field.

【図5】 エッチング速度及び選択比と反応ガス組成比
との関係を示す特性線図
FIG. 5 is a characteristic diagram showing a relationship between an etching rate and a selection ratio, and a reaction gas composition ratio.

【図6】 エッチング速度及び選択比と反応ガス圧力と
の関係を示す特性線図
FIG. 6 is a characteristic diagram showing the relationship between the etching rate and the selection ratio and the reaction gas pressure.

【図7】 エッチング速度及び選択比とRF電力密度との
関係を示す特性線図
FIG. 7 is a characteristic diagram showing the relationship between the etching rate and the selection ratio and the RF power density.

【図8】 電子密度及び自己バイアス電圧との関係を示
す特性線図
FIG. 8 is a characteristic diagram showing the relationship between electron density and self-bias voltage.

【図9】 電子密度と自己バイアス電圧及び反応ガス組
成比の関係を示す特性線図
FIG. 9 is a characteristic diagram showing the relationship between electron density, self-bias voltage, and composition ratio of reactive gas.

【図10】 電子密度と自己バイアス電圧及び反応ガス
圧力との関係を示す特性線図
FIG. 10 is a characteristic diagram showing the relationship between electron density, self-bias voltage, and reaction gas pressure.

【図11】 電子密度と自己バイアス電圧及びRF電力密
度との関係を示す特性線図
FIG. 11 is a characteristic diagram showing the relationship between electron density, self-bias voltage and RF power density.

【図12】 面内均一性と磁場強度との関係を示す特性
線図
FIG. 12 is a characteristic diagram showing the relationship between in-plane uniformity and magnetic field strength.

【図13】 面内均一性とCDゲイン及び圧力との関係を
示す特性線図
FIG. 13 is a characteristic diagram showing the relationship between in-plane uniformity and CD gain and pressure.

【図14】 面内均一性とCDゲイン及びRFパワー密度と
の関係を示す特性線図
FIG. 14 is a characteristic diagram showing the relationship between in-plane uniformity and CD gain and RF power density.

【図15】 面内均一性とCDゲイン及び電極間隔との関
係を示す特性線図
FIG. 15 is a characteristic diagram showing the relationship between in-plane uniformity, CD gain, and electrode spacing.

【図16】 エッチング速度と選択比及び磁場との関係
を示す特性線図
FIG. 16 is a characteristic diagram showing the relationship between the etching rate, the selection ratio, and the magnetic field.

【図17】 エッチング速度と選択比及び反応ガス組成
比との関係を示す特性線図
FIG. 17 is a characteristic diagram showing a relationship between an etching rate, a selection ratio, and a reaction gas composition ratio.

【図18】 エッチング速度と選択比及び反応ガス圧力
との関係を示す特性線図
FIG. 18 is a characteristic diagram showing the relationship between the etching rate, the selection ratio, and the reaction gas pressure.

【図19】 エッチング速度と選択比及びRF電力密度と
の関係を示す特性線図
FIG. 19 is a characteristic diagram showing the relationship between etching rate, selectivity and RF power density.

【図20】 電子密度と自己バイアス電圧及び磁場との
関係を示す特性線図
FIG. 20 is a characteristic diagram showing the relationship between electron density, self-bias voltage, and magnetic field.

【図21】 電子密度と自己バイアス電圧及び反応ガス
組成比との関係を示す特性線図
FIG. 21 is a characteristic diagram showing the relationship between electron density, self-bias voltage, and composition ratio of reactive gas.

【図22】 電子密度と自己バイアス電圧及び反応ガス
圧力との関係を示す特性線図
FIG. 22 is a characteristic diagram showing the relationship between electron density, self-bias voltage, and reaction gas pressure.

【図23】 電子密度と自己バイアス電圧及びRF電力密
度との関係を示す特性線図
FIG. 23 is a characteristic diagram showing the relationship between electron density, self-bias voltage, and RF power density.

【図24】 エッチング後のフォトマスク基板のSEM
断面写真のスケッチ
FIG. 24: SEM of photomask substrate after etching
Cross-section photo sketch

【図25】 エッチング後のフォトマスク基板のSEM
断面写真のスケッチ
FIG. 25: SEM of photomask substrate after etching
Cross-section photo sketch

【図26】 エッチング後のフォトマスク基板のSEM
断面写真のスケッチ
FIG. 26: SEM of photomask substrate after etching
Cross-section photo sketch

【符号の説明】[Explanation of symbols]

1 ドライエッチング装置 2 エッチング室 5、6、7、8 電磁石 9
RF電極 11 フォトマスク基板 11b パターン材
料 11c フォトレジスト 18 真空排気
口 30 反応ガス導入口
1 Dry Etching Device 2 Etching Chamber 5, 6, 7, 8 Electromagnet 9
RF electrode 11 Photomask substrate 11b Pattern material 11c Photoresist 18 Vacuum exhaust port 30 Reactive gas inlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡壁 弥一郎 兵庫県伊丹市瑞原4丁目一番地 三菱電機 株式会社エル・エス・アイ研究所内 (72)発明者 悳 昭彦 埼玉県秩父市大字寺尾2562−3 (72)発明者 所 康生 埼玉県秩父郡横瀬町横瀬6474−3 (72)発明者 林 厚 埼玉県秩父郡横瀬町横瀬2129−7 パレス ハイム202号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yaichiro Watakabe 4-Chome, Mizuhara, Itami City, Hyogo Prefecture Mitsubishi Electric Co., Ltd. LSE Research Laboratories (72) Inventor Akihiko Ueno 2562 Terao, Chichibu, Saitama Prefecture 3 (72) Inventor Kosei, 6474-3 Yokose, Yokose-cho, Chichibu-gun, Saitama Prefecture (72) Atsushi Hayashi 2129-7 Yokose, Yokose-cho, Chichibu-gun, Saitama Prefecture Palace Heim 202

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 反応ガス導入口と真空排気口及び2対の
電磁石による回転磁界を有するドライエッチング装置の
エッチング室内のRF電極面に、パターン材料で覆われ且
つその上にパターンを形成したフォトレジストを設けた
フォトマスク基板を取付け、該電磁石の磁場強度を50
〜150ガウス、該エッチング室内の反応ガス圧力を
0.03〜0.3Torr(4〜40Pa)、該電極のRF電力
密度を0.20〜0.32W/cm2の条件で、反応性イオ
ンエッチングにより該パターン材料をエッチングするこ
とを特徴とするフォトマスクのドライエッチング方法。
1. A photoresist in which a pattern material is covered and a pattern is formed on an RF electrode surface in an etching chamber of a dry etching apparatus having a reaction gas introduction port, a vacuum exhaust port, and a rotating magnetic field of two pairs of electromagnets. The photomask substrate provided with is attached, and the magnetic field strength of the electromagnet is set to 50
˜150 gauss, reactive gas pressure in the etching chamber is 0.03 to 0.3 Torr (4 to 40 Pa), and RF power density of the electrode is 0.20 to 0.32 W / cm 2 by reactive ion etching. A method for dry etching a photomask, characterized in that the pattern material is etched by means of:
【請求項2】 上記2対の電磁石は、上記エッチング室
の外部に設けられ、一方の対をなす電磁石と他方の対を
なす電磁石は直交して設けたことを特徴とする請求項1
に記載のフォトマスクのドライエッチング方法。
2. The two pairs of electromagnets are provided outside the etching chamber, and one pair of electromagnets and the other pair of electromagnets are provided orthogonally to each other.
A method for dry etching a photomask according to.
【請求項3】 上記フォトマスク基板のパターン材料
は、Cr膜又は反射防止膜付Cr膜であり、上記磁場強度を
57〜110ガウス、上記反応ガスがCl2+O2で、その
ガス組成比O2/(Cl2+O2)を10〜25%、そのガ
ス圧力を0.05〜0.3Torr(6.7〜40Pa)、上
記RF電力密度を0.20〜0.32W/cm2の条件でエッ
チングすることを特徴とする請求項1に記載のフォトマ
スクのドライエッチング方法。
3. The pattern material of the photomask substrate is a Cr film or a Cr film with an antireflection film, the magnetic field strength is 57 to 110 gauss, the reaction gas is Cl 2 + O 2 , and the gas composition ratio O thereof. 2 / (Cl 2 + O 2 ) is 10 to 25%, the gas pressure is 0.05 to 0.3 Torr (6.7 to 40 Pa), and the RF power density is 0.20 to 0.32 W / cm 2 2. The method of dry etching a photomask according to claim 1, wherein the dry etching is performed by using.
【請求項4】 上記フォトマスク基板のパターン材料が
SiO2膜であり、上記磁場強度を50〜150ガウス、上
記反応ガスがCHF3+O2で、そのガス組成比O2/(CHF3
+O2)を5〜8%、そのガス圧力を0.03〜0.0
5Torr(4〜7Pa)、上記RF電力密度を0.20〜0.
32W/cm2の条件でエッチングすることを特徴とする請
求項1に記載のフォトマスクのドライエッチング方法。
4. The pattern material of the photomask substrate is
SiO 2 film, the magnetic field strength is 50 to 150 gauss, the reaction gas is CHF 3 + O 2 , and the gas composition ratio is O 2 / (CHF 3
+ O 2 ) at 5 to 8% and its gas pressure at 0.03 to 0.0
5 Torr (4 to 7 Pa), the RF power density is 0.20 to 0.
2. The photomask dry etching method according to claim 1, wherein the etching is performed under a condition of 32 W / cm 2 .
JP13219593A 1993-06-02 1993-06-02 Dry etching method for photomask Expired - Fee Related JP3355444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13219593A JP3355444B2 (en) 1993-06-02 1993-06-02 Dry etching method for photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13219593A JP3355444B2 (en) 1993-06-02 1993-06-02 Dry etching method for photomask

Publications (2)

Publication Number Publication Date
JPH06347996A true JPH06347996A (en) 1994-12-22
JP3355444B2 JP3355444B2 (en) 2002-12-09

Family

ID=15075624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13219593A Expired - Fee Related JP3355444B2 (en) 1993-06-02 1993-06-02 Dry etching method for photomask

Country Status (1)

Country Link
JP (1) JP3355444B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605776A (en) * 1995-03-24 1997-02-25 Ulvac Coating Corporation Phase-shifting photomask blank, phase-shifting photomask, and method of manufacturing them
EP0999472A2 (en) * 1998-10-29 2000-05-10 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for dry-etching half-tone phase-shift films, half-tone phase-shift photomasks and method for the preparation thereof, and semiconductor circuits and method for the fabrication thereof
US6391791B1 (en) 1998-08-07 2002-05-21 Ulvac Coating Corporation Dry-etching method and apparatus, photomasks and method for the preparation thereof, and semiconductor circuits and methods for the fabrication thereof
WO2006006540A1 (en) * 2004-07-09 2006-01-19 Hoya Corporation Photomask blank, photomask manufacturing method and semiconductor device manufacturing method
JP2006048033A (en) * 2004-07-09 2006-02-16 Hoya Corp Photomask blank, method for manufacturing photomask, and method for manufacturing semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605776A (en) * 1995-03-24 1997-02-25 Ulvac Coating Corporation Phase-shifting photomask blank, phase-shifting photomask, and method of manufacturing them
US6391791B1 (en) 1998-08-07 2002-05-21 Ulvac Coating Corporation Dry-etching method and apparatus, photomasks and method for the preparation thereof, and semiconductor circuits and methods for the fabrication thereof
US6881991B2 (en) 1998-08-07 2005-04-19 Ulvac Coating Corporation Dry-etching method and apparatus, photomasks and method for the preparation thereof, and semiconductor circuits and method for the fabrication thereof
EP0999472A2 (en) * 1998-10-29 2000-05-10 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for dry-etching half-tone phase-shift films, half-tone phase-shift photomasks and method for the preparation thereof, and semiconductor circuits and method for the fabrication thereof
EP0999472A3 (en) * 1998-10-29 2001-01-31 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for dry-etching half-tone phase-shift films, half-tone phase-shift photomasks and method for the preparation thereof, and semiconductor circuits and method for the fabrication thereof
US6685848B1 (en) 1998-10-29 2004-02-03 Ulvac Coating Corporation Method and apparatus for dry-etching half-tone phase-shift films half-tone phase-shift photomasks and method for the preparation thereof and semiconductor circuits and method for the fabrication thereof
US7001698B2 (en) 1998-10-29 2006-02-21 Ulvac Coating Corporation Method and apparatus for dry-etching half-tone phase-shift films, half-tone phase-shift photomasks and method for the preparation thereof, and semiconductor circuits and method for the fabrication thereof
US7063922B2 (en) 1998-10-29 2006-06-20 Ulvac Coating Corporation Method and apparatus for dry-etching half-tone phase-shift films, half-tone phase-shift photomasks and method for the preparation thereof, and semiconductor circuits and method for the fabrication thereof
WO2006006540A1 (en) * 2004-07-09 2006-01-19 Hoya Corporation Photomask blank, photomask manufacturing method and semiconductor device manufacturing method
JP2006048033A (en) * 2004-07-09 2006-02-16 Hoya Corp Photomask blank, method for manufacturing photomask, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3355444B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
JP3390814B2 (en) Method for etching object to be processed including oxide part or nitride part
CN109306469A (en) By using the method for the PEALD deposition film of back bias voltage
US4492610A (en) Dry Etching method and device therefor
JP2000114246A (en) Dry etching method and apparatus, photoresist mask and method of producing the same, and semiconductor circuit and method of producing the same
US4786361A (en) Dry etching process
JPH06347996A (en) Dry etching method for photomask
JP2009064991A (en) Method for dry etching of high-k film
CN112921404A (en) Semiconductor etching equipment and etching method of silicon carbide wafer
JPH03204925A (en) Plasma processor
JPH0294520A (en) Dry etching method
JPH0618182B2 (en) Dry etching equipment
JPH1192968A (en) Dry etching device and plasma chemical vapor phase deposition apparatus
JP2851765B2 (en) Plasma generation method and apparatus
JPH06111996A (en) Plasma generator
JP3220528B2 (en) Vacuum processing equipment
JPS60120525A (en) Method for reactive ion etching
JPH0485928A (en) Dry etching method
US5738752A (en) System and method for plasma etching
JP3113344B2 (en) Dual frequency excitation plasma device using rotating magnetic field
JP3076641B2 (en) Dry etching apparatus and dry etching method
JP3251439B2 (en) Etching method
WO2022004456A1 (en) Mask blank manufacturing method, mask blank, photomask manufacturing method, and photomask
JP3360132B2 (en) Method for manufacturing thin film magnetic head
JP3732079B2 (en) Sample surface processing method
JPH0892768A (en) Plasma etching method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees