JPH06249195A - Impeller of axial blower - Google Patents
Impeller of axial blowerInfo
- Publication number
- JPH06249195A JPH06249195A JP5040872A JP4087293A JPH06249195A JP H06249195 A JPH06249195 A JP H06249195A JP 5040872 A JP5040872 A JP 5040872A JP 4087293 A JP4087293 A JP 4087293A JP H06249195 A JPH06249195 A JP H06249195A
- Authority
- JP
- Japan
- Prior art keywords
- blade
- impeller
- section
- axial blower
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
- Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、空気調和機などに用い
られる軸流送風機の羽根車に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impeller of an axial blower used for an air conditioner or the like.
【0002】[0002]
【従来の技術】近年、軸流送風機の羽根車は、室内機、
室外機セパレート型空気調和機などの送風機として、業
務用から家庭用まで幅広く使用されており、より低騒音
化が望まれる傾向にある。2. Description of the Related Art In recent years, the impeller of an axial blower is an indoor unit,
As a blower for an outdoor unit separate type air conditioner and the like, it is widely used from commercial use to household use, and there is a tendency for noise reduction to be desired.
【0003】以下、図面を参照しながら、特開昭63−
61800号公報などで提案されているような従来の軸
流送風機の羽根車について説明する。図4から図6は、
従来の軸流送風機の羽根車の構造を示すものである。図
において14は羽根車であり、略円柱形のハブ11と、
このハブ11の周囲に配された複数枚の翼12より成っ
ている。前記翼12のU−U断面形状は、図6に示すよ
うにほぼ均一な厚さを持った薄板状に形成されている。
図中の10は回転軸、13は翼12の外縁、15は複数
の翼12を囲むオリフィスである。Hereinafter, referring to the drawings, JP-A-63-
An impeller of a conventional axial flow fan as proposed in Japanese Patent No. 61800 will be described. 4 to 6 show
1 shows a structure of an impeller of a conventional axial blower. In the figure, 14 is an impeller, and a substantially cylindrical hub 11,
It is composed of a plurality of blades 12 arranged around the hub 11. The U-U cross-sectional shape of the blade 12 is formed in a thin plate shape having a substantially uniform thickness as shown in FIG.
In the figure, 10 is a rotating shaft, 13 is an outer edge of the blade 12, and 15 is an orifice surrounding the plurality of blades 12.
【0004】以上のように構成された軸流送風機の羽根
車について、以下、その動作を説明する。羽根車14が
所定の回転方向Aに回転すると、空気が羽根車14内に
流入し、翼12の作用で静圧と動圧が付与されて羽根車
14外に吐出され送風作用を成す。The operation of the impeller of the axial blower configured as above will be described below. When the impeller 14 rotates in a predetermined rotation direction A, air flows into the impeller 14, and static pressure and dynamic pressure are applied by the action of the blades 12 to be discharged to the outside of the impeller 14 to perform a blowing action.
【0005】これを、翼12のU−U断面でみれば、空
気の流れは図6のように流れている。図中のBは、翼1
2に流入して来る空気の流れの向きを表すが、翼12の
設計はこのような流入角Bのときに、流体騒音の原因の
一つである剥離を最も生じにくいように設計される。When this is seen in the U-U cross section of the blade 12, the air flow is as shown in FIG. B in the figure is a wing 1.
2 shows the direction of the flow of air flowing in 2, the blade 12 is designed so that at such an inflow angle B, separation, which is one of the causes of fluid noise, is most unlikely to occur.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記の
ような構成では、以下のような課題が生じる。実際の送
風機における空気の流れでは、空気の流入角度は、図6
のB′のように変動しており、常に設計通りB方向に流
入してはいない。したがって、平均的な空気の流れの向
きBを想定して設計された翼12では、B′方向の角度
の流入に対してはEのような大きい剥離が一時的に生
じ、流体騒音を発生する。このような騒音を生じる剥離
は、翼12の設計の最適化によっても、従来例のような
均肉薄板翼では防止できないという課題を有している。However, the above-mentioned configuration has the following problems. In the actual air flow in the blower, the air inflow angle is as shown in FIG.
B ', and does not always flow in the B direction as designed. Therefore, in the blade 12 designed assuming the average air flow direction B, a large separation such as E temporarily occurs for inflow at an angle in the B'direction, and fluid noise is generated. . There is a problem that such separation that causes noise cannot be prevented even with the optimization of the design of the blade 12 with the uniform thin blade as in the conventional example.
【0007】本発明は、このような従来の課題を解決し
ようとするもので、空気の流れの変動があっても、それ
による剥離を生じにくい翼断面形状を提供し、それによ
って軸流送風機の羽根車の大幅な低騒音化をはかること
を目的とする。The present invention is intended to solve such a conventional problem, and provides a blade cross-sectional shape that is less likely to cause separation due to fluctuations in the flow of air, thereby providing an axial blower. The purpose is to significantly reduce the noise of the impeller.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
に、本発明の軸流送風機の羽根車は、羽根車を構成する
複数枚の翼の断面形状を厚翼状とし、羽根車の外径を
D,ハブ径をdとしたときに、半径R=((D2 +d
2 ))0.5 /2の部分の翼断面における翼最大翼厚L
を、同翼断面の翼弦長Cの5〜25%にした構成とす
る。In order to solve the above-mentioned problems, an impeller of an axial blower according to the present invention has a plurality of blades forming an impeller having a thick blade-shaped cross section and an outer diameter of the impeller. Is D and the hub diameter is d, the radius R = ((D 2 + d
2 )) Maximum blade thickness L in the blade section of 0.5 / 2 part
Is 5 to 25% of the chord length C of the same blade cross section.
【0009】[0009]
【作用】この構成のように、翼の断面形状を羽根車の外
径をD,ハブ径をdとしたときに、半径R=((D2 +
d2 ))0.5 /2の部分の翼断面における最大翼厚位置
Lが、同翼断面の翼弦長Cの5〜25%であるような厚
翼状としたことで、実際の送風機におけるような空気の
流れの変動があって、ある時点での空気の流入角度が図
6で示すB′方向で流入しても、Eのような大きい剥離
を生じにくく、流体騒音の低減効果が得られることとな
る。When the blade cross-sectional shape is D and the hub diameter is D, and the hub diameter is d, the radius R = ((D 2 +
d 2 )) The maximum blade thickness position L in the blade cross section of 0.5 / 2 is 5 to 25% of the chord length C of the blade cross section, so that the blade thickness is the same as in an actual blower. Even if the inflow angle of the air at a certain point inflows in the B ′ direction shown in FIG. 6 due to fluctuations in the airflow, a large separation like E is unlikely to occur, and a fluid noise reduction effect can be obtained. Becomes
【0010】[0010]
【実施例】以下、本発明の一実施例について図面を参考
に説明する。なお、従来例と同一部分については、重複
を避けるため、説明を省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. The description of the same parts as in the conventional example is omitted to avoid duplication.
【0011】まず、図1〜図3は、本発明の一実施例に
おける軸流送風機の羽根車の構造を示したものである。
図中の5は軸流送風機の羽根車であり、ハブ2、複数の
翼3を有している。前記翼3において、3aは前縁、3
bが後縁である。また、一点鎖線Y−Yは、半径R=
((D2 +d2 ))0.5 /2の円弧を示している。図中
の4は翼3の外線、6はオリフィスである。First, FIGS. 1 to 3 show the structure of an impeller of an axial blower according to an embodiment of the present invention.
Reference numeral 5 in the figure denotes an impeller of an axial blower, which has a hub 2 and a plurality of blades 3. In the wing 3, 3a is a leading edge, 3
b is the trailing edge. Further, the one-dot chain line Y-Y has a radius R =
An arc of ((D 2 + d 2 )) 0.5 / 2 is shown. In the figure, 4 is an outer line of the blade 3, and 6 is an orifice.
【0012】図3はこの半径Rにおける翼断面形状を示
したものである。同断面図中で、本実施例の羽根車5の
翼3の断面は厚翼状の形状をしている。また同断面図中
で、本実施例の羽根車5の翼3の断面の最大翼厚位置L
は、同翼3の断面の翼弦長Cの5〜25%である。FIG. 3 shows a blade cross-sectional shape at this radius R. In the same sectional view, the blade 3 of the impeller 5 of the present embodiment has a thick blade-shaped cross section. Further, in the same sectional view, the maximum blade thickness position L of the section of the blade 3 of the impeller 5 of this embodiment
Is 5 to 25% of the chord length C of the cross section of the blade 3.
【0013】以上のように構成された軸流送風機の羽根
車5について、以下、その動作を説明する。羽根車5
が、オリフィス6内で所定の回転方向Aに回転すると、
空気が羽根車5内に流入し、翼3の作用で静圧と動圧が
付加されて羽根車5外に吐出されて送風作用を成す。The operation of the impeller 5 of the axial blower configured as above will be described below. Impeller 5
When rotating in the predetermined rotation direction A within the orifice 6,
Air flows into the impeller 5, static pressure and dynamic pressure are added by the action of the blades 3, and the air is discharged to the outside of the impeller 5 to perform a blowing action.
【0014】これを、翼3のY−Y断面でみれば、空気
の流れは図3のように流れている。Bは、翼3に流入し
て来る空気の流れの向きを表すが、翼3の設計はこのよ
うな流入角Bのときに、流体騒音の原因の一つである剥
離を最も生じにくいように設計される。When this is seen in the YY cross section of the blade 3, the air flow is as shown in FIG. B represents the direction of the flow of the air flowing into the blade 3, but the design of the blade 3 is such that at such an inflow angle B, separation, which is one of the causes of fluid noise, is most unlikely to occur. Designed.
【0015】しかし、実際の送風機における空気の流れ
では、空気の流入角度は、図3のB′のように変動して
おり、常に設計通りB方向に流入してはいない。ところ
が、前縁部3aに丸みを帯び適度な最大肉厚位置を有す
る本実施例による翼3では、B′方向の角度の空気の流
入に対しても、薄翼のような大きい剥離を生ずることが
なく、したがって、流体騒音を低く抑えられる。However, in the actual air flow in the blower, the inflow angle of air fluctuates as shown by B'in FIG. 3, and it does not always flow in the B direction as designed. However, in the blade 3 according to the present embodiment, which has a rounded front edge portion 3a and an appropriate maximum wall thickness position, a large separation like a thin blade occurs even when the air flows in at an angle in the B'direction. Therefore, the fluid noise can be suppressed to a low level.
【0016】なお、翼3の半径Rにおける翼断面図中の
最大翼厚位置Lにより、上記の効果は影響される。すな
わち、外径φ300mmの軸流送風機による実験結果で
は、最大翼厚位置Lが5〜25%のときが、Lが25%
以上の時より騒音が約1dB低い。すなわち本実施例の
羽根車の翼断面の最大翼厚位置Lは、同翼断面の翼弦長
Cの5〜25%にすることで、最も低騒音の翼型を提供
するものである。The above-mentioned effect is affected by the maximum blade thickness position L in the blade sectional view at the radius R of the blade 3. That is, in the experimental result by the axial blower having the outer diameter of 300 mm, L is 25% when the maximum blade thickness position L is 5 to 25%.
The noise is about 1 dB lower than the above. That is, the maximum blade thickness position L of the blade cross section of the impeller of the present embodiment is set to 5 to 25% of the chord length C of the blade cross section to provide the lowest noise airfoil.
【0017】[0017]
【発明の効果】以上の実施例の説明より明らかなよう
に、本発明の軸流送風機の羽根車は、羽根車を構成する
複数枚の翼の断面形状を厚翼状とし、羽根車の外径を
D,ハブ径をdとしたときに、半径R=((D2 +d
2 ))0.5 /2の部分の翼断面における最大翼厚位置L
を、同翼断面の翼弦長Cの5〜25%にしたために、実
機搭載時の空気の流れの変動に対しても、大きな剥離を
起こさず、流体騒音の低減をより効果的に図れるもので
ある。As is apparent from the above description of the embodiments, in the impeller of the axial flow fan of the present invention, a plurality of blades forming the impeller have a thick blade-shaped cross section, and the outer diameter of the impeller is Is D and the hub diameter is d, the radius R = ((D 2 + d
2 )) Maximum blade thickness position L in the blade section of 0.5 / 2 part
Is set to 5 to 25% of the chord length C of the same blade cross section, so that large separation does not occur even with fluctuations in the air flow when mounted on an actual machine, and fluid noise can be reduced more effectively. Is.
【図1】本発明の一実施例の軸流送風機の羽根車の平面
図FIG. 1 is a plan view of an impeller of an axial blower according to an embodiment of the present invention.
【図2】同軸流送風機の羽根車の断面図FIG. 2 is a sectional view of an impeller of a coaxial blower.
【図3】図1のY−Y断面図FIG. 3 is a sectional view taken along line YY of FIG.
【図4】従来の軸流送風機の羽根車の平面図FIG. 4 is a plan view of a conventional impeller of an axial blower.
【図5】同軸流送風機の羽根車の断面図FIG. 5 is a cross-sectional view of an impeller of a coaxial blower.
【図6】図4のU−U断面図6 is a cross-sectional view taken along the line UU of FIG.
2 ハブ 3 翼 3a 前縁 3b 後縁 4 外縁 5 羽根車 6 オリフィス C 弦長 L 最大翼厚位置 2 hub 3 blade 3a leading edge 3b trailing edge 4 outer edge 5 impeller 6 orifice C chord length L maximum blade thickness position
Claims (1)
を厚翼状とし、羽根車の外径をD,ハブ径をdとしたと
きに、半径R=((D2 +d2 ))0.5 /2の部分の翼
断面における最大翼厚位置が、同翼断面の翼弦長Cの5
〜25%である軸流送風機の羽根車。1. A radius R = ((D 2 + d 2 )), where the cross-sectional shape of a plurality of blades forming an impeller is a thick blade shape, and the outer diameter of the impeller is D and the hub diameter is d. The maximum blade thickness position in the blade section of 0.5 / 2 is 5 of the chord length C of the blade section.
An impeller of an axial blower that is ~ 25%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5040872A JPH06249195A (en) | 1993-03-02 | 1993-03-02 | Impeller of axial blower |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5040872A JPH06249195A (en) | 1993-03-02 | 1993-03-02 | Impeller of axial blower |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06249195A true JPH06249195A (en) | 1994-09-06 |
Family
ID=12592609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5040872A Pending JPH06249195A (en) | 1993-03-02 | 1993-03-02 | Impeller of axial blower |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06249195A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998021482A1 (en) * | 1996-11-12 | 1998-05-22 | Daikin Industries, Ltd. | Axial fan |
WO1999035404A1 (en) * | 1998-01-08 | 1999-07-15 | Matsushita Electric Industrial Co., Ltd. | Air supplying device |
JP2002520993A (en) * | 1998-07-20 | 2002-07-09 | エヌエムビー(ユーエスエイ)・インコーポレイテッド | Axial fan |
US6554574B1 (en) * | 1998-03-23 | 2003-04-29 | Spal S.R.L. | Axial flow fan |
US6558123B1 (en) * | 1998-03-23 | 2003-05-06 | Spal S.R.L. | Axial flow fan |
-
1993
- 1993-03-02 JP JP5040872A patent/JPH06249195A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998021482A1 (en) * | 1996-11-12 | 1998-05-22 | Daikin Industries, Ltd. | Axial fan |
AU714395B2 (en) * | 1996-11-12 | 2000-01-06 | Daikin Industries, Ltd. | Axial fan |
CN1093922C (en) * | 1996-11-12 | 2002-11-06 | 大金工业株式会社 | Axial fan |
WO1999035404A1 (en) * | 1998-01-08 | 1999-07-15 | Matsushita Electric Industrial Co., Ltd. | Air supplying device |
US6254342B1 (en) | 1998-01-08 | 2001-07-03 | Matsushita Electric Industrial Co., Ltd. | Air supplying device |
CN1094177C (en) * | 1998-01-08 | 2002-11-13 | 松下电器产业株式会社 | Air supplying device |
US6554574B1 (en) * | 1998-03-23 | 2003-04-29 | Spal S.R.L. | Axial flow fan |
US6558123B1 (en) * | 1998-03-23 | 2003-05-06 | Spal S.R.L. | Axial flow fan |
JP2002520993A (en) * | 1998-07-20 | 2002-07-09 | エヌエムビー(ユーエスエイ)・インコーポレイテッド | Axial fan |
JP2010151137A (en) * | 1998-07-20 | 2010-07-08 | Minebea Co Ltd | Vane for impeller, impeller using the vane, and axial flow fan using impeller |
JP4796691B2 (en) * | 1998-07-20 | 2011-10-19 | ミネベア株式会社 | Axial fan |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1087146B1 (en) | Impeller for fan, fan using the same, and air conditioner using the same | |
JP4035237B2 (en) | Axial blower | |
JP3204208B2 (en) | Mixed-flow blower impeller | |
EP3473860B1 (en) | Impeller and axial blower | |
JPS60145497A (en) | Centrifugal blower | |
JP2005140081A (en) | Propeller fan and air-conditioner outdoor unit using the same | |
JP2000087898A (en) | Axial flow blower | |
KR20080019521A (en) | Propeller fan | |
JP3461661B2 (en) | Blower | |
JPH06249195A (en) | Impeller of axial blower | |
JPH08240197A (en) | Axial-flow fan | |
JP3803184B2 (en) | Axial fan | |
JPWO2019035153A1 (en) | Impeller, blower, and air conditioner | |
JPH09195988A (en) | Multiblade blower | |
JPH0882299A (en) | Multiple-blade blower | |
JP2000018194A (en) | Impeller for blower | |
JPH05149297A (en) | Centrifugal fan | |
JPH10311296A (en) | Blower | |
JPH10197014A (en) | Outdoor machine of air conditioner | |
JPH06249196A (en) | Impeller of axial blower | |
JP2005133683A (en) | Blower impeller | |
JP2005016457A (en) | Blower and heat exchange unit equipped with blower | |
JP2007162521A (en) | Mixed flow blower impeller and air conditioner | |
JPH05149295A (en) | Fan of axial flow fan motor | |
JPH05133398A (en) | Blower |