Nothing Special   »   [go: up one dir, main page]

JPH05155602A - Thin type steam reforming reactor - Google Patents

Thin type steam reforming reactor

Info

Publication number
JPH05155602A
JPH05155602A JP3350278A JP35027891A JPH05155602A JP H05155602 A JPH05155602 A JP H05155602A JP 3350278 A JP3350278 A JP 3350278A JP 35027891 A JP35027891 A JP 35027891A JP H05155602 A JPH05155602 A JP H05155602A
Authority
JP
Japan
Prior art keywords
steam reforming
catalyst
reactor
reaction
heating chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3350278A
Other languages
Japanese (ja)
Inventor
Kinya Tawara
欣也 俵
Hikoichi Iwanami
彦一 岩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP3350278A priority Critical patent/JPH05155602A/en
Publication of JPH05155602A publication Critical patent/JPH05155602A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J15/005Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To provide a thin type steam reforming reactor for generating a gas contg. hydrogen by the reaction of hydrocarbons or alcohols with steam, appropriate as the fuel reformer for the fuel cell with hydrocarbons or alcohols as the fuel and capable of being set in a small area. CONSTITUTION:A plate-fin compartment is set alternately in multiple stages to constitute a reaction chamber 11 provided with a thin-film steam reforming catalyst 1 and a heating chamber 12 furnished with a combustion catalyst 2. The thickness of the catalyst 1 and combustion catalyst is preferably controlled to 0.2 to 2mm and the thickness of the reaction chamber 11 and heating chamber 12 to 0.7 to 4mm. The plate-fin compartments can be concentrically set in multiple stages to constitute the reactor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素またはアルコ
ール類と水蒸気との反応により水素を含有するガスを得
る反応を行うことのできる水蒸気改質反応器に関し、特
に、炭化水素またはアルコール類を燃料とする燃料電池
用の燃料改質装置として好ましく適用することのでき
る、設置面積および反応器容積を小さくした薄型水蒸気
改質反応器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam reforming reactor capable of carrying out a reaction to obtain a gas containing hydrogen by reacting a hydrocarbon or alcohol with steam. The present invention relates to a thin steam reforming reactor having a small installation area and a small reactor volume, which can be preferably applied as a fuel reforming device for a fuel cell using fuel.

【0002】[0002]

【従来の技術およびその問題点】従来、炭化水素または
アルコール類と水蒸気との反応により水素を含有するガ
スを得る反応を行うことを目的とした反応装置は、加熱
炉の中に水蒸気改質触媒を充填した円筒形の反応器を並
べたものであった。このような構成の反応装置は、水素
発生量の少ないわりに、設置面積および装置容積が大き
かった。従って、小型オンサイト型燃料電池パッケージ
を組み立てるときに、パッケージ全体を小型にすること
の大きな障害になっていた。
2. Description of the Related Art Conventionally, a reactor for the purpose of carrying out a reaction to obtain a gas containing hydrogen by reacting hydrocarbons or alcohols with steam has a steam reforming catalyst in a heating furnace. Was an array of cylindrical reactors. The reactor having such a configuration has a large installation area and a large apparatus volume in spite of the small amount of hydrogen generated. Therefore, when assembling a small on-site type fuel cell package, it has been a big obstacle to downsizing the entire package.

【0003】この障害を乗り越える手段として、近年、
比較的大きな口径の二重円筒の内部を燃焼室とし、外周
の部分にペレット状に成型した水蒸気改質触媒を充填し
た水蒸気改質反応装置が提案され、これらの問題点があ
る程度改良された。しかし、その中心に大きな燃焼室が
残る点が問題であった。
In recent years, as means for overcoming this obstacle,
A steam reforming reaction apparatus has been proposed in which the interior of a double cylinder having a relatively large diameter is used as a combustion chamber, and the outer peripheral portion is filled with a steam reforming catalyst molded into pellets, and these problems have been improved to some extent. However, the problem was that a large combustion chamber remained in the center.

【0004】特開昭62−167203号公報において
は、この点の改良として、燃焼室も矩形状にし、水蒸気
改質反応室と交互に配列した反応装置が提案された。し
かし、この提案においても、ペレット状の触媒が水蒸気
改質部分と燃焼部分とに使用されているため、設置面
積、装置容積ともにまだ十分に小さいとは言えない。
In order to improve this point, Japanese Unexamined Patent Publication (Kokai) No. 62-167203 proposes a reactor in which the combustion chamber has a rectangular shape and is alternately arranged with the steam reforming reaction chamber. However, even in this proposal, since the pellet-shaped catalyst is used in the steam reforming portion and the combustion portion, it cannot be said that the installation area and the apparatus volume are still sufficiently small.

【0005】上記の改良された比較的大きな口径の二重
円筒式反応装置、燃焼室も矩形状にし水蒸気改質反応室
と交互に配列した反応装置(以下、これらをまとめて改
良型反応装置と言う)のいずれにおいても、燃焼室およ
び水蒸気改質反応室を構成しているコンパートメントの
大きさは、一つのコンパートメントの幅で実用的には2
0〜60mm程度は必要であり、これら改良型反応装置
全体としては、設置面積、装置容積ともにまだかなりの
大きさになる。このため、さらに小型化を進めることが
求められる。
The above-mentioned improved double-cylindrical reactor having a relatively large diameter, the reactor in which the combustion chamber has a rectangular shape and is alternately arranged with the steam reforming reaction chamber (hereinafter, these are collectively referred to as an improved reactor. In both cases, the size of the compartments forming the combustion chamber and the steam reforming reaction chamber is practically 2 in the width of one compartment.
About 0 to 60 mm is necessary, and the installation area and the apparatus volume of the improved reactor as a whole are still quite large. Therefore, further miniaturization is required.

【0006】[0006]

【発明の目的】本発明は、以上のような炭化水素または
アルコール類と水蒸気とを反応させて水素を生成させる
水蒸気改質反応器において、一つのコンパートメントの
幅を上記の改良型反応装置よりも極端に薄くすることが
でき、従って設置面積、装置(反応器)容積ともに、こ
れら改良型反応装置よりも大幅に小さくすることのでき
る水蒸気改質反応器を提案することを目的とする。
It is an object of the present invention to provide a steam reforming reactor for producing hydrogen by reacting hydrocarbons or alcohols with steam as described above so that the width of one compartment is larger than that of the improved reactor described above. It is an object of the present invention to propose a steam reforming reactor which can be made extremely thin, and therefore can be significantly reduced in both installation area and apparatus (reactor) volume as compared with these improved reactors.

【0007】[0007]

【目的を達成するための手段】本発明者らは、上記の目
的を達成するために鋭意研究を重ねた結果、水蒸気改質
触媒および燃焼触媒は薄膜状に成型することができるこ
と、これら薄膜状の各触媒を使用すれば、水蒸気改質室
および燃焼室(加熱室)を構成する各コンパートメント
をプレート状の薄型として、水蒸気反応装置の設置面
積、反応器容積ともに極く小さくすることのできること
を見出し、本発明の薄型水蒸気改質反応器を提案するに
至った。
[Means for Achieving the Object] As a result of intensive studies for achieving the above-mentioned object, the present inventors have found that the steam reforming catalyst and the combustion catalyst can be formed into a thin film shape. By using each of the catalysts, it is possible to make the steam reforming chamber and the combustion chamber (heating chamber) compartments thin and plate-shaped, and to make the installation area of the steam reactor and the reactor volume extremely small. The present invention has led to the proposal of the thin steam reforming reactor of the present invention.

【0008】すなわち、本発明の薄型水蒸気改質反応器
は、多重に重ねられたプレート状のコンパーメントを、
一つおきに、加熱室と、薄膜状に成型した水蒸気改質触
媒を具備する反応室として構成してなることを特徴とす
る。上記のプレート状のコンパーメントは、同心円筒形
状に多重に重ねられていてもよく、上記の加熱室にも、
薄膜状に成型した燃焼触媒が具備されていてもよい。ま
た、上記の薄膜状に成型した水蒸気改質触媒の厚みが
0.2〜2mmで、かつ反応室の厚みが0.7〜4m
m、薄膜状に成型した燃焼触媒の厚みが0.2〜2mm
で、かつ加熱室の厚みが0.7〜4mmであることをも
特徴とする。
That is, the thin steam reforming reactor of the present invention comprises plate-shaped compartments stacked in multiple layers.
Every other one is characterized by being configured as a heating chamber and a reaction chamber equipped with a steam reforming catalyst molded in a thin film shape. The plate-shaped compartments may be superposed in a concentric cylindrical shape, and the heating chamber may also be
A combustion catalyst molded into a thin film may be provided. The thickness of the steam reforming catalyst molded into the above thin film is 0.2 to 2 mm, and the thickness of the reaction chamber is 0.7 to 4 m.
m, the thickness of the combustion catalyst molded into a thin film is 0.2 to 2 mm
And the thickness of the heating chamber is 0.7 to 4 mm.

【0009】本発明の反応器において、薄膜状に成型さ
れる水蒸気改質触媒としては、Al、ZrO
を担体とし、ニッケル系または貴金属系を主活性種と
し、La、Ba、Ce、Ca等の第三成分を加えた公知
の触媒成分が好ましく使用できる。
In the reactor of the present invention, the steam reforming catalyst formed into a thin film has Al 2 O 3 , ZrO 2 or the like as a carrier, nickel or noble metal as the main active species, and La, Ba, Known catalyst components containing a third component such as Ce and Ca can be preferably used.

【0010】これらの触媒成分を薄膜状の水蒸気改質触
媒に成型するには、次のような4種の方法が採用され
る。 (1)真空蒸着法:高真空中で、触媒成分を高温に加熱
して蒸発させ、該蒸気を基板(例えば、ステンレス鋼箔
等、以下同じ)に衝突させ、ここで冷却・凝固させて薄
膜状にする。
To mold these catalyst components into a thin film steam reforming catalyst, the following four methods are adopted. (1) Vacuum deposition method: A catalyst component is heated to a high temperature in a high vacuum to evaporate, the vapor is made to collide with a substrate (for example, stainless steel foil, etc., hereinafter the same), and then cooled and solidified to form a thin film. Make a state.

【0011】(2)スパッタ法:数十eV以上の運動エ
ネルギーを持つイオンビームを、固体の触媒成分の表面
に照射すると、該成分の表面近傍に存在する原子が、該
イオンビームの持つ運動エネルギーの一部を得て真空中
に放出され、該原子が基板表面に到達して膜を形成す
る。このイオンビームとしては、ArやKr等の不活性
物質が使用され、イオンビームを発生させるスパッタ方
式としては、直流2極スパッタリング、直流バイアスス
パッタリング、非対称交流スパッタリング、ゲッタスパ
ッタリング、高周波スパッタリング等が使用される。
(2) Sputtering method: When the surface of a solid catalyst component is irradiated with an ion beam having a kinetic energy of several tens of eV or more, atoms existing in the vicinity of the surface of the component are kinetic energy of the ion beam. Are released into a vacuum and the atoms reach the surface of the substrate to form a film. An inert material such as Ar or Kr is used as the ion beam, and direct current bipolar sputtering, direct current bias sputtering, asymmetrical alternating current sputtering, getter sputtering, high frequency sputtering or the like is used as a sputtering method for generating the ion beam. It

【0012】(3)化学的方法:触媒成分からなる化合
物や単体のガスを基板上に供給し、気相中または基板表
面での化学反応により、所望の薄膜を形成する。
(3) Chemical method: A desired thin film is formed by supplying a compound consisting of a catalyst component or a simple substance gas onto a substrate and performing a chemical reaction in the gas phase or on the surface of the substrate.

【0013】(4)浸漬塗布法:先ず、基板を上記の触
媒成分のうちの担体成分の溶液に浸漬して該担体成分溶
液を塗布し、この塗膜を高温,短時間で焼付ける。この
浸漬塗布および焼付け操作を繰り返して所望厚みの担体
成分膜とし、この膜を上記より高温かつ長時間で焼付け
る。次いで、該担体成分膜に、上記の触媒成分のうちの
活性成分や第三成分を担体成分の場合と同様の浸漬塗布
法により担持させ、高温で長時間焼成する。
(4) Immersion coating method: First, the substrate is dipped in a solution of a carrier component of the above catalyst components to apply the carrier component solution, and this coating film is baked at a high temperature for a short time. This dip coating and baking operation is repeated to form a carrier component film having a desired thickness, and this film is baked at a temperature higher than the above and for a long time. Next, the active ingredient and the third ingredient of the above-mentioned catalyst ingredients are carried on the carrier ingredient film by the same dip coating method as in the case of the carrier ingredient, and baked at a high temperature for a long time.

【0014】上記のようにして成型される薄膜状の水蒸
気改質触媒を反応室内に保持する方法としては、例え
ば、図10(A)〜(C)に示すような方法が採用され
る。同図(A)の方法では、プレート状反応室側壁10
0と薄膜状触媒101の間に流体の流れが確保できる薄
いスペーサー(例えば金網)102を用い、これを図示
するように波形に折り曲げ、この折り曲げた2枚のスペ
ーサー102で薄膜状触媒101を挟んで、反応室内に
設置する。同図(B)の方法では、反応室の側壁100
面に流体の流路となる溝103を刻み、この溝103の
無い部分の側壁100面で薄膜状触媒101を挟むこと
により、薄膜状触媒101を反応室内に保持する。同図
(C)の方法では、反応室の側壁100面に多数の突起
104を設け、該突起104で薄膜状触媒101を支持
することにより、薄膜状触媒101を反応室内に保持す
る。
As a method for holding the thin-film steam reforming catalyst molded as described above in the reaction chamber, for example, the methods shown in FIGS. 10A to 10C are adopted. According to the method of FIG.
0 and the thin film catalyst 101, a thin spacer (for example, a wire mesh) 102 that can secure a fluid flow is used. The thin spacer 102 is bent into a corrugated shape as shown in the drawing, and the thin film catalyst 101 is sandwiched between the two bent spacers 102. Then, install it in the reaction chamber. In the method of FIG. 1B, the side wall 100 of the reaction chamber is
The thin film catalyst 101 is held in the reaction chamber by carving a groove 103 serving as a fluid flow path on the surface and sandwiching the thin film catalyst 101 between the surfaces of the side walls 100 where there is no groove 103. In the method of FIG. 2C, a large number of protrusions 104 are provided on the surface of the side wall 100 of the reaction chamber, and the thin film catalyst 101 is held by the protrusions 104 to support the thin film catalyst 101.

【0015】上記の薄膜状の水蒸気改質触媒の厚みは、
余り厚過ぎると、薄膜状とする意義がなくなり、逆に余
り薄過ぎると、触媒効果が得られないため、約2〜0.
2mm程度が好ましく、約1〜0.2mmが最も好まし
い。反応室の厚み(すなわち、反応室の両サイドの壁と
なるプレートの間隔)は、余り厚過ぎると、本発明の目
的の1つである小型化が達成できないばかりか、薄膜状
水蒸気改質触媒の反応室内への取り付け態様によって
は、反応室内を通過する改質原料の一部が該触媒に接触
できないと言う事態も発生し、逆に余り薄過ぎると、改
質反応速度が小さくなり、生産性が低下する等の不都合
があるため、触媒の厚みプラス約0.5〜2mm程度、
具体的には約4〜0.7mm程度にする必要があり、実
用的には約1〜1.8mm程度が好ましい。
The thickness of the thin film steam reforming catalyst is
If it is too thick, it becomes meaningless to make it into a thin film, and if it is too thin, the catalytic effect cannot be obtained.
It is preferably about 2 mm, most preferably about 1 to 0.2 mm. If the thickness of the reaction chamber (that is, the distance between the plates serving as the walls on both sides of the reaction chamber) is too thick, not only the miniaturization, which is one of the objects of the present invention, cannot be achieved, but also the thin film steam reforming catalyst. Depending on the manner of attachment of the reforming raw material to the reaction chamber, a situation may occur in which a part of the reforming raw material passing through the reaction chamber cannot contact the catalyst. On the contrary, if it is too thin, the reforming reaction rate decreases and the production Since there are inconveniences such as deterioration of the property, the thickness of the catalyst plus about 0.5 to 2 mm,
Specifically, it needs to be about 4 to 0.7 mm, and practically about 1 to 1.8 mm is preferable.

【0016】上記の薄膜状の水蒸気改質触媒を備えた反
応室と、加熱室とは、一枚の隔壁(上記した反応室の両
サイドの壁となるプレートのこと、以下同じ)で仕切
り、反応室内の水蒸気改質反応の原料および反応生成物
の流れと、加熱室内の高温流体の流れは、向流方向にす
ることが、反応効率および熱効率の点で好ましい。
The reaction chamber equipped with the above-mentioned thin film steam reforming catalyst and the heating chamber are partitioned by a single partition wall (plates on both sides of the reaction chamber, the same applies hereinafter), It is preferable from the viewpoint of reaction efficiency and thermal efficiency that the flow of the raw material and the reaction product of the steam reforming reaction in the reaction chamber and the flow of the high temperature fluid in the heating chamber be countercurrent.

【0017】ところで、本発明の反応器では、水蒸気改
質反応に必要な熱は、加熱室内を流れる高温流体により
得る。この高温流体としては、別に設けた燃焼室で燃料
を燃焼させて得た高温ガスを使用することもできるし、
加熱室内で直接燃料を燃焼させて得た燃焼ガスを使用す
ることもできる。燃料電池と組み合わせて本発明の反応
器を使用するときは、燃料電池から排出される水素残存
ガスを加熱室に導入し、これを燃料として燃焼させて得
たものを使用することもできる。
By the way, in the reactor of the present invention, the heat required for the steam reforming reaction is obtained by the high temperature fluid flowing in the heating chamber. As this high temperature fluid, it is also possible to use high temperature gas obtained by burning fuel in a separately provided combustion chamber,
It is also possible to use the combustion gas obtained by burning the fuel directly in the heating chamber. When the reactor of the present invention is used in combination with a fuel cell, a hydrogen residual gas discharged from the fuel cell may be introduced into a heating chamber and burned as a fuel to be used.

【0018】このように、加熱室内で燃料を燃焼される
場合は、加熱室内に燃焼触媒を具備させておくことが好
ましい。この燃焼触媒としては、アルミナ、炭化ケイ
素、窒化ケイ素等のセラミックを担体とし、貴金属を担
持させた公知の触媒成分が使用できる。これらの燃焼触
媒は、従来と同様にペレット状に成型したものを使用す
ることもできるが、上記の水蒸気改質触媒と同様に薄膜
状に成型したものを使用することが、本発明の反応器を
さらに小型化する上で好ましい。
As described above, when the fuel is burned in the heating chamber, it is preferable to provide a combustion catalyst in the heating chamber. As the combustion catalyst, a known catalyst component in which a ceramic such as alumina, silicon carbide or silicon nitride is used as a carrier and a noble metal is supported can be used. Although these combustion catalysts may be used in the form of pellets as in the conventional case, it is preferable to use the ones in the form of thin film similar to the above steam reforming catalyst. Is preferable for further downsizing.

【0019】これらを薄膜状の燃焼触媒に成型するに
は、上記した薄膜状水蒸気改質触媒の成型方法と同様の
方法が採用でき、薄膜状の燃焼触媒を加熱室内に保持す
る方法も、上記した薄膜状水蒸気改質触媒を反応室内に
保持する方法と同様の方法が採用される。そして、薄膜
状に成型する燃焼触媒の厚み、および該薄膜状触媒を使
用する場合の加熱室の幅は、上記した薄膜状の水蒸気改
質触媒の厚みおよび反応室の幅と同様の理由により同様
の厚みおよび幅でよい。
To form these into a thin-film combustion catalyst, the same method as the above-mentioned method for forming a thin-film steam reforming catalyst can be adopted, and the method of holding the thin-film combustion catalyst in the heating chamber is also the above. A method similar to the method of holding the thin film steam reforming catalyst described above in the reaction chamber is adopted. The thickness of the combustion catalyst formed into a thin film and the width of the heating chamber when the thin film catalyst is used are the same for the same reason as the thickness of the thin film steam reforming catalyst and the width of the reaction chamber. The thickness and width of

【0020】さらに、本発明の反応器においては、上記
の薄膜状の水蒸気改質触媒を具備する反応室および加熱
室を、同心円筒形状に多重に重ねて構成することもでき
る。このとき、加熱室にも薄膜状の燃焼触媒を具備して
おくことができる。
Further, in the reactor of the present invention, the reaction chamber and the heating chamber provided with the above-mentioned thin film steam reforming catalyst may be formed in a concentric cylindrical shape and superposed. At this time, the heating chamber may also be provided with a thin-film combustion catalyst.

【0021】なお、本発明の反応器において、反応室か
ら取り出される反応生成ガス、および加熱室から排出さ
れる温度降下したガスや燃焼排ガスは、それぞれ公知の
手法により水蒸気改質原料、燃焼用空気、燃料ガスと熱
交換して、熱効率の向上につとめることができる。
In the reactor of the present invention, the reaction product gas taken out from the reaction chamber and the temperature-decreased gas or combustion exhaust gas discharged from the heating chamber are steam reforming raw material and combustion air, respectively, according to known methods. By exchanging heat with the fuel gas, it is possible to improve the thermal efficiency.

【0022】また、本発明の反応器で使用することがで
きる水蒸気改質反応の原料は、C〜Cの炭化水素、
ナフサ灯軽油の炭化水素、C〜Cのアルコール、C
以上のアルコール等の公知の原料で差し支えない。さ
らに、本発明の反応器における水蒸気改質反応の条件
は、概ね、温度約600〜900℃、圧力約0.5〜1
5Kg/cm(絶対圧)、LHSV約0.5〜6h
−1、S(水蒸気)/C(炭素)(モル比)約2〜5と
することが好ましい。
Further, the raw material for the steam reforming reaction which can be used in the reactor of the present invention is a C 1 -C 4 hydrocarbon,
Naphtha Kerosene hydrocarbons, C 1 -C 4 alcohols, C
Known raw materials such as alcohols of 5 or more may be used. Furthermore, the conditions of the steam reforming reaction in the reactor of the present invention are generally a temperature of about 600 to 900 ° C. and a pressure of about 0.5 to 1.
5Kg / cm 2 (absolute pressure), LHSV about 0.5-6h
-1 , S (steam) / C (carbon) (molar ratio) is preferably about 2-5.

【0023】[0023]

【作用】水蒸気改質反応の速度自体は非常に早いもので
あるが、水蒸気改質反応は非常に大きな吸熱反応である
ため、実質的な反応速度は伝熱速度により制限される結
果となっている。これまで、伝熱面積の改善策として、
プレート形式の反応管を改良することも試みられたが、
それだけでは不十分であった。
The function of the steam reforming reaction itself is very fast, but the steam reforming reaction is a very large endothermic reaction, so that the substantial reaction rate is limited by the heat transfer rate. There is. So far, as a measure to improve the heat transfer area,
Attempts have also been made to improve the plate-type reaction tube,
That was not enough.

【0024】すなわち、プレート形式の反応管に従来の
ペレット状成型触媒を充填して反応室を構成し、この反
応室の厚みを薄くして単位触媒当たりの伝熱面積を増や
そうとした。しかし、反応床の圧力損失の関係上、ペレ
ットサイズは3mm程度が限界であり、そのため反応室
の厚みも10mmぐらいが限度であった。しかも、反応
室内のガス体の流れは、ペレット触媒の間隙を通るた
め、反応室の壁部における境膜部分での流れが悪くな
り、伝熱の障害になっていた。
That is, a plate-type reaction tube was filled with a conventional pellet-shaped molded catalyst to form a reaction chamber, and the thickness of the reaction chamber was reduced to increase the heat transfer area per unit catalyst. However, due to the pressure loss of the reaction bed, the pellet size is limited to about 3 mm, and thus the thickness of the reaction chamber is limited to about 10 mm. Moreover, since the flow of the gas in the reaction chamber passes through the gap of the pellet catalyst, the flow in the boundary film portion of the wall of the reaction chamber becomes poor, which is an obstacle to heat transfer.

【0025】これに対し、本発明の反応器では、水蒸気
改質触媒として薄膜状に成型したものを用いるため、従
来のペレット状の触媒を使用する場合に比べ、反応室の
厚み(プレートの間隔)をきわめて小さくすることがで
き、上記の伝熱面積の問題を解決することができる。す
なわち、薄膜状の水蒸気改質触媒を使用するため、圧力
損失が生ぜず、プレート間隔を狭くすることができると
ともに、プレート部における境膜部分でのガス体の流れ
が良好となって、該部分での伝熱抵抗が生じない。しか
も、薄膜状の水蒸気改質触媒は、触媒自体の伝熱面積を
広げる。
On the other hand, in the reactor of the present invention, the steam reforming catalyst formed into a thin film is used, and therefore the thickness of the reaction chamber (the space between the plates is smaller than that in the case where the conventional pellet catalyst is used). ) Can be made extremely small, and the problem of the heat transfer area can be solved. That is, since the thin film steam reforming catalyst is used, pressure loss does not occur, the plate interval can be narrowed, and the flow of the gas body in the boundary film part in the plate part becomes good, so that part No heat transfer resistance occurs. Moreover, the thin film steam reforming catalyst widens the heat transfer area of the catalyst itself.

【0026】これらにより、本発明の反応器では、伝熱
速度が改善され、従来のペレット状の触媒を使用する場
合よりも高速の反応が可能となり、この結果として、設
置面積および反応器容積が従来のペレット状の触媒を使
用する場合より大幅に減少する。
As a result, in the reactor of the present invention, the heat transfer rate is improved, and the reaction can be carried out at a higher speed than in the case of using the conventional pelletized catalyst. As a result, the footprint and the reactor volume are reduced. It is significantly reduced as compared with the case of using the conventional pelletized catalyst.

【0027】例えば、薄膜状に成型した水蒸気改質触媒
と燃焼触媒との厚みをそれぞれ約1mmに仕上げれば、
反応室および加熱室の厚さはそれぞれ約2mmで十分で
ある。この両室それぞれの縦横の寸法を、仮に、それぞ
れ約600mmとすると、約約50kwの燃料電池用に
は、反応室,加熱室で、断熱材を除いて、内寸約87m
mとなる。この規模における従来の大口径二重円筒方式
の場合、内寸で直径約500mm、長さ約1000mm
となり、本発明の反応器では、この従来の大口径二重円
筒方式の反応器(装置)容積で約1/6、設置面積で約
1/3となる。また、プレート状のコンパーメント(す
なわち、上記の反応室および加熱室)を同心円筒形状に
多重に重ねられて本発明の反応器を構成する場合におい
ては、約50kwの燃料電池用で、直径約217mm、
高さ約900mmとなり、上記の従来の大口径二重円筒
方式の反応器(装置)容積で約1/6以上、設置面積で
約1/5となる。
For example, if the thicknesses of the steam reforming catalyst and the combustion catalyst formed into a thin film are finished to about 1 mm,
It is sufficient that the reaction chamber and the heating chamber each have a thickness of about 2 mm. Assuming that the vertical and horizontal dimensions of each of these chambers are about 600 mm, for a fuel cell of about 50 kW, the reaction chamber and heating chamber are about 87 m in internal dimension excluding the heat insulating material.
m. In the case of the conventional large-diameter double-cylinder system on this scale, the inner diameter is about 500 mm and the length is about 1000 mm
Therefore, in the reactor of the present invention, the volume of the conventional large-diameter double-cylindrical reactor (apparatus) is about 1/6 and the installation area is about 1/3. In the case where the plate-shaped compartments (that is, the reaction chamber and the heating chamber described above) are superposed in a concentric cylindrical shape to form the reactor of the present invention, it is for a fuel cell of about 50 kw and has a diameter of about 217 mm,
The height is about 900 mm, the volume of the conventional large-diameter double-cylindrical reactor (apparatus) is about 1/6 or more, and the installation area is about 1/5.

【0028】[0028]

【実施例】図1は本発明の反応器の基本的な構成を説明
するための外観図であり、図2は図1の断面図である。
図1に示す本発明の反応器は、触媒の格納された反応室
11とその両側を加熱室12で挟んだ構成になってい
る。この反応器の反応室11および加熱室12の大きさ
は、45mm×40mm×2mmであり、反応室11の
内部には、図2に示すように、薄膜状水蒸気改質触媒
(浸漬塗布法により形成されたもので、担体がAl
《生成量0.8677g,片面当たりの厚み250μ
m》、活性金属がNiO15wt%およびKO5wt
%のものを使用)(スペーサーの厚みを含めて全体の厚
さが1mm)1が、ほぼ中央に設置されている。この触
媒1の反応室11内への設置は、前述した図10(A)
〜(C)のような方法による。なお、本例では図10
(A)の方法を採用した。
EXAMPLE FIG. 1 is an external view for explaining the basic structure of a reactor of the present invention, and FIG. 2 is a sectional view of FIG.
The reactor of the present invention shown in FIG. 1 has a structure in which a reaction chamber 11 storing a catalyst and both sides thereof are sandwiched between heating chambers 12. The reaction chamber 11 and the heating chamber 12 of this reactor have a size of 45 mm × 40 mm × 2 mm, and inside the reaction chamber 11, as shown in FIG. Formed, the carrier is Al 2 O
3 << Production amount 0.8677g, thickness 250μ per side
m >>, the active metals are NiO 15 wt% and K 2 O 5 wt
%) (The total thickness including the thickness of the spacer is 1 mm) 1 is installed almost at the center. The catalyst 1 is installed in the reaction chamber 11 as shown in FIG.
According to a method like (C). In this example, FIG.
The method of (A) was adopted.

【0029】上記の反応室11内部の薄膜状水蒸気改質
触媒1の両側に、ライン3から導入された改質原料(炭
化水素またはアルコール類と、水蒸気と)が供給され
て、反応が行われる。反応後のガスは、ライン5から取
り出される。
The reforming raw materials (hydrocarbons or alcohols and steam) introduced from the line 3 are supplied to both sides of the thin film steam reforming catalyst 1 inside the reaction chamber 11 to carry out the reaction. .. The gas after the reaction is taken out from the line 5.

【0030】上記の反応に必要な熱は、反応室11の両
側に設置されている加熱室12より、隔壁7を経て供給
される。すなわち、本例では、高温のガスがライン10
から加熱室12に導入され、該ガスの熱が隔壁7を経て
反応室11に供給される。降温したガスは、ライン6か
ら排出される。このように、反応室11内の改質原料の
流れと、加熱室12内の高温のガスの流れは、向流方向
となっている。なお、加熱室12の外側(すなわち、本
発明の反応器の外側)には、図示は省略するが、断熱材
が施されている。
The heat required for the above reaction is supplied from the heating chambers 12 installed on both sides of the reaction chamber 11 through the partition wall 7. That is, in this example, the hot gas is supplied to the line 10
Is introduced into the heating chamber 12 and the heat of the gas is supplied to the reaction chamber 11 through the partition wall 7. The cooled gas is discharged from the line 6. As described above, the flow of the reforming raw material in the reaction chamber 11 and the flow of the high temperature gas in the heating chamber 12 are countercurrent directions. Although not shown, a heat insulating material is applied to the outside of the heating chamber 12 (that is, the outside of the reactor of the present invention).

【0031】上記の実施例では、加熱室12および反応
室11のコンパーメントを増設することにより、反応容
量の増加が容易にできる。
In the above embodiment, the reaction volume can be easily increased by adding the compartments for the heating chamber 12 and the reaction chamber 11.

【0032】以上のように構成される本発明の反応器を
使用し、ライン3から導入する改質原料として十分脱硫
された灯油(硫黄分0.18ppm)と水蒸気を用い、
反応室11の出口温度(ライン5から取り出される改質
ガス《水素含有ガス》の温度)を800℃に保つように
加熱室12に高温の燃焼ガス(別の燃焼設備で燃焼させ
た得たガス)をライン10から導入して、改質反応を行
った。この反応の結果を表1に示す。
Using the reactor of the present invention configured as described above, using sufficiently desulfurized kerosene (sulfur content 0.18 ppm) and steam as reforming raw materials introduced from line 3,
High temperature combustion gas (gas obtained by burning in another combustion facility) in the heating chamber 12 so as to keep the outlet temperature of the reaction chamber 11 (temperature of the reformed gas << hydrogen-containing gas >> taken out from the line 5) at 800 ° C. ) Was introduced through line 10 to carry out the reforming reaction. The results of this reaction are shown in Table 1.

【0033】また、比較のために、従来の粒状触媒(A
《0.8677g》を担体とし、NiO15w
t%およびKO5wt%を活性金属とするものを使
用)を充填した円筒状反応器により、十分脱硫された灯
油(硫黄分0.18ppm)と水蒸気を改質原料とし、
反応室出口温度を800℃に保ちながら改質反応を行っ
た結果を表2に示す。
For comparison, a conventional granular catalyst (A
l 2 O 3 << 0.8677g >> as a carrier, NiO15w
t% and K 2 O 5 wt% as active metals are used), and a kerosene (sulfur content 0.18 ppm) sufficiently desulfurized and steam are used as reforming raw materials by a cylindrical reactor filled with
Table 2 shows the results of carrying out the reforming reaction while keeping the outlet temperature of the reaction chamber at 800 ° C.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】表1、表2から明らかなように、本発明の
反応器は、従来のペレット状水蒸気改質触媒を充填した
反応器に比べ、反応原料送入速度が4.6倍であるにも
拘らず同様に機能しており、ペレット状水蒸気改質触媒
を用いた従来の反応器を、本発明の反応器と同程度の反
応原料送入速度まで上げて行くと反応速度の低下が見ら
れた。このことにより、本発明の反応器によれば、従来
のペレット状水蒸気改質触媒を充填した反応器よりも、
大幅に小型化できることが証明される。
As is clear from Tables 1 and 2, the reactor of the present invention has a reaction material feed rate of 4.6 times that of the conventional reactor filled with the steam reforming catalyst in pellet form. Despite the fact that it functions in the same way, when a conventional reactor using a pellet-shaped steam reforming catalyst is increased to a reaction material feed rate similar to that of the reactor of the present invention, the reaction rate decreases. Was given. As a result, according to the reactor of the present invention, as compared with the reactor packed with the conventional pellet-shaped steam reforming catalyst,
It is proved that the size can be greatly reduced.

【0037】図3(外観図)および図4(断面図),図
5(断面図),図6(断面図)は、本発明の反応器の他
の各実施例を示す図であり、これらの例では、加熱室1
2の内部にも薄膜状燃焼触媒を設置した場合を示してい
る。
FIG. 3 (external view), FIG. 4 (cross-sectional view), FIG. 5 (cross-sectional view), and FIG. 6 (cross-sectional view) are views showing other embodiments of the reactor of the present invention. In the example, the heating chamber 1
2 also shows the case where a thin film combustion catalyst is installed inside.

【0038】図3に示す例では、7つのコンパーメント
から構成されていて、加熱室12、反応室11が交互に
配列されている。図4は、図3の断面図であり、加熱室
12の内部中央に薄膜状に成型された燃焼触媒2が設置
され、また加熱室12内部には8本の燃料供給管8が水
平に配列されており、燃料供給管8には図3のa−b線
断面図である図8に示すように、多数のノズル孔9が設
けられており、該ノズル孔9によりライン4から導入さ
れた燃料が薄膜状燃焼触媒2に十分行き届くようになっ
ている。なお、図5に示すように、加熱室12には、上
記のような燃料供給管が配列されていなくてもよい。加
熱室12の排ガスは、図4,図5いずれの場合も、ライ
ン6から排出される。また、加熱室12と反応室11
は、図4,図5いずれの場合も、図1,図2に示した例
と同様に、隔壁7によって区切られている。
In the example shown in FIG. 3, seven compartments are provided, and heating chambers 12 and reaction chambers 11 are alternately arranged. FIG. 4 is a sectional view of FIG. 3, in which a thin-film-shaped combustion catalyst 2 is installed in the center of the heating chamber 12, and eight fuel supply pipes 8 are horizontally arranged inside the heating chamber 12. As shown in FIG. 8, which is a sectional view taken along the line ab of FIG. 3, the fuel supply pipe 8 is provided with a large number of nozzle holes 9, and the nozzle holes 9 are used to introduce from the line 4. The fuel reaches the thin film combustion catalyst 2 sufficiently. In addition, as shown in FIG. 5, the fuel supply pipe as described above may not be arranged in the heating chamber 12. The exhaust gas in the heating chamber 12 is discharged from the line 6 in both cases of FIG. 4 and FIG. In addition, the heating chamber 12 and the reaction chamber 11
In both cases of FIG. 4 and FIG. 5, like the example shown in FIG. 1 and FIG.

【0039】図4〜図5に示す反応器を燃料電池と組み
合わせる場合、燃料電池から排出される水素残存ガスを
燃料として使用することもできる。なお、図4〜図5に
示す例における改質原料の供給および改質反応後の改質
ガスの取り出しは、図1,図2に示した例と同じであ
る。
When the reactor shown in FIGS. 4 to 5 is combined with a fuel cell, hydrogen residual gas discharged from the fuel cell can be used as fuel. The supply of the reforming raw material and the extraction of the reformed gas after the reforming reaction in the examples shown in FIGS. 4 to 5 are the same as those in the examples shown in FIGS.

【0040】図6は、図4における加熱室12と反応室
11の各内部に設置される薄膜状燃焼触媒2と薄膜状水
蒸気改質触媒1の設置位置および設置数量を変えた例を
示している。すなわち、図6の例では、隔壁7の加熱室
12の内部に面している側のそれぞれに薄膜状に成型さ
れた燃焼触媒2を合計で4つ、同隔壁7の反応室11の
内部に面している側のそれぞれに薄膜状に成型された水
蒸気改質触媒1を合計で2つ設置している。そして、加
熱室12の内部中央に4本の燃料供給管8が配列され、
図4の場合と同様に、図8に示すライン4から導入され
る燃料が該供給管8から燃焼触媒2に供給され、触媒燃
焼により高温の加熱ガスとなる。なお、図7に示すよう
に、加熱室12には、上記のような燃料供給管が配列さ
れていなくてもよい。
FIG. 6 shows an example in which the installation position and the installation quantity of the thin film combustion catalyst 2 and the thin film steam reforming catalyst 1 installed in each of the heating chamber 12 and the reaction chamber 11 in FIG. 4 are changed. There is. That is, in the example of FIG. 6, a total of four combustion catalysts 2 molded in a thin film on each side of the partition wall 7 facing the inside of the heating chamber 12, inside the reaction chamber 11 of the partition wall 7. Two steam reforming catalysts 1 formed into a thin film are installed on each of the facing sides in total. Then, four fuel supply pipes 8 are arranged in the center of the heating chamber 12,
As in the case of FIG. 4, the fuel introduced from the line 4 shown in FIG. 8 is supplied to the combustion catalyst 2 from the supply pipe 8 and becomes hot gas at high temperature by catalytic combustion. In addition, as shown in FIG. 7, the fuel supply pipe as described above may not be arranged in the heating chamber 12.

【0041】また、薄膜状の水蒸気改質触媒1および燃
焼触媒2は、図6〜図7に示す例では、反応室11およ
び燃焼室12の内側壁面の左右両面に設置している。も
ちろん、いずれか片側の壁面にのみ設置するようにする
こともできるが、熱的バランスからは左右両面に設ける
ことが好ましい。図6〜図7に示す反応器を燃料電池と
組み合わせる場合も、図3〜図4の場合と同様に、燃料
電池から排出される水素残存ガスを燃料として使用する
ことができる。なお、図6〜図7に示す例においても、
改質原料の供給および改質反応後の改質ガスの取り出し
は、図1,図2に示した例と同じである。
Further, the thin film steam reforming catalyst 1 and the combustion catalyst 2 are installed on both left and right sides of the inner wall surfaces of the reaction chamber 11 and the combustion chamber 12 in the examples shown in FIGS. Of course, it may be installed only on one of the wall surfaces, but it is preferable to install it on both the left and right sides in terms of thermal balance. When the reactor shown in FIGS. 6 to 7 is combined with a fuel cell, the hydrogen residual gas discharged from the fuel cell can be used as a fuel as in the case of FIGS. 3 to 4. In addition, also in the example shown in FIGS. 6 to 7,
The supply of the reforming raw material and the extraction of the reformed gas after the reforming reaction are the same as in the example shown in FIGS.

【0042】図9は、本発明の反応器を、プレート状の
コンパーメントを同心円筒形状に多重に重ねて構成した
場合の一実施例を示したもので、(A)は外観図、
(B)は(A)のA−B線断面図、(C)は原料等の導
入・取出のための配管の取付け態様を示す説明図であ
る。本例では、図2に示す態様の、網状スペーサーに保
持した薄膜状水蒸気改質触媒1をほぼ中央に設置した反
応室11の側壁を構成するプレートと、加熱室12の側
壁を構成するプレート(これらのプレートが反応室11
と加熱室12との隔壁7となる)とを、円筒形状となる
ように曲げ、これらの円筒形状のプレートを同心円状に
重ねて、本発明の反応器を構成したもので、図9中、図
1〜図2と同一符号は、図1〜図2と同一機能部を示し
ている。また、図示は省略するが、加熱室12にも薄膜
状の燃焼触媒2を具備させた図3〜8に示すようなもの
を、図9に示すような同心円筒形状に構成することがで
きることは言うまでもない。
FIG. 9 shows an embodiment in which the reactor of the present invention is constructed by stacking plate-like compartments in a concentric cylindrical shape in multiple layers. (A) is an external view,
(B) is a cross-sectional view taken along the line AB of (A), and (C) is an explanatory view showing a mounting mode of a pipe for introducing and taking out raw materials and the like. In this example, the plate constituting the side wall of the reaction chamber 11 and the plate constituting the side wall of the heating chamber 12 in which the thin film steam reforming catalyst 1 held by the mesh spacer of the embodiment shown in FIG. These plates are the reaction chamber 11
And the partition wall 7 of the heating chamber 12) are bent so as to have a cylindrical shape, and the plates of these cylindrical shapes are concentrically stacked to form the reactor of the present invention. The same reference numerals as those in FIGS. 1 and 2 denote the same functional units as those in FIGS. Although not shown in the drawings, the heating chamber 12 provided with the thin-film combustion catalyst 2 as shown in FIGS. 3 to 8 can be formed into a concentric cylindrical shape as shown in FIG. Needless to say.

【0043】[0043]

【発明の効果】以上詳述したように、本発明の反応器に
よれば、従来のペレット状の水蒸気改質触媒や燃焼触媒
を使用する水蒸気改質反応器に比較して、大幅な小型化
を実現することができ、反応器容積,設置面積ともに極
めて小さくすることができる。従って、炭化水素または
アルコール類を燃料とする燃料電池用の燃料改質装置と
して好ましく適用することができ、小型オンサイト型燃
料電池パッケージが容易に実用化できる。しかも、この
とき、加熱室内にも薄膜状の燃焼触媒を具備させておけ
ば、燃料電池からの排出燃料水素残存ガスを加熱室に導
入し、これを燃料として燃焼させて得られる熱を水蒸気
改質反応に供給することもでき、熱効率の改善をも図る
ことができる。
As described in detail above, according to the reactor of the present invention, the size of the reactor is significantly reduced as compared with the conventional steam reforming reactor using pellet-shaped steam reforming catalyst or combustion catalyst. And the reactor volume and installation area can be made extremely small. Therefore, it can be preferably applied as a fuel reformer for a fuel cell using hydrocarbons or alcohols as a fuel, and a small on-site fuel cell package can be easily put into practical use. Moreover, at this time, if a thin-film combustion catalyst is also provided in the heating chamber, the residual fuel hydrogen gas discharged from the fuel cell is introduced into the heating chamber and the heat obtained by burning it as fuel is converted to steam. It can also be supplied to the quality reaction, and the thermal efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の反応器の一実施例を説明するための外
観図である。
FIG. 1 is an external view for explaining an example of a reactor of the present invention.

【図2】図1の断面図である。FIG. 2 is a cross-sectional view of FIG.

【図3】本発明の反応器の他の実施例を説明するための
外観図である。
FIG. 3 is an external view for explaining another embodiment of the reactor of the present invention.

【図4】図3の断面図である。4 is a cross-sectional view of FIG.

【図5】図4の変更例を説明するための図である。FIG. 5 is a diagram for explaining a modified example of FIG.

【図6】図4の他の変更例を説明するための図である。FIG. 6 is a diagram for explaining another modification example of FIG. 4;

【図7】図6の他の変更例を説明するための図である。FIG. 7 is a diagram for explaining another modification example of FIG. 6;

【図8】図4および図6に示す例の燃焼室の他方向の断
面図で、図3のa−b線断面図である。
8 is a sectional view of the example of the combustion chamber shown in FIGS. 4 and 6 in the other direction, and is a sectional view taken along the line ab of FIG.

【図9】本発明の反応器のさらに他の実施例を説明する
ための図で、(A)は外観図、(B)は(A)のA−B
線断面図、(C)は原料等の導入・取出のための配管の
取付け態様を示す説明図である。
FIG. 9 is a view for explaining still another embodiment of the reactor of the present invention, (A) is an external view, (B) is an AB of (A).
A line cross-sectional view, (C) is an explanatory view showing a mounting mode of a pipe for introducing and taking out raw materials and the like.

【図10】本発明に係る薄膜状触媒の反応室内への保持
例を示す図である。
FIG. 10 is a diagram showing an example of holding the thin film catalyst according to the present invention in a reaction chamber.

【符号の説明】[Explanation of symbols]

1 薄膜状水蒸気改質触媒 2 薄膜状燃焼触媒 3 改質原料導入ライン 4 燃料導入ライン 5 改質反応終了後のガスの取り出しライン 6 加熱室からの排ガスの排出ライン 7 隔壁(プレート) 8 燃料供給管 9 ノズル孔 10 高温ガス導入ライン 11 反応室 12 加熱室 1 Thin-Film Steam Reforming Catalyst 2 Thin-Film Combustion Catalyst 3 Reforming Raw Material Introduction Line 4 Fuel Introduction Line 5 Gas Extraction Line After Reforming Reaction 6 Exhaust Gas Exhaust Line from Heating Chamber 7 Partition (Plate) 8 Fuel Supply Pipe 9 Nozzle hole 10 High temperature gas introduction line 11 Reaction chamber 12 Heating chamber

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多重に重ねられたプレート状のコンパー
メントを、一つおきに、加熱室と、薄膜状に成型した水
蒸気改質触媒を具備する反応室として構成してなること
を特徴とする薄型水蒸気改質反応器。
1. A plurality of plate-shaped compartments, which are stacked in multiple layers, are arranged as a heating chamber and a reaction chamber provided with a steam reforming catalyst formed into a thin film. Thin steam reforming reactor.
【請求項2】 プレート状のコンパーメントが、同心円
筒形状に多重に重ねられてなることを特徴とする請求項
1記載の薄型水蒸気改質反応器。
2. The thin steam reforming reactor according to claim 1, wherein the plate-shaped compartments are superposed in a concentric cylindrical shape.
【請求項3】 加熱室が、薄膜状に成型した燃焼触媒を
具備していることを特徴とする請求項1,2記載の薄型
水蒸気改質反応器。
3. The thin steam reforming reactor according to claim 1, wherein the heating chamber is equipped with a combustion catalyst formed in a thin film shape.
【請求項4】 薄膜状に成型した水蒸気改質触媒の厚み
が0.2〜2mmで、かつ反応室の厚みが0.7〜4m
mであることを特徴とする請求項1〜3記載の薄型水蒸
気改質反応器。
4. The steam reforming catalyst formed into a thin film has a thickness of 0.2 to 2 mm, and a reaction chamber has a thickness of 0.7 to 4 m.
The thin steam reforming reactor according to any one of claims 1 to 3, wherein m is m.
【請求項5】 薄膜状に成型した燃焼触媒の厚みが0.
2〜2mmで、かつ加熱室の厚みが0.7〜4mmであ
ることを特徴とする請求項3記載の薄型水蒸気改質反応
器。
5. The combustion catalyst formed into a thin film has a thickness of 0.
The thin steam reforming reactor according to claim 3, wherein the heating chamber has a thickness of 2 to 2 mm and a thickness of the heating chamber of 0.7 to 4 mm.
JP3350278A 1991-12-09 1991-12-09 Thin type steam reforming reactor Pending JPH05155602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3350278A JPH05155602A (en) 1991-12-09 1991-12-09 Thin type steam reforming reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3350278A JPH05155602A (en) 1991-12-09 1991-12-09 Thin type steam reforming reactor

Publications (1)

Publication Number Publication Date
JPH05155602A true JPH05155602A (en) 1993-06-22

Family

ID=18409413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3350278A Pending JPH05155602A (en) 1991-12-09 1991-12-09 Thin type steam reforming reactor

Country Status (1)

Country Link
JP (1) JPH05155602A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855366A1 (en) * 1997-01-22 1998-07-29 Haldor Topsoe A/S Synthesis gas production by steam reforming using catalyzed hardware
WO2000005168A1 (en) * 1998-07-21 2000-02-03 Haldor Topsøe A/S Synthesis gas production by steam reforming
WO2000031816A1 (en) * 1998-11-19 2000-06-02 Sk Corporation Miniature fuel reformer and system using metal thin film
WO2000035578A1 (en) * 1998-12-15 2000-06-22 Osaka Gas Co., Ltd. Fluid treating device
WO2002028769A3 (en) * 2000-10-06 2003-01-23 Catalytica Energy Systems Catalytic separator plate reactor and method of catalytic reforming of fuel to hydrogen
US7087192B2 (en) 2002-09-26 2006-08-08 Haldor Topsoe A/S Process for the preparation of synthesis gas
US7090789B2 (en) 2003-02-05 2006-08-15 Haldor Topsoe A/S Process and catalyst for treatment of synthesis gas
US7094363B2 (en) 2002-09-26 2006-08-22 Haldor Topsoe A/S Process for the preparation of a synthesis gas

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855366A1 (en) * 1997-01-22 1998-07-29 Haldor Topsoe A/S Synthesis gas production by steam reforming using catalyzed hardware
WO2000005168A1 (en) * 1998-07-21 2000-02-03 Haldor Topsøe A/S Synthesis gas production by steam reforming
US7060118B1 (en) 1998-07-21 2006-06-13 Haldor Topse A/S Synthesis gas production by steam reforming
WO2000031816A1 (en) * 1998-11-19 2000-06-02 Sk Corporation Miniature fuel reformer and system using metal thin film
US6896709B1 (en) 1998-11-19 2005-05-24 Sk Corporation Miniature fuel reformer and system using metal thin film
WO2000035578A1 (en) * 1998-12-15 2000-06-22 Osaka Gas Co., Ltd. Fluid treating device
US7014822B1 (en) 1998-12-15 2006-03-21 Osaka Gas Co., Ltd Fluid treating device
WO2002028769A3 (en) * 2000-10-06 2003-01-23 Catalytica Energy Systems Catalytic separator plate reactor and method of catalytic reforming of fuel to hydrogen
US7087192B2 (en) 2002-09-26 2006-08-08 Haldor Topsoe A/S Process for the preparation of synthesis gas
US7094363B2 (en) 2002-09-26 2006-08-22 Haldor Topsoe A/S Process for the preparation of a synthesis gas
US7547332B2 (en) 2002-09-26 2009-06-16 Haldor Topsoe A/S Apparatus for the preparation of synthesis gas
US7090789B2 (en) 2003-02-05 2006-08-15 Haldor Topsoe A/S Process and catalyst for treatment of synthesis gas

Similar Documents

Publication Publication Date Title
US11305250B2 (en) Catalytically heated fuel processor with replaceable structured supports bearing catalyst for fuel cell
US4101287A (en) Combined heat exchanger reactor
US20020071797A1 (en) Catalytic separator plate reactor and method of catalytic reforming of fuel to hydrogen
AU2021304095B2 (en) Ultralight hydrogen production reactor comprising high-efficiency composite
JP4643027B2 (en) Compact and lightweight self-heating reformer
JP2002521192A5 (en)
JPH05155602A (en) Thin type steam reforming reactor
US20100254864A1 (en) Cylindrical steam reformer
KR100719484B1 (en) Compact Steam Reformer Utilizing Metal-Monolith-Washcoated Catalyst and Preparation Method of Hydrogen Gas Using The Catalyst
JP3313766B2 (en) Thin film catalyst for steam reforming
JP4469335B2 (en) Hydrogen generator and fuel cell power generation system
US7740670B2 (en) Catalyst for partial oxidation reforming of fuel and fuel reforming apparatus and method using the catalyst
KR20080060871A (en) Multi layer catalyst reactor equipped with metal monolith heat exchanger for hydrocarbon steam reforming and producing method of hydrogen gas using the multi layer catalyst reactor
KR20170022345A (en) Catalyst reactor for hydrocarbon steam reforming with excellent reaction efficiency
JPS63291802A (en) Fuel reforming apparatus
KR100498159B1 (en) Methanol autothermal reformer for hydrogen production
CN219836473U (en) Reactor for producing a catalyst
JPH0812302A (en) Reforming reactor
JPH1143304A (en) Reforming unit
JPS5924721B2 (en) Alcohol reformer
CN210683200U (en) High-flux methanol-water reforming hydrogen production microchannel reactor
JP2001353445A (en) Catalytic reactor equipped with structure for promotion heat conduction
JP3309515B2 (en) Pressurized plate reformer
JP2003267702A (en) Hydrogen production apparatus
CN116492938A (en) Reactor and application thereof