JPH06345405A - Hydrogen production device - Google Patents
Hydrogen production deviceInfo
- Publication number
- JPH06345405A JPH06345405A JP5166349A JP16634993A JPH06345405A JP H06345405 A JPH06345405 A JP H06345405A JP 5166349 A JP5166349 A JP 5166349A JP 16634993 A JP16634993 A JP 16634993A JP H06345405 A JPH06345405 A JP H06345405A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- gas
- wall
- reaction vessel
- burner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は炭化水素およびまたはア
ルコール類を水蒸気改質して水素を製造する装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for steam reforming hydrocarbons and / or alcohols to produce hydrogen.
【0002】[0002]
【従来技術】炭化水素およびまたはアルコール類等より
水蒸気改質反応を利用して改質器で水素を製造する方法
は工業上広く使用されている。一方、約200℃以下で
作動する燃料電池においては、電極の白金などの触媒が
COにより被毒されるため、該燃料電池に供給する水素
含有ガス中のCO濃度は、1%以下にする必要がある。
200℃以下の比較的低温で作動する燃料電池として
は、150〜230℃で作動するリン酸型、100℃以
下で作動する固体高分子膜型、アルカリ型などがある
が、特に100℃以下で作動する固体高分子膜型では、
燃料電池に供給する水素含有ガス中のCO濃度は10pp
m 以下にする必要があると言われている。このため、従
来の方法により製造した水素を燃料電池用の燃料ガスと
するには、当該粗製水素を一酸化炭素変成器及び水素精
製器により更に精製して高純度とし(約CO10ppm 以
下)固体高分子膜型燃料電池(ポリマー燃料電池)に使
用することが考えられる。この際生ずる反応は、メタン
の例で示すと次のようである。 2. Description of the Related Art A method for producing hydrogen in a reformer by utilizing a steam reforming reaction from hydrocarbons and / or alcohols is widely used industrially. On the other hand, in a fuel cell that operates at about 200 ° C. or lower, the catalyst such as platinum in the electrode is poisoned by CO, so the CO concentration in the hydrogen-containing gas supplied to the fuel cell must be 1% or lower. There is.
Fuel cells that operate at a relatively low temperature of 200 ° C. or less include phosphoric acid type that operates at 150 to 230 ° C., solid polymer membrane type that operates at 100 ° C. or less, and alkaline type, but especially at 100 ° C. or less. In the working solid polymer membrane type,
The CO concentration in the hydrogen-containing gas supplied to the fuel cell is 10 pp
It is said that it must be less than m. Therefore, in order to use hydrogen produced by the conventional method as a fuel gas for a fuel cell, the crude hydrogen is further purified by a carbon monoxide shift converter and a hydrogen purifier to have a high purity (about CO 10 ppm or less). It is considered to be used for a molecular membrane fuel cell (polymer fuel cell). The reaction that takes place in this case is as follows in the case of methane.
【0003】[0003]
【発明が解決しようとする課題】しかし、従来水素を高
純度にするための上記プロセスは工程が複雑であり、装
置全体が大型であり、多量の高温熱エネルギーを要し、
また、装置の効率が悪く、必然的に水素製造コストが高
くなる欠点を有し、都市ガス等から直接固体高分子燃料
電池に供給するような高純度の水素を製造することは、
経済性も考慮すると極めて困難である。However, the above-mentioned process for purifying hydrogen in high purity has complicated steps, the entire apparatus is large, and a large amount of high-temperature heat energy is required.
In addition, the efficiency of the device is low, there is a drawback that the hydrogen production cost is inevitably high, and to produce high-purity hydrogen that is directly supplied from a city gas or the like to a solid polymer fuel cell,
It is extremely difficult considering the economic efficiency.
【0004】このため、水素を選択的に透過する水素分
離膜(メンブレン)を改質反応場と共存させることによ
って改質反応と水素精製を同時に処理するメンブレンリ
アクタの概念が、すでに特開昭61−17401号およ
び特願平4−321502号などで提案されている。し
かしながら、これらの先願では、リアクタの基本原理の
提案のみにとどまっており、大型化が容易な実用的リア
クタ構成、特に加熱方式、各流体の供給排出法の具体例
は示されていない。すなわち、これらの先願では、図3
に示すように水素を選択的に透過する水素透過管を内管
として、その外部に触媒反応管を外管として同心円筒状
に配置し、当該内管と外管の間の円環状空間に改質触媒
を充填し、外管壁を適当な熱媒体で、加熱することが示
されており、この考えを拡張して大型実用機の構成を考
えると、必然的に多管式のリアクタとなり、構造は複
雑、重量大、熱容量大、従って起動・停止性および負荷
追従性不良等の問題が生じる。Therefore, the concept of a membrane reactor that simultaneously processes a reforming reaction and hydrogen purification by making a hydrogen separation membrane (membrane) that selectively permeates hydrogen coexist with a reforming reaction field has already been disclosed in Japanese Patent Laid-Open No. 61-61. No. 17401 and Japanese Patent Application No. 4-321502. However, in these prior applications, only the basic principle of the reactor is proposed, and a practical reactor configuration that can be easily increased in size, in particular, a heating system and a supply / discharge method of each fluid are not shown. That is, in these prior applications, FIG.
As shown in Fig. 5, a hydrogen permeation tube that selectively permeates hydrogen is used as the inner tube, and the catalytic reaction tube is placed as the outer tube in a concentric cylindrical shape outside the inner tube. It has been shown that the outer tube wall is heated with an appropriate heat medium by filling the catalyst with a high-quality catalyst, and if this idea is expanded to consider the configuration of a large-scale practical machine, it will inevitably become a multi-tube reactor. The structure is complicated, has a large weight, and has a large heat capacity, and therefore problems such as poor startability / stopability and poor load followability occur.
【0005】本発明は上述の点にかんがみてなされたも
ので、従来のプロセスに使用されていた改質器、一酸化
炭素変成器及び水素精製器の反応を一つにまとめて実施
し高純度の水素を製造することができるいわゆるメンブ
レンリアクタ型の実用性高い水素製造装置を提供するこ
とを目的とする。The present invention has been made in view of the above points, and the reactions of the reformer, the carbon monoxide shift converter and the hydrogen purifier, which have been used in the conventional process, are collectively carried out to obtain a high purity. It is an object of the present invention to provide a so-called membrane reactor-type highly practical hydrogen production device capable of producing hydrogen.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するた
め、本発明は炭化水素およびまたはアルコール類等から
水蒸気改質反応により水素を製造する装置において、直
立円筒状バーナと、該バーナを囲繞する輻射板と、該輻
射板から一定の間隔を空けて該輻射板の外周に環状に配
置され上部にオフガスの排出口を有し底部が開放された
中空二重壁の密閉状反応容器と、該反応容器の二重壁の
間の中空部内に環状に配置され上部にスイープガスの流
入口を有し下端が閉じられた複数個の直立状水素透過管
と、前記反応容器の外壁及び底部を一定の間隙を保持し
て囲繞し上部に原料ガスと水蒸気の流入口を有し且つ反
応容器の内壁に接続した底部を備えている密閉状内槽
と、該内槽を囲繞し前記バーナ内の燃焼排ガスを前記輻
射板の上部から取り入れて前記反応容器の内壁及び底面
に接触させ前記内槽の外面に沿って上昇させて排出する
ようにした密閉状外槽とを具備し、前記水素透過管の中
に同軸に挿入され上部に水素及びスイープガスの排出口
を備え底部が該水素透過管の底部近くに開口したスイー
プガス管を設け、前記反応容器の中空部内で前記水素透
過管の周囲に改質触媒を充填したことを特徴とする。In order to solve the above problems, the present invention is an apparatus for producing hydrogen from hydrocarbons and / or alcohols by a steam reforming reaction, which encloses an upright cylindrical burner and the burner. A radiation plate, and a hollow double-walled closed reaction vessel which is annularly arranged on the outer periphery of the radiation plate at a constant distance from the radiation plate and has an offgas discharge port at the top and an open bottom. A plurality of upright hydrogen permeation tubes, which are annularly arranged in the hollow portion between the double walls of the reaction vessel and have a sweep gas inlet at the top and a closed bottom, and the outer wall and bottom of the reaction vessel are fixed. A closed inner tank having a bottom part connected to the inner wall of the reaction vessel and having an inlet for raw material gas and water vapor in the upper part of the combustion chamber surrounded by the inner wall of the burner. Intake exhaust gas from above the radiation plate And a closed outer tank which is brought into contact with the inner wall and the bottom surface of the reaction vessel so as to rise along the outer surface of the inner tank and discharge the hydrogen. And a sweep gas pipe provided with a sweep gas outlet and having a bottom opening near the bottom of the hydrogen permeation pipe, wherein a reforming catalyst is filled around the hydrogen permeation pipe in the hollow portion of the reaction vessel. To do.
【0007】[0007]
【作用】本発明の水素製造装置は改質触媒、水素透過管
(パラジウム薄膜ほか)、加熱用バーナ等で構成された
水素透過膜方式改質器であり、炭化水素およびまたはア
ルコール類から直接高純度水素を造ることができる。す
なわち、反応容器の触媒層の中に水素透過管を設けるこ
とにより簡便に高純度水素を得ることができ、中央にバ
ーナを設けかつバーナの周囲に輻射板を設けることによ
り触媒層に熱を効率良く伝え、バーナの燃焼排ガスが原
料ガスの流れる内槽の外側を流れるので原料ガスの予熱
ができ、スイープガスが触媒層中のガスの流れと対向流
となるので効率良く水素を透過する。また、水素透過管
により化学平衡をずらし、改質温度(700〜800
℃)を150〜200℃低下させる。The hydrogen producing apparatus of the present invention is a hydrogen permeable membrane type reformer composed of a reforming catalyst, a hydrogen permeable tube (palladium thin film and others), a heating burner, etc. Pure hydrogen can be produced. That is, high-purity hydrogen can be easily obtained by providing a hydrogen permeation tube in the catalyst layer of the reaction vessel, and heat can be efficiently transferred to the catalyst layer by providing a burner in the center and a radiation plate around the burner. Well, the combustion exhaust gas of the burner flows outside the inner tank in which the raw material gas flows, so that the raw material gas can be preheated, and the sweep gas becomes a counterflow to the gas flow in the catalyst layer, so that hydrogen is efficiently permeated. In addition, the chemical equilibrium is shifted by the hydrogen permeation tube, and the reforming temperature (700-800
C) is reduced by 150 to 200 ° C.
【0008】[0008]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。Embodiments of the present invention will be described below with reference to the drawings.
【0009】図1は本発明の水素製造装置の概略構成を
示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing a schematic structure of the hydrogen production apparatus of the present invention.
【0010】図2は図1のII−II断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.
【0011】環状の耐火材で構築された底部8の中央孔
から吹き込まれる都市ガスや天然ガス等の燃料を燃焼さ
せて高温の燃焼排ガスを発生する直立円筒状バーナ1が
水素製造装置の中心に設けられている。図1の水素製造
装置はその外周に取り付けられるマニホルド類や防護カ
バー材を取外した状態で示している。An upright cylindrical burner 1 which burns fuel such as city gas or natural gas blown from a central hole of the bottom portion 8 constructed of an annular refractory material to generate high temperature flue gas is at the center of the hydrogen production apparatus. It is provided. The hydrogen production apparatus of FIG. 1 is shown with the manifolds and protective cover material attached to the outer periphery thereof removed.
【0012】該バーナ1を中心にして、その外周に円筒
形の輻射板2が設けられ、バーナ1の内部の高温ガスは
バーナ1の天井板1aと輻射板2の上部周縁の間から外
方へ排出されるよう構成されている。A cylindrical radiant plate 2 is provided around the burner 1 at the outer periphery thereof, and the high temperature gas inside the burner 1 is directed outward from between the ceiling plate 1a of the burner 1 and the upper peripheral edge of the radiant plate 2. It is configured to be discharged to.
【0013】輻射板2の外周に、この輻射板2から一定
の間隙をおいて、内壁3aと外壁3bからなる二重壁構
造の反応容器3が配置されている。外壁3bの上端は天
井板3eで覆われ、内壁3aの上端はバーナ1の天井板
1aに接続し、反応容器3全体が気密状に構成されてい
る。また、反応容器3はオフガスの排出口3cを上部に
有し且つ底部3dが開口されている。オフガスは生成し
たガスから水素を透過除去したものである。On the outer periphery of the radiation plate 2, a reaction vessel 3 having a double-wall structure composed of an inner wall 3a and an outer wall 3b is arranged with a constant gap from the radiation plate 2. The upper end of the outer wall 3b is covered with a ceiling plate 3e, the upper end of the inner wall 3a is connected to the ceiling plate 1a of the burner 1, and the entire reaction vessel 3 is airtight. Further, the reaction container 3 has an offgas discharge port 3c at the top and an opening at the bottom 3d. The off-gas is the generated gas obtained by permeating and removing hydrogen.
【0014】複数個(図2では8個)の水素透過管4が
反応容器3の二重壁構造の内壁3aと外壁3bの間の中
空部内にほぼ等間隔に環状にそれぞれ直立状態に配置さ
れている。また、水素透過管4の上端は反応容器3の天
井板3eから上方に突出している。この水素透過管4は
上部にスイープガスの流入口4aを有し、且つ下端に閉
じられた底部4cを有する。スイープガスは水素透過管
4で生成した水素を掃気するためのガスである。A plurality (eight in FIG. 2) of hydrogen permeation pipes 4 are annularly arranged upright at substantially equal intervals in the hollow portion between the inner wall 3a and the outer wall 3b of the double-wall structure of the reaction vessel 3. ing. Further, the upper end of the hydrogen permeation tube 4 projects upward from the ceiling plate 3e of the reaction vessel 3. The hydrogen permeation tube 4 has a sweep gas inlet 4a at the top and a closed bottom 4c at the bottom. The sweep gas is a gas for scavenging hydrogen generated in the hydrogen permeation tube 4.
【0015】反応容器3の内壁3aと外壁3bの間の中
空部内において、水素透過管4の周囲に改質触媒7を充
填している。A reforming catalyst 7 is filled around the hydrogen permeation pipe 4 in the hollow portion between the inner wall 3a and the outer wall 3b of the reaction vessel 3.
【0016】スイープガス管9が水素透過管4の中にこ
れと同軸に挿入されている。スイープガス管9は上部に
水素及びスイープガス排出口9aを備え且つ底部が該水
素透過管の底部近くに開口している。A sweep gas pipe 9 is inserted into the hydrogen permeation pipe 4 coaxially therewith. The sweep gas pipe 9 is provided with a hydrogen and sweep gas discharge port 9a at the top and has a bottom opening near the bottom of the hydrogen permeation pipe.
【0017】内槽5が反応容器3の外壁3b及び開口底
部3dを一定の間隙をおいて気密状に囲繞するように設
けられている。内槽5は上部に原料ガスと水蒸気の流入
口5aを有し、且つ反応容器3の内壁3aに接続した底
部5bと外壁を備えている。外槽6が内槽5の外壁と底
部5bを気密状に囲繞し、水素製造装置の最外部として
設けられている。外槽6の底壁6bはバーナ1の外壁に
接続されている。外槽6はバーナ1内の高温燃焼排ガス
を輻射板2の上部から取り入れて反応容器3の内壁3a
と内槽5の底部5bに接触させて流動し、さらに内槽5
の外壁に沿って上昇させ、上端に設けた燃焼排ガス排出
口6aから排出するように構成している。The inner tank 5 is provided so as to surround the outer wall 3b and the opening bottom portion 3d of the reaction vessel 3 in a gas-tight manner with a constant gap. The inner tank 5 has an inlet 5a for raw material gas and water vapor in the upper part, and is provided with a bottom portion 5b connected to the inner wall 3a of the reaction vessel 3 and an outer wall. The outer tank 6 encloses the outer wall of the inner tank 5 and the bottom portion 5b in an airtight manner, and is provided as the outermost part of the hydrogen production apparatus. The bottom wall 6b of the outer tank 6 is connected to the outer wall of the burner 1. The outer tank 6 takes in the high-temperature combustion exhaust gas in the burner 1 from the upper part of the radiation plate 2 and receives the inner wall 3 a of the reaction vessel 3.
And the bottom portion 5b of the inner tank 5 to flow,
It is configured to rise along the outer wall of the above and to be discharged from the combustion exhaust gas discharge port 6a provided at the upper end.
【0018】上記構成になる本発明の水素製造装置は次
のように作動する。The hydrogen production apparatus of the present invention having the above-mentioned structure operates as follows.
【0019】バーナ1の中で燃料を燃焼することにより
高温の燃焼排ガスを発生する。燃焼排ガスは、矢印Cの
方向に、バーナ1の天井板1aと輻射板2の上部周縁の
間から輻射板2と反応容器3の内壁3aとの間の環状間
隙に流入して内壁3aに沿って下降し、この際、輻射板
2により効率良く均等に反応容器3の中の改質触媒7に
熱を伝え、さらに、内槽5と外槽6の間を上昇して、外
槽6の燃焼排ガス排出口6aから外部へ排出され、この
際、内槽5の内部を効率的に加熱し、下降中の原料ガス
及び水蒸気を予熱し、さらにその内側の改質触媒7も加
熱する。By burning the fuel in the burner 1, high temperature combustion exhaust gas is generated. The combustion exhaust gas flows in the direction of arrow C from between the ceiling plate 1a of the burner 1 and the upper peripheral edge of the radiant plate 2 into the annular gap between the radiant plate 2 and the inner wall 3a of the reaction vessel 3 and follows the inner wall 3a. At this time, heat is efficiently and evenly transferred to the reforming catalyst 7 in the reaction vessel 3 by the radiant plate 2, and further the space between the inner tank 5 and the outer tank 6 is raised to reach the outer tank 6. It is discharged from the combustion exhaust gas discharge port 6a to the outside. At this time, the inside of the inner tank 5 is efficiently heated, the raw material gas and steam being descended are preheated, and the reforming catalyst 7 inside thereof is also heated.
【0020】原料ガス及び水蒸気が内槽5の中に流入口
5aから矢印A方向に流入され、また、スイープガスが
水素透過管4の中に流入口4aから矢印B方向に流入さ
れる。Raw material gas and water vapor flow into the inner tank 5 from the inlet 5a in the direction of arrow A, and sweep gas flows into the hydrogen permeation pipe 4 from the inlet 4a in the direction of arrow B.
【0021】原料ガス及び水蒸気が内槽5の底部から反
応容器3の開口底部4cに入り、反応容器3の改質触媒
7の中を上昇する間に、燃料ガスの燃焼により発生する
熱で炭化水素を水蒸気改質して水素を製造する。この時
の反応式は、メタンの例で示すと、次のようである。 この水素は水素透過管4の中に透過侵入し、ここからス
イープガスによりスイープガス管9を通じて排出口9a
から矢印D方向に外部へ押し出される。また、反応容器
3の中の炭酸ガスのようなオフガスは排出口3cから矢
印E方向に外部へ排出される。この際、改質触媒7の中
のオフガスの排出流動方向は水素透過管4の中のスイー
プガスの流入方向に対し対向方向である。その結果、改
質触媒7の中の水素を水素透過管4の中へ効率良く透過
することができる。While the raw material gas and water vapor enter the opening bottom portion 4c of the reaction vessel 3 from the bottom portion of the inner tank 5 and rise in the reforming catalyst 7 of the reaction vessel 3, carbonization is performed by heat generated by combustion of the fuel gas. Hydrogen is produced by steam reforming hydrogen. The reaction formula at this time is as follows, when an example of methane is shown. This hydrogen permeates into the hydrogen permeation pipe 4, and from there, through the sweep gas pipe 9 by the sweep gas, the discharge port 9a.
Is pushed out in the direction of arrow D from. Further, the off gas such as carbon dioxide gas in the reaction container 3 is discharged to the outside from the discharge port 3c in the direction of arrow E. At this time, the discharge flow direction of the off gas in the reforming catalyst 7 is the opposite direction to the inflow direction of the sweep gas in the hydrogen permeation pipe 4. As a result, hydrogen in the reforming catalyst 7 can be efficiently permeated into the hydrogen permeation pipe 4.
【0022】上記実施例の装置を逆さにして、バーナに
燃料を上方から吹き込んで燃焼させ、スイープガスや原
料ガス、水蒸気を下部から流入させ、水素やオフガスを
下部から排出するように構成することもできる。The apparatus of the above embodiment is inverted so that the burner is blown with fuel from above to burn, and sweep gas, raw material gas, and steam are introduced from the lower part, and hydrogen and off-gas are discharged from the lower part. You can also
【0023】上記構成の装置に使用できる水素透過管4
としては水素を選択的に透過する膜で、かつ耐熱性を有
する膜が用いられる。例えば膜厚100μm以上のPd
を含有する合金膜または多孔体に膜厚50μm以下のP
dを含有する薄膜をコーティングしたものが用いられ
る。Pdを含有する膜はPd100%またはPdを10
重量%以上含有する合金をさし、Pdを10重量%以上
含有する合金としてはPd以外にPt,Ph,Ru,I
rなどのVIII族元素、Cu,Ag,AuなどのIb族元
素を含有するものをさす。上記膜以外にV(バナジウ
ム)を含有する合金膜、例えばNi−Co−V合金にP
dをコーティングした膜などが用いられる。また上記多
孔体としてはセラミックス製多孔体または金属多孔体が
用いられる。これらの多孔体にPdまたはVを含有する
薄膜をコーティングする方法としてはメッキなどの液相
法、真空蒸着法、イオンプレーティング法、気相化学反
応法(CVD)などの気相法ほか、合金箔を添付する方
法が用いられる。Hydrogen permeation tube 4 which can be used in the apparatus having the above construction
As the film, a film that selectively permeates hydrogen and has heat resistance is used. For example, Pd with a film thickness of 100 μm or more
Alloy film or porous material containing P with a thickness of 50 μm or less
The thing coated with the thin film containing d is used. A film containing Pd contains 100% Pd or 10 Pd.
Alloys containing Pd, Ph, Ru, I other than Pd are alloys containing Pd of 10 wt% or more.
It refers to an element containing a Group VIII element such as r and an Ib group element such as Cu, Ag, and Au. In addition to the above films, alloy films containing V (vanadium), such as Ni-Co-V alloys with P
A film coated with d or the like is used. A ceramic porous body or a metal porous body is used as the porous body. As a method of coating a thin film containing Pd or V on these porous bodies, a liquid phase method such as plating, a vacuum deposition method, an ion plating method, a vapor phase method such as a vapor phase chemical reaction method (CVD), an alloy, etc. A method of attaching foil is used.
【0024】また、触媒としては第VIII族金属(Fe,
Co,Ni,Ru,Rh,Pd,Pt等)を含有する触
媒が好ましく、Ni,Ru,Rhを担持した触媒または
NiO含有触媒が特に好ましい。Further, as a catalyst, a Group VIII metal (Fe,
A catalyst containing Co, Ni, Ru, Rh, Pd, Pt, etc.) is preferable, and a catalyst supporting Ni, Ru, Rh or a NiO-containing catalyst is particularly preferable.
【0025】[0025]
【実施の具体例】本発明の実施の具体例を以下に説明す
る。 (1)装置寸法と材質 ・水素透過管4: 内径16mm×有効長600mm ・反応容器3: 内壁3a: 内径180mm×触媒
充填高620mm 外壁3b: 内径250mm×有効長600mm ・内層5の最外壁: 内径256mm×有効長600mm ・材質: オーステナイト系ステンレス鋼を
採用 (2)水素透過管 強度支持部材としては、ステンレス製の金網の多層加圧
焼結体の上に、さらに同材質で細い線径の金属繊維によ
る不織布を拡散接合した板材を円筒状に曲げ加工し、さ
らに継ぎ目部を溶接することで多孔質管を構成したもの
を用いた。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below. (1) Equipment dimensions and materials ・ Hydrogen permeation tube 4: Inner diameter 16 mm × Effective length 600 mm ・ Reaction vessel 3: Inner wall 3a: Inner diameter 180 mm × Catalyst filling height 620 mm Outer wall 3b: Inner diameter 250 mm × Effective length 600 mm ・ Outermost wall of inner layer 5: Inner diameter 256 mm x effective length 600 mm ・ Material: Austenitic stainless steel is adopted. (2) Hydrogen permeation tube As a strength supporting member, the same material with a thin wire diameter is used on the multilayer pressure sintered body of stainless steel wire mesh. A porous tube was formed by bending a plate material in which a nonwoven fabric made of metal fibers was diffusion-bonded into a cylindrical shape, and then welding the joint portion.
【0026】さらに、上記多孔質管の外面上に、無電解
メッキ法により、パラジウムの薄膜を形成させたものを
用いた。 (3)改質触媒 メタン等のスチームリフォーミング触媒としてはNiを
含有する平均粒径1mmの触媒を、前述の反応容器3の内
壁3aと外壁3bとの間に充填した。 (4)燃料ガス 燃料ガスとしては、都市ガスおよび改質後のガスのうち
水素透過管を透過しなかった残りの部分すなわちプロセ
スオフガスを用いた。 (5)燃焼側の状態 ・都市ガス (流量): 11.7モル/h (供給温度):25℃ ・プロセスオフガス(流量): 97.8モル/h (供給温度):550℃ (組成): H2 8.4%、CO 6.3%、CO
2 55%、CH4 7.5%、残部 H2 O ・燃焼空気 (流量): 326モル/h (供給温度):420℃ ・燃焼圧力: 1.05kg/cm2 (6)プロセスガス側の状態 ・原料ガス(都市ガス)と水蒸気の混合ガス (流量):194モル/h このうち都市ガスは57.0モル/h (組成):CH4 26.0%、C2 H6 1.35%、C
3 H8 1.59%、n−C4 H10 0.44% 残部 H2 O ・改質温度(入口→出口): 500 → 550℃ ・改質圧力(入口→出口): 6.03→ 5.98k
g/cm2 ・改質ガス(出口組成): 前記(5)のプロセスオフ
ガスの組成に同じ (7)水素透過下流側の状態 ・入口でのスイープガス(水蒸気を使用) (流量):140モル/h (温度):500℃ (圧力):1.21kg/cm2 (組成):H2 O 100% ・出口でのスイープガス(水蒸気と透過水素の混合ガ
ス) (流量):358モル/h (温度):550℃ (圧力):1.13kg/cm2 (組成):H2 61.0%、残部H2 O 上述のとおり、図1および図2に示した本発明の装置を
用いて、都市ガスを水蒸気改質して水素を生成し、当該
水素を水素透過管で選択的に透過させてスイープガスと
しての水蒸気に同伴させて外部にとり出すことができ
た。すなわち、都市ガス57.0モル/hを原料ガスと
して送り込み、透過水素が358×0.61=218.
4モル/h得られたことになる。なお、透過水素は水蒸
気に同伴されているが、水蒸気は燃料電池の触媒にとっ
て不活性であることから、特に問題とならず、むしろ、
加湿を必要とする固体高分子型燃料電池では混入が好都
合な成分であり、また触媒被毒成分である一酸化炭素は
分析センサーの検出限界以下(1ppm 以下)であった。Further, a palladium thin film was formed on the outer surface of the porous tube by electroless plating. (3) Reforming catalyst As a steam reforming catalyst such as methane, a catalyst containing Ni and having an average particle diameter of 1 mm was filled between the inner wall 3a and the outer wall 3b of the reaction vessel 3 described above. (4) Fuel gas As the fuel gas, the remaining portion of the city gas and the reformed gas that did not pass through the hydrogen permeation tube, that is, the process off gas was used. (5) State on combustion side-City gas (flow rate): 11.7 mol / h (supply temperature): 25 ° C-Process off gas (flow rate): 97.8 mol / h (supply temperature): 550 ° C (composition) : H 2 8.4%, CO 6.3%, CO
2 55%, CH 4 7.5%, balance H 2 O ・ Combustion air (flow rate): 326 mol / h (supply temperature): 420 ° C. ・ Combustion pressure: 1.05 kg / cm 2 (6) Process gas side State ・ Mixed gas (flow rate) of raw material gas (city gas) and steam: 194 mol / h Of which, city gas is 57.0 mol / h (composition): CH 4 26.0%, C 2 H 6 1.35 %, C
3 H 8 1.59%, n- C 4 H 10 0.44% the balance H 2 O · reforming temperature (inlet → outlet): 500 → 550 ℃ · reforming pressure (inlet → exit): 6.03 → 5.98k
g / cm 2・ Reformed gas (composition of outlet): Same as the composition of process off-gas of (5) (7) State of hydrogen permeation downstream ・ Sweep gas (using steam) at inlet (flow rate): 140 mol / H (temperature): 500 ° C. (pressure): 1.21 kg / cm 2 (composition): H 2 O 100% ・ Sweep gas (mixed gas of water vapor and permeated hydrogen) at the outlet (flow rate): 358 mol / h (Temperature): 550 ° C. (Pressure): 1.13 kg / cm 2 (Composition): H 2 61.0%, balance H 2 O As described above, using the apparatus of the present invention shown in FIGS. 1 and 2. , City gas was steam-reformed to produce hydrogen, and the hydrogen could be selectively permeated through a hydrogen permeation tube, entrained in steam as a sweep gas, and taken out to the outside. That is, 57.0 mol / h of city gas was sent as a raw material gas, and permeated hydrogen was 358 × 0.61 = 218.
This means that 4 mol / h was obtained. Incidentally, the permeated hydrogen is entrained in the water vapor, but since the water vapor is inactive to the catalyst of the fuel cell, there is no particular problem, rather,
In a polymer electrolyte fuel cell that requires humidification, it is a component that is easily mixed, and carbon monoxide, which is a catalyst poisoning component, is below the detection limit of the analytical sensor (1 ppm or less).
【0027】[0027]
【発明の効果】以上説明したように、本発明によれば下
記のような優れた効果が得られる。 (1)炭化水素およびまたはアルコール類から直接に高
純度の水素を造ることができる。 (2)バーナ、輻射板、改質触媒層、水素透過管、スイ
ープガス管、内槽、外槽が効率的に配置され、伝熱性が
向上し、発生熱エネルギーが有効に利用され、省エネル
ギープロセスが実現し、水素製造能力が向上し、装置全
体がコンパクトになる。すなわち、多管式の改質装置に
比較して大幅に構造が簡素化されている。 (3)多管式に比べて軽量化されていることから、熱容
量が小となり、起動・停止、負荷変更時の応答性が良好
となる。 (4)中央部に火炉を設けていることから、輻射による
半径方向の伝熱速度が大きくなり、かつ熱流束分布を均
一にし易い。従って、水素透過管と改質触媒の耐熱温度
を超過するようなホットスポットの発生を防止しうる。 (5)燃焼排ガスとプロセスフィードガスを向流で熱交
換することで、排熱回収が図られている。このための別
置きの熱交換器を設置する必要がない。 (6)水素透過管内を流通するスイープガスと、改質触
媒層内を流れる改質ガスとを水素透過管壁を介して向流
接触により物質移動させていることから、改質ガス中水
素の回収率を高めると共に、透過ガス中の水素濃度を高
くすることを可能としている。 (7)反応後の分離、精製工程が省略される。 (8)水素透過管により化学平衡をずらし、改質温度を
従来より150〜200℃低下させ、装置の製作に使用
する材料の選択範囲を拡大し、価格を低廉にし、装置の
耐久性を向上させる。As described above, according to the present invention, the following excellent effects can be obtained. (1) High-purity hydrogen can be directly produced from hydrocarbons and / or alcohols. (2) Burner, radiant plate, reforming catalyst layer, hydrogen permeation pipe, sweep gas pipe, inner tank, outer tank are efficiently arranged, heat transfer is improved, generated heat energy is effectively used, energy saving process Will be realized, the hydrogen production capacity will be improved, and the entire system will be compact. That is, the structure is greatly simplified as compared with the multi-tube reformer. (3) Since it is lighter than the multi-tube type, it has a small heat capacity and good responsiveness at the time of start / stop and load change. (4) Since the furnace is provided in the central portion, the heat transfer rate in the radial direction due to radiation is increased, and the heat flux distribution is easily made uniform. Therefore, it is possible to prevent the occurrence of hot spots that exceed the heat resistant temperatures of the hydrogen permeation tube and the reforming catalyst. (5) Exhaust heat is recovered by exchanging heat between the combustion exhaust gas and the process feed gas in a counterflow. There is no need to install a separate heat exchanger for this purpose. (6) Since the sweep gas flowing in the hydrogen permeation pipe and the reformed gas flowing in the reforming catalyst layer are mass-transferred by countercurrent contact via the hydrogen permeation pipe wall, It is possible to increase the recovery rate and increase the hydrogen concentration in the permeated gas. (7) The separation and purification steps after the reaction are omitted. (8) The hydrogen permeation tube shifts the chemical equilibrium, lowers the reforming temperature by 150 to 200 ° C, expands the selection range of materials used for manufacturing the device, lowers the price, and improves the durability of the device. Let
【図1】本発明の水素製造装置の概略構成を示す縦断面
図である。FIG. 1 is a vertical sectional view showing a schematic configuration of a hydrogen production device of the present invention.
【図2】図1のII−II断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG.
【図3】従来のメンブレンリアクタ型の水素製造装置の
原理図である。FIG. 3 is a principle diagram of a conventional membrane reactor type hydrogen production apparatus.
1 バーナ 1a、3e 天井板 2 輻射板 3 反応容器 3a 内壁 3b 外壁 3c オフガス排出口 3d 開口底部 4 水素透過管 4a、5a 流入口 4c、5b 底部 5 内槽 6 外槽 6a 排出口 6b 底壁 7 改質触媒 8 バーナタイル 9 スイープガス管 9a スイープガス排出口 1 burner 1a, 3e ceiling plate 2 radiation plate 3 reaction vessel 3a inner wall 3b outer wall 3c off-gas discharge port 3d opening bottom 4 hydrogen permeation pipe 4a, 5a inlet 4c, 5b bottom 5 inner tank 6 outer tank 6a discharge port 6b bottom wall 7 Reforming catalyst 8 Burner tile 9 Sweep gas pipe 9a Sweep gas outlet
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 洋 神奈川県横浜市緑区あざみ野3−2−15− 106 (72)発明者 黒田 健之助 東京都新宿区富久町15−1 三菱重工業株 式会社エンジニアリングセンター内 (72)発明者 牧原 洋 広島県広島市西区観音新町4−6−22 三 菱重工業株式会社広島研究所内 (72)発明者 小林 一登 広島県広島市西区観音新町4−6−22 三 菱重工業株式会社広島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Uchida 3-2-15-106 Azamino, Midori-ku, Yokohama, Kanagawa Prefecture (72) Kennosuke Kuroda 15-1 Tomihisacho, Shinjuku-ku, Tokyo Mitsubishi Heavy Industries Engineering Co., Ltd. In the center (72) Inventor Hiroshi Makihara 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Sanryoh Heavy Industries Ltd. Hiroshima Research Institute (72) Inventor Kazuto Kobayashi 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Hishi Heavy Industries Ltd. Hiroshima Research Center
Claims (1)
ら水蒸気改質反応により水素を製造する装置において、
直立円筒状バーナと、該バーナを囲繞する輻射板と、該
輻射板から一定の間隔を空けて該輻射板の外周に環状に
配置され上部にオフガスの排出口を有し底部が開放され
た中空二重壁の密閉状反応容器と、該反応容器の二重壁
の間の中空部内に環状に配置され上部にスイープガスの
流入口を有し下端が閉じられた複数個の直立状水素透過
管と、前記反応容器の外壁及び底部を一定の間隙を保持
して囲繞し上部に原料ガスと水蒸気の流入口を有し且つ
反応容器の内壁に接続した底部を備えている密閉状内槽
と、該内槽を囲繞し前記バーナ内の燃焼ガスを前記輻射
板の上部から取り入れて前記反応容器の内壁及び底面に
接触させ前記内槽の外面に沿って上昇させて排出するよ
うにした密閉状外槽とを具備し、前記水素透過管の中に
同軸に挿入され上部に水素及びスイープガスの排出口を
備え底部が該水素透過管の底部近くに開口したスイープ
ガス管を設け、前記反応容器の中空部内で前記水素透過
管の周囲に改質触媒を充填したことを特徴とする水素製
造装置。1. An apparatus for producing hydrogen from a hydrocarbon and / or alcohol by a steam reforming reaction,
An upright cylindrical burner, a radiant plate surrounding the burner, and a hollow with an off gas discharge port on the upper part and an open bottom part that is annularly arranged on the outer periphery of the radiant plate with a certain distance from the radiant plate. A double-walled closed reaction vessel, and a plurality of upright hydrogen permeation tubes annularly arranged in the hollow space between the double walls of the reaction vessel and having a sweep gas inlet at the top and a closed bottom. And a closed inner tank having an outer wall and a bottom portion of the reaction vessel which are surrounded by a constant gap and which has an inlet for raw material gas and water vapor in the upper portion and which has a bottom portion connected to the inner wall of the reaction vessel, A hermetically sealed outside which surrounds the inner tank and takes in the combustion gas in the burner from the upper part of the radiant plate so as to contact the inner wall and the bottom surface of the reaction vessel and raise and discharge along the outer surface of the inner tank. And a tank, which is coaxially inserted into the hydrogen permeation tube. A sweep gas pipe having an outlet for hydrogen and a sweep gas and having a bottom opening near the bottom of the hydrogen permeation pipe is provided, and the reforming catalyst is filled around the hydrogen permeation pipe in the hollow portion of the reaction vessel. Characteristic hydrogen production equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5166349A JPH06345405A (en) | 1993-06-11 | 1993-06-11 | Hydrogen production device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5166349A JPH06345405A (en) | 1993-06-11 | 1993-06-11 | Hydrogen production device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06345405A true JPH06345405A (en) | 1994-12-20 |
Family
ID=15829736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5166349A Withdrawn JPH06345405A (en) | 1993-06-11 | 1993-06-11 | Hydrogen production device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06345405A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005077823A1 (en) * | 2004-02-17 | 2005-08-25 | Matsushita Electric Industrial Co., Ltd. | Hydrogen producing device and fuel cell system with the same |
JP2007031249A (en) * | 2005-07-29 | 2007-02-08 | Idemitsu Kosan Co Ltd | Reformer |
US10118148B2 (en) | 2015-06-08 | 2018-11-06 | Ihi Corporation | Reactor |
CN112234234A (en) * | 2020-10-27 | 2021-01-15 | 哈尔滨工业大学 | Charging, heating and lighting integrated emergency energy system |
WO2021257380A1 (en) * | 2020-06-18 | 2021-12-23 | Saudi Arabian Oil Company | Hydrogen production with membrane reactor |
WO2021257379A1 (en) * | 2020-06-18 | 2021-12-23 | Saudi Arabian Oil Company | Hydrogen production with membrane reformer |
WO2021257381A1 (en) * | 2020-06-18 | 2021-12-23 | Saudi Arabian Oil Company | Hydrogen production with membrane reformer |
US11492255B2 (en) | 2020-04-03 | 2022-11-08 | Saudi Arabian Oil Company | Steam methane reforming with steam regeneration |
US11617981B1 (en) | 2022-01-03 | 2023-04-04 | Saudi Arabian Oil Company | Method for capturing CO2 with assisted vapor compression |
-
1993
- 1993-06-11 JP JP5166349A patent/JPH06345405A/en not_active Withdrawn
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005077823A1 (en) * | 2004-02-17 | 2005-08-25 | Matsushita Electric Industrial Co., Ltd. | Hydrogen producing device and fuel cell system with the same |
CN100460311C (en) * | 2004-02-17 | 2009-02-11 | 松下电器产业株式会社 | Hydrogen producing device and fuel cell system with the same |
JP2007031249A (en) * | 2005-07-29 | 2007-02-08 | Idemitsu Kosan Co Ltd | Reformer |
JP4664767B2 (en) * | 2005-07-29 | 2011-04-06 | 出光興産株式会社 | Reformer |
US10118148B2 (en) | 2015-06-08 | 2018-11-06 | Ihi Corporation | Reactor |
KR20200011620A (en) | 2015-06-08 | 2020-02-03 | 가부시키가이샤 아이에이치아이 | Reactor |
US12084346B2 (en) | 2020-04-03 | 2024-09-10 | Saudi Arabian Oil Company | Steam methane reforming with steam regeneration |
US11492255B2 (en) | 2020-04-03 | 2022-11-08 | Saudi Arabian Oil Company | Steam methane reforming with steam regeneration |
WO2021257379A1 (en) * | 2020-06-18 | 2021-12-23 | Saudi Arabian Oil Company | Hydrogen production with membrane reformer |
WO2021257381A1 (en) * | 2020-06-18 | 2021-12-23 | Saudi Arabian Oil Company | Hydrogen production with membrane reformer |
US11492254B2 (en) | 2020-06-18 | 2022-11-08 | Saudi Arabian Oil Company | Hydrogen production with membrane reformer |
WO2021257380A1 (en) * | 2020-06-18 | 2021-12-23 | Saudi Arabian Oil Company | Hydrogen production with membrane reactor |
US11583824B2 (en) | 2020-06-18 | 2023-02-21 | Saudi Arabian Oil Company | Hydrogen production with membrane reformer |
US11999619B2 (en) | 2020-06-18 | 2024-06-04 | Saudi Arabian Oil Company | Hydrogen production with membrane reactor |
CN112234234B (en) * | 2020-10-27 | 2024-04-26 | 哈尔滨工业大学 | Integrative emergent energy system of heating illumination charges |
CN112234234A (en) * | 2020-10-27 | 2021-01-15 | 哈尔滨工业大学 | Charging, heating and lighting integrated emergency energy system |
US11617981B1 (en) | 2022-01-03 | 2023-04-04 | Saudi Arabian Oil Company | Method for capturing CO2 with assisted vapor compression |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11253831B2 (en) | Catalytically heated fuel processor with replaceable structured supports bearing catalyst for fuel cell | |
US6171574B1 (en) | Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel | |
EP0615949B1 (en) | Hydrogen producing apparatus | |
US6461408B2 (en) | Hydrogen generator | |
CN107073427B (en) | Shell-and-tube reactor for reforming natural gas and method for producing synthesis gas or hydrogen using the same | |
US8273314B2 (en) | Internal combustion exchanger-reactor for fixed bed endothermic reaction | |
US5931987A (en) | Apparatus and methods for gas extraction | |
US20060248800A1 (en) | Apparatus and process for production of high purity hydrogen | |
JPS6117401A (en) | Method and device for converting steam by using coal or hydrocarbon | |
US6923944B2 (en) | Membrane reactor for gas extraction | |
CA2428548C (en) | Methanol-steam reformer | |
US4378336A (en) | Monolith reactor | |
JP3406021B2 (en) | Hydrogen production equipment | |
JPH06345405A (en) | Hydrogen production device | |
JP3197095B2 (en) | Hydrogen production equipment | |
JP3839598B2 (en) | Hydrogen production equipment | |
JP3202442B2 (en) | Hydrogen production equipment | |
JP3197097B2 (en) | Hydrogen production equipment | |
JP3839599B2 (en) | Hydrogen production equipment | |
JP2955054B2 (en) | Method and apparatus for producing hydrogen for fuel cells and supply method | |
JPH06345406A (en) | Hydrogen production device | |
JP3197098B2 (en) | Hydrogen production equipment | |
JP3197108B2 (en) | Hydrogen production equipment | |
JP3202441B2 (en) | Hydrogen production equipment | |
JPH092801A (en) | Hydrogen manufacturing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000905 |