JPH0631165A - Thin film-like catalyst for steam reforming - Google Patents
Thin film-like catalyst for steam reformingInfo
- Publication number
- JPH0631165A JPH0631165A JP4188200A JP18820092A JPH0631165A JP H0631165 A JPH0631165 A JP H0631165A JP 4188200 A JP4188200 A JP 4188200A JP 18820092 A JP18820092 A JP 18820092A JP H0631165 A JPH0631165 A JP H0631165A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- steam reforming
- thin film
- core
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 97
- 238000000629 steam reforming Methods 0.000 title claims abstract description 34
- 239000010409 thin film Substances 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 239000000919 ceramic Substances 0.000 claims abstract description 8
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 6
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000000446 fuel Substances 0.000 abstract description 12
- 229930195733 hydrocarbon Natural products 0.000 abstract description 8
- 238000009434 installation Methods 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 8
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 7
- 150000001298 alcohols Chemical class 0.000 abstract description 6
- 229910052703 rhodium Inorganic materials 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 description 34
- 239000007789 gas Substances 0.000 description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 239000010410 layer Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 238000002407 reforming Methods 0.000 description 8
- 239000011888 foil Substances 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 238000006057 reforming reaction Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 238000003618 dip coating Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000010884 ion-beam technique Methods 0.000 description 4
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 4
- 239000010948 rhodium Substances 0.000 description 4
- -1 sialon Chemical compound 0.000 description 4
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 3
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 2
- 239000003426 co-catalyst Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 235000010333 potassium nitrate Nutrition 0.000 description 2
- 239000004323 potassium nitrate Substances 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、炭化水素類又はアルコ
ール類と水蒸気との反応により水素を含有するガスを得
る反応を行うことのできる水蒸気改質反応用の触媒に関
し、特に、炭化水素類又はアルコール類を燃料とする燃
料電池用の燃料改質装置として好ましく適用することの
できる設置面積および反応器容積を小さくした薄型水蒸
気改質反応器用の触媒に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for a steam reforming reaction which can carry out a reaction to obtain a gas containing hydrogen by reacting a hydrocarbon or alcohol with steam. Alternatively, the present invention relates to a catalyst for a thin steam reforming reactor having a small installation area and a small reactor volume, which can be preferably applied as a fuel reforming device for a fuel cell using alcohol as a fuel.
【0002】[0002]
【従来の技術】従来の炭化水素類又はアルコール類と水
蒸気との反応により水素を含有するガスを得る反応を行
うことのできる水蒸気改質用触媒は、5〜20mmの厚み
を有する種々の型の打錠又は押し出し成型触媒である。2. Description of the Related Art Conventional steam reforming catalysts capable of carrying out a reaction to obtain a hydrogen-containing gas by reacting hydrocarbons or alcohols with steam are of various types having a thickness of 5 to 20 mm. It is a tableting or extrusion catalyst.
【0003】[0003]
【発明が解決しようとする課題】このような従来の成型
触媒を用いた反応装置は、水素発生量の少ないわりに、
設置面積および装置容積が大きかった。従って、小型オ
ンサイト型燃料電池パッケージを組み立てるときに、パ
ッケージ全体を小型にすることの大きな障害になってい
た。この障害を乗り越える手段として、近年、比較的大
きな口径の二重円筒の内部を燃焼室とし、外周の部分に
ペレット状に成型した水蒸気改室用触媒を充填した水蒸
気改質反応装置が提案され、これらの問題点がある程度
改良された。しかし、この装置は、未だその中心に大き
な燃焼室が残る点が問題であった。A reactor using such a conventional molded catalyst has a small amount of hydrogen generation,
The installation area and the device volume were large. Therefore, when assembling a small on-site fuel cell package, it has been a major obstacle to downsizing the entire package. As a means for overcoming this obstacle, in recent years, a steam reforming reaction device has been proposed in which the inside of a double cylinder having a relatively large diameter is used as a combustion chamber, and the outer peripheral portion is filled with a steam reforming chamber catalyst formed into pellets, These problems have been improved to some extent. However, this device has a problem that a large combustion chamber still remains in the center.
【0004】特開昭62−167203号公報において
は、この点の改良として、燃焼室も矩形状にし、水蒸気
改質反応室と交互に配列した反応装置が提案された。し
かし、この提案においても、ペレット状の触媒が水蒸気
改質部分と燃焼部分とに使用されているため、設置面
積、装置容積ともにまだ十分に小さいとは言えない。上
記の改良された比較的大きな口径の二重円筒式反応装
置、燃焼室も矩形状にし水蒸気改質反応室と交互に配列
した反応装置(以下、これらをまとめて改良型反応装置
と言う)のいずれにおいても、燃焼室および水蒸気改質
反応室を構成しているコンパーメントの大きさは、実用
的には一つのコンパートメントの幅当たり、20〜60
mm程度は必要であり、これら改良型反応装置全体として
は、設置面積、装置容積ともにまだかなりの大きさにな
る。このため、さらに小型化を進めることが求められて
いた。In order to improve this point, Japanese Unexamined Patent Publication (Kokai) No. 62-167203 proposes a reactor in which the combustion chamber has a rectangular shape and is alternately arranged with the steam reforming reaction chamber. However, even in this proposal, since the pellet-shaped catalyst is used in the steam reforming portion and the combustion portion, it cannot be said that the installation area and the apparatus volume are still sufficiently small. The above-mentioned improved double-cylindrical reactor having a relatively large diameter, reactors in which the combustion chamber is also rectangular and the steam reforming reaction chambers are alternately arranged (hereinafter collectively referred to as an improved reactor) In either case, the size of the compartments forming the combustion chamber and the steam reforming reaction chamber is practically 20 to 60 per width of one compartment.
It is necessary to have a size of about mm, and the installation area and the apparatus volume of the improved reactor as a whole are still considerably large. Therefore, further miniaturization has been demanded.
【0005】[0005]
【発明が解決しようとする課題】従って、本発明の目的
は炭化水素類又はアルコール類と水蒸気とを反応させて
水素を生成させる水蒸気改質反応において、反応器を従
来のものよりも極端に薄くすることができ、従って設置
面積、装置容積ともに上記改良反応装置よりも大幅に小
さくすることのできる全く新しい触媒を提供することに
ある。SUMMARY OF THE INVENTION Therefore, the object of the present invention is to make a reactor extremely thinner than a conventional reactor in a steam reforming reaction in which hydrocarbons or alcohols are reacted with steam to produce hydrogen. Therefore, it is an object of the present invention to provide a completely new catalyst which can be made much smaller than the above-mentioned improved reactor in terms of installation area and apparatus volume.
【0006】[0006]
【課題を解決するための手段】そこで本発明者らは、上
記の目的を達成するために鋭意研究を重ねた結果、特定
の芯と触媒活性成分とを組み合せて成型すれば、水蒸気
改質触媒は薄膜状とすることができ、これを用いれば水
蒸気改質室をプレート状の薄型として、水蒸気反応装置
の設置面積、反応器容積ともに極く小さくすることがで
きることを見出し、本発明を完成するに至った。The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, if a specific core and a catalytically active component are combined and molded, a steam reforming catalyst is obtained. It has been found that it is possible to make the film into a thin film, and if this is used, the steam reforming chamber can be made into a thin plate, and the installation area of the steam reactor and the reactor volume can be made extremely small, and the present invention is completed. Came to.
【0007】すなわち、本発明は金属又はセラミックよ
りなる厚さ0.01〜3mmの芯の表面の一部又は全部
に、Ni、Ru、Rh、Pt、Pd及びこれらの酸化物
から選ばれる物質を触媒活性成分として含有する層を形
成せしめてなる、厚さ0.015〜3.5mmの水蒸気改
質用薄膜状触媒を提供するものである。That is, according to the present invention, a material selected from Ni, Ru, Rh, Pt, Pd and oxides thereof is partially or entirely formed on the surface of a core made of metal or ceramic and having a thickness of 0.01 to 3 mm. A thin film catalyst for steam reforming having a thickness of 0.015 to 3.5 mm, which is formed by forming a layer containing a catalytically active component.
【0008】本発明触媒を構成する芯は、水蒸気改質反
応に悪影響を及ぼさず、触媒活性成分を固定し得る金属
又はセラミックスであれば特に制限されない。金属とし
ては、鉄鋼、アルミナ、ジルコニア、タングステン、モ
リブデン、クロム等が挙げられる。このうち、鋼として
はオーステナイト系ステンレス鋼 AISI316、3
04、321、347、309、310、314、イン
コネル、HK−40又はフェライト系ステンレス鋼 A
ISI410、430、431、446等が挙げられ
る。また、セラミックスとしては窒素ケイ素、炭化ケイ
素、窒化ホウ素、サイアロン、ムライト等が挙げられ
る。The core constituting the catalyst of the present invention is not particularly limited as long as it does not adversely affect the steam reforming reaction and can fix a catalytically active component to a metal or a ceramic. Examples of the metal include steel, alumina, zirconia, tungsten, molybdenum, chromium and the like. Of these, as the steel, austenitic stainless steel AISI316, 3
04, 321, 347, 309, 310, 314, Inconel, HK-40 or ferritic stainless steel A
ISI410,430,431,446 etc. are mentioned. Examples of ceramics include silicon nitride, silicon carbide, boron nitride, sialon, and mullite.
【0009】これら芯物質の形状は、触媒全体を薄膜状
にし得る形状であれば特に制限されず、箔状、シート
状、繊維状、布状等のいずれでもよい。なお、繊維状に
する場合、アルミナ繊維、ジルコニア繊維、タングステ
ン繊維、モリブデン繊維、銅線、アルミナウィスカ、鉄
ウィスカ、クロムウィスカ、窒化ホウ素繊維、炭化ケイ
素繊維、炭化ケイ素ウィスカ、窒化ケイ素ウィスカなど
を使用できる。The shape of these core substances is not particularly limited as long as the whole catalyst can be formed into a thin film, and may be foil, sheet, fiber, cloth or the like. In the case of fibrous, alumina fiber, zirconia fiber, tungsten fiber, molybdenum fiber, copper wire, alumina whiskers, iron whiskers, chromium whiskers, boron nitride fibers, silicon carbide fibers, silicon carbide whiskers, silicon nitride whiskers, etc. are used. it can.
【0010】芯の厚さは0.01〜3mmであるが、0.
1〜0.5mmがより好ましい。0.01mm未満では強度
が不足することがあり、3mmを超えると十分に薄い触媒
を成型するのが困難になる。The thickness of the core is 0.01 to 3 mm, but
1 to 0.5 mm is more preferable. If it is less than 0.01 mm, the strength may be insufficient, and if it exceeds 3 mm, it becomes difficult to mold a sufficiently thin catalyst.
【0011】これらの芯の表面の一部又は全部に形成さ
れる層には、触媒活性成分としてNi、Ru、Rh、P
t、Pdおよびこれらの酸化物から選ばれる物質を含有
する。より具体的には、Ni、NiO、Ru、Rh、P
t、Pdが挙げられる。この触媒層には、さらに通常の
水蒸気改質用触媒に用いられる担体成分および触媒活性
助成分を含有せしめることができる。これらの成分とし
ては例えば、ZrO2、Al2O3、Cr2O3、CoO、
WO3、MoO3、SiO2、La2O3、BaO、Ca
O、K2O、CeO、Fe2O3等が挙げられる。なお、
この触媒層にはこれらの成分に外に強度を補強するため
の成分その他の成分が含まれていてもよい。The layers formed on a part or all of the surfaces of these cores contain Ni, Ru, Rh and P as catalytically active components.
It contains a substance selected from t, Pd and oxides thereof. More specifically, Ni, NiO, Ru, Rh, P
and t and Pd. The catalyst layer may further contain a carrier component and a catalytically active auxiliary component used in a conventional steam reforming catalyst. Examples of these components include ZrO 2 , Al 2 O 3 , Cr 2 O 3 , CoO,
WO 3 , MoO 3 , SiO 2 , La 2 O 3 , BaO, Ca
O, K 2 O, CeO, Fe 2 O 3 and the like. In addition,
In addition to these components, the catalyst layer may further contain a component for reinforcing strength and other components.
【0012】また、これらの触媒層への各成分の配合量
は使用する成分等により異なるが、Ni、Ru、Rh、
Pt、Pd又はこれらの酸化物は0.1〜30重量%、
触媒活性助成分は0.1〜10重量%(以下、単に%で
示す)、担体成分は約60〜98%であることが好まし
い。The blending amount of each component in these catalyst layers differs depending on the components used and the like, but Ni, Ru, Rh,
0.1 to 30% by weight of Pt, Pd or their oxides,
It is preferable that the catalytically active auxiliary component is 0.1 to 10% by weight (hereinafter, simply expressed as%), and the carrier component is approximately 60 to 98%.
【0013】これらの触媒主活性成分、触媒活性助成分
および担体成分よりなる触媒成分の層を芯の表面に形成
させるには、例えば次の4種の方法を採用すればよい。 (1)真空蒸着法:高真空中で、触媒成分を高温に加熱
して蒸発させ、該蒸気を芯に衝突させ、ここで冷却・凝
固させる。In order to form a layer of the catalyst component consisting of the catalyst main active component, the catalyst active auxiliary component and the carrier component on the surface of the core, for example, the following four kinds of methods may be adopted. (1) Vacuum evaporation method: In a high vacuum, the catalyst component is heated to a high temperature to evaporate, and the vapor collides with the core, where it is cooled and solidified.
【0014】(2)スパッタ法:数十eV以上の運動エ
ネルギーを持つイオンビームを、固体の触媒成分の表面
に照射すると、該成分の表面近傍に存在する原子が、該
イオンビームの持つ運動エネルギーの一部を得て真空中
に放出され、該原子が芯表面に到達して膜を形成する。
このイオンビームとしては、ArやKr等の不活性物質
が使用され、イオンビームを発生させるスパッタ方式と
しては、直流2極スパッタリング、直流バイアススパッ
タリング、非対称交流スパッタリング、ゲッタスパッタ
リング、高周波スパッタリング等が使用される。(2) Sputtering method: When the surface of a solid catalyst component is irradiated with an ion beam having a kinetic energy of several tens of eV or more, the atoms existing in the vicinity of the surface of the component have the kinetic energy of the ion beam. Are taken out into a vacuum and the atoms reach the core surface to form a film.
An inert material such as Ar or Kr is used as the ion beam, and direct current bipolar sputtering, direct current bias sputtering, asymmetrical alternating current sputtering, getter sputtering, high frequency sputtering or the like is used as a sputtering method for generating the ion beam. It
【0015】(3)化学的方法:触媒成分からなる化合
物や単体のガスを芯上に供給し、気相中又は芯表面での
化学反応により、所望の触媒成分層を形成する。(3) Chemical method: A desired catalyst component layer is formed by supplying a compound consisting of a catalyst component or a gas of a simple substance onto the core and performing a chemical reaction in the gas phase or on the surface of the core.
【0016】(4)浸漬塗布法:先ず、芯を上記の触媒
成分のうちの担体成分の溶液に浸漬して該担体成分溶液
を塗布し、この塗膜を高温、短時間で焼付ける。この浸
漬塗布および焼付け操作を繰り返して所望厚みの担体成
分膜とし、この膜を上記より高温かつ長時間で焼付け
る。次いで、該担体成分膜に、上記の触媒成分のうちの
活性成分や第三成分を担体成分の場合と同様の浸漬塗布
法により担持させ、高温で長時間焼成する。芯に金属を
使用した場合、金属表面層に砂目を立てる前処理が塗布
表面の密着性の向上に役立ち、さらに、金属表面をAl
又はZrで合金化し、それを、酸化させてAl2O3、Z
rO2の表面層を作っておいて担体塗布層との、密着性
をよくする等の前処理をしておくのが好ましい。(4) Immersion coating method: First, the core is dipped in a solution of a carrier component of the above catalyst components to coat the carrier component solution, and this coating film is baked at a high temperature for a short time. This dip coating and baking operation is repeated to form a carrier component film having a desired thickness, and this film is baked at a temperature higher than the above and for a long time. Next, the active ingredient and the third ingredient of the above-mentioned catalyst ingredients are carried on the carrier ingredient film by the same dip coating method as in the case of the carrier ingredient, and baked at a high temperature for a long time. When a metal is used for the core, the pretreatment to make a grain on the metal surface layer helps improve the adhesion of the coated surface,
Alternatively, it is alloyed with Zr and is oxidized to produce Al 2 O 3 , Z.
It is preferable to prepare a surface layer of rO 2 and perform pretreatment such as improving adhesion with the carrier coating layer.
【0017】形成される触媒成分の層は、0.005〜
2mm程度、特に0.01〜1mm程度が好ましい。あまり
厚すぎると、薄膜状とする意義がなくなり、逆にあまり
薄すぎると触媒効果を十分に奏さなくなる。The layer of catalyst components formed is 0.005-
It is preferably about 2 mm, particularly 0.01 to 1 mm. If it is too thick, it becomes meaningless to make it into a thin film. On the contrary, if it is too thin, the catalytic effect cannot be sufficiently exerted.
【0018】また、かくして得られた本発明水蒸気改質
用薄膜状触媒の厚さは芯と触媒成分層の厚さにより決定
されるが、0.015〜3.5mmの範囲であり、好まし
くは0.1〜2mmの範囲である。0.015mm未満では
触媒効果が十分でない、強度が不足する等の欠点があ
り、3.5mmを超えると薄膜状にする意義がなくなる。
なお、本発明触媒の形状は薄膜状であるが、ここで薄膜
状とは、厚さが薄い形状であることをいい、その長さ、
幅は限定されない。そしてその形状は芯の形状によって
決定される。The thickness of the thus obtained thin film catalyst for steam reforming of the present invention is determined by the thickness of the core and the catalyst component layer, but is in the range of 0.015 to 3.5 mm, preferably The range is 0.1 to 2 mm. If it is less than 0.015 mm, there are drawbacks such as insufficient catalytic effect and insufficient strength, and if it exceeds 3.5 mm, it becomes meaningless to form a thin film.
The shape of the catalyst of the present invention is a thin film, and the thin film here means that the thickness is thin, its length,
The width is not limited. The shape is determined by the shape of the core.
【0019】本発明の触媒を用いれば、水蒸気改質反応
器を薄型とすることができる。当該薄型水蒸気改質反応
器は、例えば図1のように多重に重ねられたプレート状
のコンパーメントを、一つおきに、加熱室と、水蒸気改
質薄膜状触媒を具備する反応室として構成することによ
り、達成される。このような薄型水蒸気改質反応器の反
応室内に本発明薄膜状触媒を保持するには、例えば図2
のようにプレート状反応室側壁9と薄膜状触媒1の間に
流体の流れが確保できる薄いスペーサー(例えば金網)
8を用い、これを図示するように波形に折り曲げ、この
折り曲げた2枚のスペーサー8で薄膜状触媒1を挟ん
で、反応室内に設置する。By using the catalyst of the present invention, the steam reforming reactor can be made thin. The thin steam reforming reactor is configured, for example, as a plurality of plate-shaped compartments, which are stacked one upon the other as shown in FIG. 1, as a heating chamber and a reaction chamber including a steam reforming thin film catalyst. This will be achieved. To hold the thin film catalyst of the present invention in the reaction chamber of such a thin steam reforming reactor, for example, as shown in FIG.
A thin spacer (for example, wire mesh) that can secure a fluid flow between the plate-shaped reaction chamber side wall 9 and the thin-film catalyst 1 as shown in FIG.
8 is used to bend it into a corrugated shape as shown in the figure, and the thin film catalyst 1 is sandwiched between the two folded spacers 8 and placed in the reaction chamber.
【0020】本発明の薄膜状触媒を用いて水蒸気改質で
きる原料としては、公知の炭化水素類、アルコール類、
例えばC1〜C4の炭化水素、ナフサ灯軽油の炭化水素、
C1〜C4のアルコール、C5以上のアルコール等が挙げ
られる。また、これらの原料を本発明薄膜状触媒を用い
て水蒸気改質する際の反応条件は、概ね、温度約200
〜900℃、圧力30kg/cm2 以下(絶対圧)、好まし
くは約0.5〜15kg/cm2 、LHSV約0.5〜6h
-1、S(水蒸気)/C(炭素)(モル比)約2〜5とす
ることが好ましい。As the raw material capable of steam reforming using the thin film catalyst of the present invention, known hydrocarbons, alcohols,
For example, C 1 to C 4 hydrocarbons, naphtha kerosene hydrocarbons,
Examples thereof include C 1 to C 4 alcohols and C 5 or more alcohols. The reaction conditions for steam reforming these raw materials using the thin film catalyst of the present invention are generally about 200 ° C.
~ 900 ° C, pressure 30 kg / cm 2 or less (absolute pressure), preferably about 0.5-15 kg / cm 2 , LHSV about 0.5-6 h
-1 , S (steam) / C (carbon) (molar ratio) is preferably about 2-5.
【0021】[0021]
【作用】水蒸気改質反応の速度自体は非常に早いもので
あるが、水蒸気改質反応は非常に大きな吸熱反応である
ため、実質的な反応速度は伝熱速度により制限される結
果となっている。これまで、伝熱面積の改善策として、
プレート形式の反応管を改良することも試みられたが、
それだけでは不十分であった。The function of the steam reforming reaction is very high, but the steam reforming reaction is a very large endothermic reaction, so that the substantial reaction rate is limited by the heat transfer rate. There is. So far, as a measure to improve the heat transfer area,
Attempts were also made to improve the plate type reaction tube,
That was not enough.
【0022】すなわち、プレート形式の反応管に従来の
ペレット状成型触媒を充填して反応室を構成し、この反
応室の厚みを薄くして単位触媒当たりの伝熱面積を増や
そうとした。しかし、反応床の圧力損失の関係上、ペレ
ットサイズは3mm程度が限界であり、そのため反応室の
厚みも10mmぐらいが限度であった。しかも、反応室内
のガス体の流れは、ペレット触媒の間隙を通るため、反
応室の壁部における境膜部分での流れが悪くなり、伝熱
の障害になっていた。That is, a plate-type reaction tube was filled with a conventional pellet-shaped molded catalyst to form a reaction chamber, and the thickness of this reaction chamber was reduced to increase the heat transfer area per unit catalyst. However, due to the pressure loss of the reaction bed, the pellet size is limited to about 3 mm, and thus the thickness of the reaction chamber is limited to about 10 mm. Moreover, since the flow of the gas in the reaction chamber passes through the gap between the pellet catalysts, the flow in the boundary film portion of the wall of the reaction chamber becomes poor, which is an obstacle to heat transfer.
【0023】これに対し、本発明の薄膜状触媒を用いれ
ば、従来のペレット状の触媒を使用する場合に比べ、反
応室の厚み(プレートの間隔)をきわめて小さくするこ
とができ、上記の伝熱面積の問題を解決することができ
る。すなわち、触媒が薄膜状であるため、圧力損失が生
ぜず、プレート間隔を狭くすることができるとともに、
プレート部における境膜部分でのガス体の流れが良好と
なって、該部分での伝熱抵抗が生じない。しかも、本発
明の薄膜状触媒は、触媒自体の伝熱面積を広げる。On the other hand, when the thin film catalyst of the present invention is used, the thickness of the reaction chamber (distance between plates) can be made extremely small as compared with the case where the conventional pellet catalyst is used. The problem of heat area can be solved. That is, since the catalyst is in the form of a thin film, pressure loss does not occur and the plate interval can be narrowed,
The flow of the gas body in the film part of the plate part becomes good, and heat transfer resistance does not occur in that part. Moreover, the thin film catalyst of the present invention widens the heat transfer area of the catalyst itself.
【0024】これらにより、本発明の薄膜状触媒を用い
た反応器では、伝熱速度が改善され、従来のペレット状
の触媒を使用する場合よりも高速の反応が可能となり、
この結果として、設置面積および反応器容積が従来のペ
レット状の触媒を使用する場合より大幅に減少する。As a result, in the reactor using the thin film catalyst of the present invention, the heat transfer rate is improved, and the reaction can be performed at a higher speed than in the case of using the conventional pellet catalyst.
As a result of this, the footprint and reactor volume are significantly reduced over when using conventional pelletized catalysts.
【0025】[0025]
【実施例】次に実施例を挙げて本発明をさらに詳細に説
明するが、本発明はこれらに限定されるものではない。The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
【0026】実施例1 アルミナが形成されやすいように表面処理されたオース
テナイト系ステンレス鋼 AISI316(40mm×4
0mm×0.1mm)の芯となる金属箔を水酸化アルミの溶
液(ゾル)に浸漬塗布し、600℃で2分間焼付ける。
この浸漬塗布・焼付けの操作を繰り返し所望の厚み0.
5mmを得る。これを1000℃で30分焼成する。次い
で硝酸カリウムの水溶液および硝酸ニッケルの水溶液を
用い、それぞれに浸漬し、900℃で2時間焼成し、芯
上のアルミナにK2O 5%、NiO 15%が担持さ
れた厚み0.65mmの触媒Aを調製した。Example 1 Austenitic stainless steel AISI 316 (40 mm × 4) surface-treated so that alumina was easily formed.
A 0 mm x 0.1 mm core metal foil is dipped and applied in a solution (sol) of aluminum hydroxide and baked at 600 ° C for 2 minutes.
This dip coating / baking operation is repeated to obtain a desired thickness of 0.
Get 5mm. This is baked at 1000 ° C. for 30 minutes. Then, using an aqueous solution of potassium nitrate and an aqueous solution of nickel nitrate, immersed in each of them, and baked at 900 ° C. for 2 hours, a catalyst A having a thickness of 0.65 mm in which K 2 O 5% and NiO 15% were supported on alumina on the core. Was prepared.
【0027】実施例2 実施例1における硝酸カリウムの替りに塩化パラジウム
の水溶液に浸漬し、乾燥し、還元を行い、実施例1と同
じ方法で芯上のアルミナにPd 1.5%、NiO 1
5%が担持された厚み0.63mmの触媒Bを調製した。Example 2 In the same manner as in Example 1, Pd 1.5% and NiO 1 were added to alumina on the core by immersing in an aqueous solution of palladium chloride instead of potassium nitrate in Example 1, drying and reducing.
A catalyst B having a thickness of 0.63 mm and supporting 5% was prepared.
【0028】実施例3 実施例2における塩化パラジウムの替りに塩化白金酸お
よび塩化ルテニウム(III)を使用した以外は実施例1
と同じ方法で芯上のアルミナにPt(1.5%)/Ni
O(15%)が担持された厚み0.6mmの触媒CとRu
(1.5%)/NiO(15%)が担持された厚み0.
6mmの触媒Dを調製した。Example 3 Example 1 was repeated except that chloroplatinic acid and ruthenium (III) chloride were used instead of palladium chloride in Example 2.
Pt (1.5%) / Ni on alumina on the core in the same way as
O (15%) supported catalyst of 0.6 mm thickness and Ru
(1.5%) / NiO (15%) supported thickness 0.
A 6 mm catalyst D was prepared.
【0029】実施例4 触媒の芯となる金属箔の素材を替えて、実施例1と同じ
方法により、表1の触媒を調製した。触媒成分は、実施
例1と同じ。Example 4 The catalyst shown in Table 1 was prepared in the same manner as in Example 1, except that the material of the metal foil which was the core of the catalyst was changed. The catalyst components are the same as in Example 1.
【0030】[0030]
【表1】 [Table 1]
【0031】実施例5 触媒の芯となる金属箔に替えてセラミックシート又は繊
維を使用して、水酸化アルミの溶液(ゾル)に浸漬塗布
し、600℃で2分間焼付ける。この浸漬塗布・焼付け
の操作を繰り返し所望の厚みを得る。これを1000℃
で30分焼成する。次いで、硝酸ニッケルの水溶液を用
い、それぞれに浸漬し、900℃で2時間焼成し、次い
で助触媒として、La2O3、BaO、ZrO2、Fe2O
3を担持した表2の触媒を調製した。Example 5 Using a ceramic sheet or fiber instead of the metal foil as the core of the catalyst, the solution is applied by dipping in a solution (sol) of aluminum hydroxide and baked at 600 ° C. for 2 minutes. This dip coating / baking operation is repeated to obtain a desired thickness. 1000 ° C
Bake for 30 minutes. Then, using an aqueous solution of nickel nitrate, it was immersed in each and baked at 900 ° C. for 2 hours, and then La 2 O 3 , BaO, ZrO 2 and Fe 2 O were used as co-catalysts.
Catalysts of Table 2 bearing 3 were prepared.
【0032】[0032]
【表2】 [Table 2]
【0033】実施例6 実施例1と同様にしてオーステナイト系ステンレス鋼
AISI316の箔に水酸化アルミを浸漬塗布、焼付
け、焼成してステンレス上にアルミナ層を形成した(厚
み0.5mm)。次いで硝酸ジルコニルの水溶液に浸漬
し、900℃で3時間焼成し、塩化ルテニウム(III)
の水溶液に浸漬し、乾燥し、還元を行った。芯上のアル
ミナにZrO2 5%、Ru 2%が担持された厚み
0.62mmの触媒Iを調製した。Example 6 Austenitic stainless steel was prepared in the same manner as in Example 1.
Aluminum hydroxide was applied onto the AISI 316 foil by dipping, baking and firing to form an alumina layer on stainless steel (thickness 0.5 mm). Then, it is immersed in an aqueous solution of zirconyl nitrate and baked at 900 ° C. for 3 hours to obtain ruthenium (III) chloride.
It was immersed in an aqueous solution of, dried, and reduced. A catalyst I having a thickness of 0.62 mm, in which 5% ZrO 2 and 2% Ru were supported on alumina on the core, was prepared.
【0034】実施例7 硝酸ジルコニルの替りに硝酸バリウムの水溶液を用いて
550℃で3時間焼成以外は、実施例6と同じ方法で芯
上のアルミナにRu 2%、BaO 5%が担持された
厚み0.65mmの触媒Jを調製した。Example 7 Ru 2% and BaO 5% were supported on alumina on the core by the same method as in Example 6 except that an aqueous solution of barium nitrate was used instead of zirconyl nitrate and calcined at 550 ° C. for 3 hours. A catalyst J having a thickness of 0.65 mm was prepared.
【0035】実施例8 実施例6における硝酸ジルコニルの替りに硝酸クロム
(III)を塩化ルテニウム(III)の替りに塩化パラジウ
ムおよび塩化白金酸を使用した以外は実施例6と同じ方
法で芯上のアルミナにPd(1.5%)/Cr2O
3(1.5%)が担持された厚み0.6mmの触媒KとP
t(1.5%)/Cr2O3(1.5%)が担持された厚
み0.6mmの触媒Lを調製した。Example 8 The procedure of Example 6 was repeated except that chromium (III) nitrate was used in place of zirconyl nitrate and palladium chloride and chloroplatinic acid were used in place of ruthenium (III) chloride. Pd (1.5%) / Cr 2 O on alumina
0.6 (thickness 0.6 mm) catalysts K and P loaded with 3 (1.5%)
A catalyst L having a thickness of 0.6 mm and supporting t (1.5%) / Cr 2 O 3 (1.5%) was prepared.
【0036】実施例9 触媒の芯となる金属箔の素材を替えて、実施例6と同じ
方法により、表3の触媒を調製した。触媒成分は、実施
例1と同じ。Example 9 The catalyst shown in Table 3 was prepared in the same manner as in Example 6 except that the material of the metal foil used as the core of the catalyst was changed. The catalyst components are the same as in Example 1.
【0037】[0037]
【表3】 [Table 3]
【0038】実施例10 触媒の芯となる金属箔に替えてセラミックシート又は繊
維を使用して、水酸化ジルコニウム溶液に浸漬塗布し、
600℃で2分間焼付ける。この浸漬塗布・焼付けの操
作を繰り返し所望の厚み(ジルコニア量0.8g)を得
る。これを900℃で30分焼成する。次いで塩化ロジ
ウム水溶液に浸漬し、乾燥し、還元を行う。次いで助触
媒として、CaO、BaO、NiO、CeO、La2O3
の担持した表4の触媒を調製した。Example 10 A ceramic sheet or fiber was used in place of the metal foil which was the core of the catalyst, and was dipped and applied in a zirconium hydroxide solution,
Bake at 600 ° C for 2 minutes. This dip coating / baking operation is repeated to obtain a desired thickness (zirconia amount 0.8 g). This is baked at 900 ° C. for 30 minutes. Then, it is immersed in a rhodium chloride aqueous solution, dried, and reduced. Then, as co-catalyst, CaO, BaO, NiO, CeO, La 2 O 3
The supported catalysts of Table 4 were prepared.
【0039】[0039]
【表4】 [Table 4]
【0040】試験例1 実施例1、4、6および6により、調製された触媒を図
1の反応室6(内寸40mm×40mm×4mm)の中央に、
図2のようにプレート状反応室側壁と薄膜状触媒1の間
に流体の流れが確保できる薄いスペーサー(金網)8を
用い、2枚のスペーサで薄膜状触媒1を挟んで、反応室
内に設置し、反応室両側に加熱室を設けた。以上のよう
に構成された改質反応器を使用し、ライン2より改質原
料として十分脱流された灯油(硫黄分0.18ppm)と
水蒸気を用い、反応室出口温度を800℃に保つように
加熱室7に高温のガス(別の燃焼設備で得たガス)をラ
イン3から導入して改質反応を行った。この結果を表5
に示す。また比較のために、従来のペレット状触媒の
(触媒Aと同量のAl2O3を担体とし、NiO 15%
およびK2O 5%を活性金属とするもの又はペレット
状触媒b(触媒Iと同量のAl2O3を担体とし、Ru
2%およびZrO2 5%を活性金属とするもの)を充
填した円筒型反応器により、十分脱流された灯油(硫黄
分0.18ppm)と水蒸気を用い、反応室出口温度を8
00℃に保ちながら改質反応を行った結果を表6に示
す。Test Example 1 The catalyst prepared according to Examples 1, 4, 6 and 6 was placed in the center of the reaction chamber 6 (inside dimensions 40 mm × 40 mm × 4 mm) in FIG.
As shown in FIG. 2, a thin spacer (wire mesh) 8 that can secure a fluid flow is used between the side wall of the plate-shaped reaction chamber and the thin film catalyst 1, and the thin film catalyst 1 is sandwiched between two spacers and placed in the reaction chamber. Then, heating chambers were provided on both sides of the reaction chamber. Using the reforming reactor configured as described above, using kerosene (sulfur content 0.18 ppm) and steam sufficiently discharged as reforming raw material from the line 2 to keep the reaction chamber outlet temperature at 800 ° C. Then, a high temperature gas (gas obtained by another combustion facility) was introduced into the heating chamber 7 through the line 3 to carry out the reforming reaction. The results are shown in Table 5.
Shown in. For comparison, a conventional pellet catalyst (using the same amount of Al 2 O 3 as the catalyst A as a carrier, NiO 15%
And a catalyst b having K 2 O 5% as an active metal or a pellet-shaped catalyst b (the same amount of Al 2 O 3 as the catalyst I as a carrier,
Using a cylindrical reactor filled with 2% and ZrO 2 5% as an active metal), kerosene (sulfur content 0.18 ppm) and water vapor that had been sufficiently drained were used, and the reaction chamber outlet temperature was adjusted to 8
Table 6 shows the results of the reforming reaction while maintaining the temperature at 00 ° C.
【0041】[0041]
【表5】 [Table 5]
【0042】[0042]
【表6】 [Table 6]
【0043】試験例2 実施例2、3、7および8により調製された触媒を試験
例1と同様の反応器に設置した。このように構成された
改質反応器を使用し、ライン2より改質原料としてメタ
ノールと水蒸気を用い、反応室出口温度を400℃に保
つように加熱室7に高温のガス(別の燃焼設備で得たガ
ス)をライン3から導入して改質反応を行った。この結
果を表7に示す。また比較のために、従来のペレット状
触媒c(触媒Bと同量のAl2O3を担体とし、NiO
15%およびPd 1%を活性金属とするもの)又はペ
レット状触媒d(触媒Jと同量のAl2O3を担体とし、
Ru 2%およびBaO 5%を活性金属とするもの)
を充填した円筒型反応器により、改質原料としてメタノ
ールと水蒸気を用い、反応室出口温度を400℃に保ち
ながら改質反応を行った結果を表8に示す。Test Example 2 The catalysts prepared according to Examples 2, 3, 7 and 8 were placed in the same reactor as in Test Example 1. Using the reforming reactor configured as described above, methanol and steam are used as the reforming raw materials from the line 2, and a high temperature gas (other combustion equipment) is used in the heating chamber 7 so as to maintain the reaction chamber outlet temperature at 400 ° C. The gas obtained in step 1) was introduced through line 3 to carry out the reforming reaction. The results are shown in Table 7. For comparison, the conventional pellet-shaped catalyst c (using the same amount of Al 2 O 3 as the catalyst B as the carrier and NiO
15% and Pd 1% as an active metal) or pelletized catalyst d (the same amount of Al 2 O 3 as catalyst J is used as a carrier,
Ru 2% and BaO 5% as active metals)
Table 8 shows the results of carrying out the reforming reaction by using a cylindrical reactor filled with methanol with methanol and steam as the reforming raw materials while keeping the outlet temperature of the reaction chamber at 400 ° C.
【0044】[0044]
【表7】 [Table 7]
【0045】[0045]
【表8】 [Table 8]
【0046】試験例3 改質原料として、メタン、ブタン、ナフサを使用して、
実施例1又は実施例6の方法で調製された触媒を用い、
図1の反応器を使用して、改質反応を行った。結果を表
9および表10に示す。Test Example 3 Methane, butane and naphtha were used as reforming raw materials,
Using the catalyst prepared by the method of Example 1 or Example 6,
A reforming reaction was carried out using the reactor of FIG. The results are shown in Table 9 and Table 10.
【0047】[0047]
【表9】 [Table 9]
【0048】[0048]
【表10】 [Table 10]
【0049】実施例5および10で調製した触媒を、試
験例1と同様にして反応したところ、表5の触媒Aおよ
び触媒Iと同程度の結果が得られた。When the catalysts prepared in Examples 5 and 10 were reacted in the same manner as in Test Example 1, results similar to those of Catalyst A and Catalyst I in Table 5 were obtained.
【0050】表5〜表10から明らかなように本発明の
水蒸気改質用薄膜状触媒を充填した反応器は従来のペレ
ット状水蒸気改質触媒を充填した反応器に比べ、反応原
料送入速度が4倍以上であるにも拘らず同様に機能して
おり、ペレット状水蒸気改質触媒を用いた従来の反応器
を、本発明の薄膜状水蒸気改質触媒を充填した反応器と
同程度の反応原料送入速度まで上げて行くと反応速度の
低下が見られた。このことより、本発明の水蒸気改質用
薄膜状触媒を充填した反応器は伝熱速度が大きく、反応
率が大きいことが証明された。As is clear from Tables 5 to 10, the reactor packed with the thin film catalyst for steam reforming of the present invention has a reaction material feed rate higher than that of the reactor packed with the conventional pellet steam reforming catalyst. Is similar to that of the conventional reactor using the pellet-shaped steam reforming catalyst, and has the same function as that of the reactor packed with the thin-film steam reforming catalyst of the present invention. When the reaction material feed rate was increased, the reaction rate decreased. From this, it was proved that the reactor filled with the thin film catalyst for steam reforming of the present invention had a high heat transfer rate and a high reaction rate.
【0051】[0051]
【発明の効果】本発明の水蒸気改質用薄膜状触媒は伝熱
効率が優れ、この触媒を充填した反応器は大幅に小型化
することができ、設置面積、装置容積ともにきわめて小
さくすることができる。従って炭化水素類又はアルコー
ル類を燃料とする燃料電池用の燃料改質装置として好ま
しく適用することができ、小型オンサイト燃料電池パッ
ケージが容易に実用化できる。EFFECTS OF THE INVENTION The thin film catalyst for steam reforming of the present invention has excellent heat transfer efficiency, and the reactor filled with this catalyst can be significantly downsized, and the installation area and the apparatus volume can be made extremely small. . Therefore, it can be preferably applied as a fuel reformer for a fuel cell using hydrocarbons or alcohols as a fuel, and a small on-site fuel cell package can be easily put into practical use.
【図1】本発明の薄膜状触媒を充填した反応器の一例を
説明するための外観図である。FIG. 1 is an external view for explaining an example of a reactor filled with a thin film catalyst of the present invention.
【図2】図1の断面図である。FIG. 2 is a cross-sectional view of FIG.
【符号の説明】 1 水蒸気改質用薄膜状触媒 2 改質原料導入ライン 3 高温ガス導入ライン 4 改質反応終了後のガス出口ライン 5 排熱ガス出口ライン 6 反応室 7 加熱室 8 スペーサー 9 反応室側壁[Explanation of symbols] 1 thin film catalyst for steam reforming 2 reforming raw material introduction line 3 high temperature gas introduction line 4 gas outlet line after reforming reaction 5 exhaust heat gas outlet line 6 reaction chamber 7 heating chamber 8 spacer 9 reaction Side wall
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/78 M 8017−4G 23/89 M 8017−4G 35/06 G 7821−4G C01B 3/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location B01J 23/78 M 8017-4G 23/89 M 8017-4G 35/06 G 7821-4G C01B 3 / 40
Claims (1)
1〜3mmの芯の表面の一部又は全部に、Ni、Ru、R
h、Pt、Pd及びこれらの酸化物から選ばれる物質を
触媒活性成分として含有する層を形成せしめてなる、厚
さ0.015〜3.5mmの水蒸気改質用薄膜状触媒。1. Thickness 0.0 made of metal or ceramic
Ni, Ru, R on part or all of the surface of the core of 1-3 mm
A steam reforming thin film catalyst having a thickness of 0.015 to 3.5 mm, which is formed by forming a layer containing a substance selected from h, Pt, Pd and oxides thereof as a catalytically active component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18820092A JP3313766B2 (en) | 1992-07-15 | 1992-07-15 | Thin film catalyst for steam reforming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18820092A JP3313766B2 (en) | 1992-07-15 | 1992-07-15 | Thin film catalyst for steam reforming |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0631165A true JPH0631165A (en) | 1994-02-08 |
JP3313766B2 JP3313766B2 (en) | 2002-08-12 |
Family
ID=16219529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18820092A Expired - Lifetime JP3313766B2 (en) | 1992-07-15 | 1992-07-15 | Thin film catalyst for steam reforming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3313766B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001089683A3 (en) * | 2000-05-24 | 2002-05-10 | Basf Ag | Device and method for carrying out heterogeneously catalysed gas phase reactions with heat tonality |
WO2002038268A1 (en) * | 2000-11-08 | 2002-05-16 | Idemitsu Kosan Co., Ltd. | Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same |
US6692707B1 (en) | 1999-03-03 | 2004-02-17 | Toyota Jidosha Kabushiki Kaisha | Hydrocarbon fuel reformer |
WO2005084797A1 (en) * | 2004-03-09 | 2005-09-15 | Kyushu Electric Power Co., Inc. | Reforming catalyst composition |
JP2007516924A (en) * | 2003-12-31 | 2007-06-28 | トタル・フランス | Process for treating methane-carbon dioxide mixtures |
JP2008188587A (en) * | 2007-01-12 | 2008-08-21 | Tdk Corp | Reforming catalyst |
JP2011031162A (en) * | 2009-07-31 | 2011-02-17 | Tokyo Univ Of Agriculture & Technology | Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon |
JP2011092825A (en) * | 2009-10-28 | 2011-05-12 | F C C:Kk | Paper catalyst and method of manufacturing the same |
JP2013540674A (en) * | 2010-08-18 | 2013-11-07 | ペトロレオ ブラジレイロ ソシエダ アノニマ − ペトロブラス | Method for producing hydrogen from ethanol |
JP2017176991A (en) * | 2016-03-30 | 2017-10-05 | 株式会社 Acr | Steam reforming catalyst and steam reforming method |
KR20180122233A (en) * | 2017-05-02 | 2018-11-12 | 국방과학연구소 | Methanol steam reforming catalysts, preparation method thereof, and methanol reforming apparatus comprising the same |
-
1992
- 1992-07-15 JP JP18820092A patent/JP3313766B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6692707B1 (en) | 1999-03-03 | 2004-02-17 | Toyota Jidosha Kabushiki Kaisha | Hydrocarbon fuel reformer |
WO2001089683A3 (en) * | 2000-05-24 | 2002-05-10 | Basf Ag | Device and method for carrying out heterogeneously catalysed gas phase reactions with heat tonality |
WO2002038268A1 (en) * | 2000-11-08 | 2002-05-16 | Idemitsu Kosan Co., Ltd. | Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same |
JP2008207186A (en) * | 2000-11-08 | 2008-09-11 | Idemitsu Kosan Co Ltd | Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same |
JP2007516924A (en) * | 2003-12-31 | 2007-06-28 | トタル・フランス | Process for treating methane-carbon dioxide mixtures |
WO2005084797A1 (en) * | 2004-03-09 | 2005-09-15 | Kyushu Electric Power Co., Inc. | Reforming catalyst composition |
JP2008188587A (en) * | 2007-01-12 | 2008-08-21 | Tdk Corp | Reforming catalyst |
JP2011031162A (en) * | 2009-07-31 | 2011-02-17 | Tokyo Univ Of Agriculture & Technology | Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon |
JP2011092825A (en) * | 2009-10-28 | 2011-05-12 | F C C:Kk | Paper catalyst and method of manufacturing the same |
JP2013540674A (en) * | 2010-08-18 | 2013-11-07 | ペトロレオ ブラジレイロ ソシエダ アノニマ − ペトロブラス | Method for producing hydrogen from ethanol |
JP2017176991A (en) * | 2016-03-30 | 2017-10-05 | 株式会社 Acr | Steam reforming catalyst and steam reforming method |
KR20180122233A (en) * | 2017-05-02 | 2018-11-12 | 국방과학연구소 | Methanol steam reforming catalysts, preparation method thereof, and methanol reforming apparatus comprising the same |
Also Published As
Publication number | Publication date |
---|---|
JP3313766B2 (en) | 2002-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0968958B1 (en) | Reformer | |
US6585940B2 (en) | Reformer | |
EP1102628B1 (en) | Method and apparatus for obtaining enhanced production rate of thermal chemical reactions | |
EP1251949B2 (en) | Method for the catalytic steam reforming of a hydrocarbon | |
JP4216067B2 (en) | How to generate a gas rich in hydrogen | |
EP1446609B1 (en) | Microcombustors, microreformers, and methods for combusting and for reforming fluids | |
EP1157434B1 (en) | Compact and light weight catalyst bed for use in a fuel cell power plant and method for forming the same | |
US20020071797A1 (en) | Catalytic separator plate reactor and method of catalytic reforming of fuel to hydrogen | |
JP3759406B2 (en) | Methanol reforming catalyst, methanol reforming apparatus and methanol reforming method | |
JPH0631165A (en) | Thin film-like catalyst for steam reforming | |
RU2450968C2 (en) | PROCESS CONDITIONS FOR Pt-Re BIMETALLIC WATER GAS SHIFT CATALYSTS, CATALYSTS | |
CA2792173C (en) | Cylindrical steam reformer | |
JP2005529824A (en) | Suppression of methanation activity of platinum group metal catalysts for water-gas conversion | |
KR100719484B1 (en) | Compact Steam Reformer Utilizing Metal-Monolith-Washcoated Catalyst and Preparation Method of Hydrogen Gas Using The Catalyst | |
JPH05186203A (en) | Catalytic element for steam reforming | |
JP3796179B2 (en) | Reactor | |
JPH05155602A (en) | Thin type steam reforming reactor | |
JP2002066320A (en) | Shift catalyst | |
JPH0312302A (en) | Methanol reformer | |
JP2000007303A (en) | Reforming reactor | |
JPH04362001A (en) | Methanol reforming catalyst | |
JPH04349101A (en) | Method reformer | |
KR20240088341A (en) | A porous structure catalyst for hydrocarbon pre-reforming reaction and manufacturing method thereof | |
JP2000007302A (en) | Reforming reactor | |
AU2013203724A1 (en) | Cylindrical steam reformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090531 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090531 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100531 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110531 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110531 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120531 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130531 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130531 Year of fee payment: 11 |