JPH06177133A - Multilayer semiconductor integrated circuit - Google Patents
Multilayer semiconductor integrated circuitInfo
- Publication number
- JPH06177133A JPH06177133A JP32302392A JP32302392A JPH06177133A JP H06177133 A JPH06177133 A JP H06177133A JP 32302392 A JP32302392 A JP 32302392A JP 32302392 A JP32302392 A JP 32302392A JP H06177133 A JPH06177133 A JP H06177133A
- Authority
- JP
- Japan
- Prior art keywords
- lsi
- integrated circuit
- semiconductor integrated
- insulating film
- laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は積層型半導体集積回路に
係り、より詳細には回路素子が形成された大規模半導体
集積回路(以下、LSIと略す)が多層積層された積層
型LSIに係る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated semiconductor integrated circuit, and more particularly to a laminated LSI in which large-scale semiconductor integrated circuits (hereinafter abbreviated as LSI) having circuit elements are laminated in multiple layers. .
【0002】[0002]
【従来の技術】近年、LSIの集積度は3年間に4倍の
割合で増加しており、西暦2000年のDRAMではデ
ザインルールが約0.15μmで、集積度が1Gになっ
ていると予想される。ところが、これら高集積回路は設
計、製造、検査のすべての面で技術的困難を招いてい
る。例えば、ROM、RAM、ALU、CPU、I/O
コントローラ等を含めた1チップマイクロコンピュータ
では、1チップの集積素子数が増大するにつれ、設計に
要する時間が長くなり、製造歩留りも低下し、検査時間
が長くなり、かつ完全な検査が困難となっている。2. Description of the Related Art In recent years, the degree of integration of LSIs has been increasing four times in three years, and it is expected that the design rule of DRAM in the year 2000 will be about 0.15 μm and the degree of integration will be 1G. To be done. However, these highly integrated circuits pose technical difficulties in all aspects of design, manufacturing, and inspection. For example, ROM, RAM, ALU, CPU, I / O
With a one-chip microcomputer including a controller, as the number of integrated elements on one chip increases, the time required for designing increases, the manufacturing yield decreases, the inspection time increases, and complete inspection becomes difficult. ing.
【0003】そこで、平面的な微細化ではなくチップや
ウエハを立体的に接着・積層化する研究開発が活発に進
められている。例えば、工業的に使用されている半導体
基板の多くは500μmないしは600μm程度の厚さ
を有しており、その表面を利用して作成されるトランジ
スタは数μm程度の厚さであることから、積層化する半
導体基板を薄層化し、薄層化された半導体基板を積層化
させることによってLSIの小型化を図っている。Therefore, research and development for three-dimensionally bonding and laminating chips and wafers, rather than planar miniaturization, are being actively pursued. For example, most of semiconductor substrates used industrially have a thickness of about 500 μm to 600 μm, and a transistor formed by using the surface thereof has a thickness of about several μm. The miniaturization of an LSI is attempted by thinning a semiconductor substrate to be thinned and stacking the thinned semiconductor substrates.
【0004】従来、一般に行われているLSIの積層化
工程を示す概略的平面図及び概略的断面図を図4(a)
〜(h)に示す。図4(a′)及び図4(e′)は半導
体ウエハ基板に、熱酸化、イオン注入などの工程を経
て、トランジスタ回路が作製された半導体基板202及
び半導体基板201を示す平面図であり、図4(a)及
び図4(e)は半導体基板202及び半導体基板201
を示す断面図である。FIG. 4 (a) is a schematic plan view and a schematic cross-sectional view showing a conventional LSI stacking process.
~ (H). FIGS. 4 (a ') and 4 (e') are plan views showing a semiconductor substrate 202 and a semiconductor substrate 201 on which a transistor circuit is produced through steps such as thermal oxidation and ion implantation on a semiconductor wafer substrate. 4A and 4E show a semiconductor substrate 202 and a semiconductor substrate 201.
FIG.
【0005】これら半導体基板201及び半導体基板2
02は、その後、積層化工程へと進められるが、この積
層化工程は大きく分けて以下の3工程からなる。These semiconductor substrate 201 and semiconductor substrate 2
No. 02 is then advanced to the laminating step, which is roughly divided into the following three steps.
【0006】第1の工程は、被積層LSIチップの作製
工程であり、図4(a)から図4(e)に示す。まず、
LSIが形成された半導体基板202の表面側に、LS
Iチップを保持するための支持基板205を樹脂等の接
着剤を用いて接着する(図4(b))。このときの、支
持基板205を搭載した状態の半導体基板202の拡大
断面図を図5に示す。図5に示すように、半導体基板2
02上にゲート絶縁膜307に囲まれたゲート電極30
5が形成され、ゲート電極305が形成されていない半
導体基板202上に絶縁層302が形成され、この絶縁
層302上に絶縁膜303が形成される。ゲート絶縁膜
307と絶縁膜303との間にはLSI配線301が形
成され、絶縁膜303の所定箇所には上下のLSIを結
ぶためのスルーホール300が、化学的エッチングまた
は反応性イオンエッチング等の方法により形成される。
その後、これらスルーホール300、絶縁膜303、L
SI配線301及びゲート絶縁膜307上にCVD法等
によって絶縁膜304が形成され、さらに、接着剤30
6がウエハ表面に塗布され、支持基板205が半導体基
板202上に接着される。The first step is a step of manufacturing a laminated LSI chip and is shown in FIGS. 4 (a) to 4 (e). First,
The LS is formed on the front surface side of the semiconductor substrate 202 on which the LSI is formed.
The supporting substrate 205 for holding the I-chip is adhered using an adhesive such as a resin (FIG. 4B). FIG. 5 shows an enlarged cross-sectional view of the semiconductor substrate 202 on which the support substrate 205 is mounted at this time. As shown in FIG. 5, the semiconductor substrate 2
02, the gate electrode 30 surrounded by the gate insulating film 307
5, the insulating layer 302 is formed on the semiconductor substrate 202 on which the gate electrode 305 is not formed, and the insulating film 303 is formed on the insulating layer 302. An LSI wiring 301 is formed between the gate insulating film 307 and the insulating film 303, and a through hole 300 for connecting the upper and lower LSIs is formed at a predetermined position of the insulating film 303 by chemical etching or reactive ion etching. Formed by the method.
After that, these through holes 300, insulating film 303, L
An insulating film 304 is formed on the SI wiring 301 and the gate insulating film 307 by a CVD method or the like.
6 is applied to the surface of the wafer, and the supporting substrate 205 is bonded onto the semiconductor substrate 202.
【0007】次は、積層化後の上下のLSI間での信号
の授受をスムーズに行うために半導体基板202の裏面
を研磨し、半導体基板202を充分薄くして、薄層化半
導体基板202aを形成する(図4(c))。このとき
の薄層化半導体基板202aの内部構造の拡大断面図を
図6に示す。図6に示すように、薄層化半導体基板20
2aが図5に示すA−A′ライン、つまり、スルーホー
ル300が貫通したスルーホール300aとなるまで研
磨され、薄層化半導体基板202aが形成される。Next, in order to smoothly transfer signals between the upper and lower LSIs after stacking, the back surface of the semiconductor substrate 202 is polished to make the semiconductor substrate 202 sufficiently thin to form the thinned semiconductor substrate 202a. Formed (FIG. 4C). FIG. 6 shows an enlarged cross-sectional view of the internal structure of the thinned semiconductor substrate 202a at this time. As shown in FIG. 6, thinned semiconductor substrate 20
The thinned semiconductor substrate 202a is formed by polishing until 2a becomes the AA 'line shown in FIG. 5, that is, the through hole 300a penetrating the through hole 300.
【0008】さらに、この薄層化半導体基板202aと
支持基板205を、先に示したスクライブライン204
に沿って切断し、被積層LSIチップ206の作成を完
了する(図4(d))。Further, the thinned semiconductor substrate 202a and the supporting substrate 205 are connected to each other by the scribe line 204 described above.
Along the line to complete the fabrication of the stacked LSI chip 206 (FIG. 4D).
【0009】次に、被積層LSIチップの接着工程であ
り、図4(f)と図4(g)に示す。まず、図4(e)
および図4(e′)で示した半導体基板201の表面に
作製されたLSIチップ部分に、第1の工程で作製され
た支持基板205が搭載された被積層LSIチップ20
6を位置合わせして、接着剤等によって接着する(図4
(f))。その後、被積層LSIチップ206の支持基
板205を、熱溶解等の化学的手段で接着剤306を溶
かすことにより除去し、上部LSIチップ208を半導
体基板201上に残す(図4(g))。Next, the step of adhering the laminated LSI chips is shown in FIGS. 4 (f) and 4 (g). First, FIG. 4 (e)
And the laminated LSI chip 20 in which the supporting substrate 205 manufactured in the first step is mounted on the LSI chip portion manufactured on the surface of the semiconductor substrate 201 shown in FIG.
6 are aligned and bonded with an adhesive or the like (see FIG. 4).
(F)). Then, the supporting substrate 205 of the stacked LSI chip 206 is removed by melting the adhesive 306 by a chemical means such as heat melting, and the upper LSI chip 208 is left on the semiconductor substrate 201 (FIG. 4G).
【0010】第2の工程は、必要な回数だけ繰り返すこ
とによって、LSIの積層数を選択することができる工
程で、図7には図4(g)に示すような半導体基板20
2を、例えば1枚積層したときの内部構造の拡大断面図
を示す。半導体基板201上にゲート絶縁膜307で囲
まれたゲート電極305が形成され、ゲート電極305
が形成されていない半導体基板201上に絶縁層302
が形成され、絶縁層302上には絶縁膜303が形成さ
れ、絶縁膜303とゲート酸化膜307との間にはLS
I配線500が形成される。絶縁膜303、ゲート酸化
膜307、LSI配線500上に接着剤501が塗布さ
れて、上部LSIチップ208が搭載される。The second step is a step in which the number of stacked LSIs can be selected by repeating the required number of times. In FIG. 7, the semiconductor substrate 20 as shown in FIG.
2 shows an enlarged cross-sectional view of the internal structure when two of the two are stacked, for example. A gate electrode 305 surrounded by a gate insulating film 307 is formed on the semiconductor substrate 201.
On the semiconductor substrate 201 on which the insulating layer 302 is not formed
Is formed, an insulating film 303 is formed on the insulating layer 302, and the LS is formed between the insulating film 303 and the gate oxide film 307.
The I wiring 500 is formed. An adhesive 501 is applied on the insulating film 303, the gate oxide film 307, and the LSI wiring 500 to mount the upper LSI chip 208.
【0011】上部LSIチップ208にも、ゲート絶縁
膜307で囲まれたゲート電極305が形成され、ゲー
ト電極305が形成されていない半導体基板201上に
絶縁層302が形成され、絶縁層302上には絶縁膜3
03が形成され、絶縁膜303とゲート酸化膜307と
の間にLSI配線301が形成される。上部LSIチッ
プ208には、所定の箇所にスルーホール300が形成
され、このスルーホール300を通じて、スルーホール
300下方の接着剤501が、化学的エッチングや反応
性イオンエッチングなどの手法を用いて除去され、半導
体基板201のLSI配線500の表面が露出する。上
部LSIチップ208の絶縁膜303、LSI配線30
1、ゲート絶縁膜307上及びスルーホール300側壁
表面には絶縁膜304が形成される。A gate electrode 305 surrounded by a gate insulating film 307 is also formed on the upper LSI chip 208, an insulating layer 302 is formed on the semiconductor substrate 201 on which the gate electrode 305 is not formed, and on the insulating layer 302. Is an insulating film 3
03 is formed, and the LSI wiring 301 is formed between the insulating film 303 and the gate oxide film 307. Through holes 300 are formed at predetermined locations in the upper LSI chip 208, and the adhesive 501 under the through holes 300 is removed through the through holes 300 by using a method such as chemical etching or reactive ion etching. The surface of the LSI wiring 500 of the semiconductor substrate 201 is exposed. Insulating film 303 of upper LSI chip 208, LSI wiring 30
1. An insulating film 304 is formed on the gate insulating film 307 and on the sidewall surface of the through hole 300.
【0012】図8は、図7で示したLSIチップ208
とLSI配線500とを電気的に接続するために、スル
ーホール300内にスルーホール電極600が形成され
た状態を示す断面図であり、蒸着やメッキなどの手法を
用いてスルーホール電極600を形成する。FIG. 8 shows the LSI chip 208 shown in FIG.
6 is a cross-sectional view showing a state in which a through-hole electrode 600 is formed in the through-hole 300 in order to electrically connect it to the LSI wiring 500, and the through-hole electrode 600 is formed using a technique such as vapor deposition or plating. To do.
【0013】最後の第3の工程は、積層化完了後のLS
Iをチップ状に切断する工程であり、図4(h)に示
す。第2の工程で、所望の枚数のLSIチップ208を
半導体基板201に積層化した後、図4(e′)に示し
たスクライブライン203に沿って積層化LSIチップ
に切断する。この後、積層化LSIチップ209は、一
般に後半工程と呼称される組み立て工程を経て製品とな
る。The third and final step is the LS after the lamination is completed.
This is a step of cutting I into chips, which is shown in FIG. In the second step, after laminating a desired number of LSI chips 208 on the semiconductor substrate 201, the LSI chips 208 are cut into laminated LSI chips along the scribe line 203 shown in FIG. After that, the laminated LSI chip 209 becomes a product through an assembly process generally called a latter half process.
【0014】[0014]
【発明が解決しようとする課題】しかしながら、上記の
積層型LSIにおいては、複数枚の上部LSIチップ2
08が積層されるため、従来からの2次元的LSIと比
べて、発生した熱を放熱し難く、回路素子が発生した熱
により誤動作あるいは動作不良を起こすといった問題が
あった。However, in the above laminated LSI, a plurality of upper LSI chips 2 are used.
Since the 08s are stacked, there is a problem that it is difficult to dissipate the generated heat as compared with the conventional two-dimensional LSI, and malfunction or malfunction occurs due to the heat generated by the circuit element.
【0015】そこで、本発明は上記問題点に鑑みなされ
たものであり、放熱性が良好で、熱による素子の誤動作
あるいは動作不良を生じさせない積層型LSIを提供す
ることを目的とする。Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a laminated LSI which has good heat dissipation and does not cause malfunction or malfunction of the element due to heat.
【0016】[0016]
【課題を解決するための手段】上記目的を達成するため
に、本発明に係る積層型半導体集積回路は、複数個の半
導体集積回路が接着手段により積層されて立体化された
積層型半導体集積回路において、各半導体集積回路を構
成する半導体集積回路配線の一部あるいは全部が、絶縁
膜で被覆されていないことを特徴とし、また、上記積層
型半導体集積回路において、半導体集積回路配線が凹凸
形状を有することを特徴とし、また、上記積層型半導体
集積回路において、半導体集積回路配線がトンネル部を
有することを特徴とする。In order to achieve the above object, a laminated semiconductor integrated circuit according to the present invention is a laminated semiconductor integrated circuit in which a plurality of semiconductor integrated circuits are laminated by an adhesive means to form a three-dimensional structure. In the above, the semiconductor integrated circuit wiring which constitutes each semiconductor integrated circuit is characterized in that a part or all of the semiconductor integrated circuit wiring is not covered with an insulating film. In addition, the stacked semiconductor integrated circuit is characterized in that the semiconductor integrated circuit wiring has a tunnel portion.
【0017】[0017]
【作用】上記の積層型半導体集積回路、更に詳しくは積
層型の大規模半導体集積回路(LSI)によれば、積層
された各LSIを構成するLSI配線の一部あるいは全
部が絶縁膜で被覆されていないので、積層型LSI中の
LSIにおいて発生する熱が前記LSI配線を伝わって
放熱され、放熱特性が向上することとなる。According to the stacked semiconductor integrated circuit, more specifically, the stacked large-scale semiconductor integrated circuit (LSI), some or all of the LSI wirings constituting each stacked LSI are covered with the insulating film. Therefore, the heat generated in the LSI in the stacked type LSI is radiated through the LSI wiring and the heat radiation characteristics are improved.
【0018】また、上記LSI配線が凹凸形状を有する
場合、外気と接触する面積が大きくなり、さらに放熱特
性が向上することとなる。Further, when the LSI wiring has an uneven shape, the area in contact with the outside air is increased, and the heat dissipation characteristics are further improved.
【0019】また、上記LSI配線がトンネル部を有す
る場合、外気と接触する面積がさらに大きくなり、より
一層放熱特性が向上することとなる。In addition, when the LSI wiring has a tunnel portion, the area in contact with the outside air is further increased, and the heat dissipation characteristics are further improved.
【0020】[0020]
【実施例】以下、本発明に係る積層型LSIの実施例
を、図面に基づいて説明する。なお、従来例と同一の機
能を有する構成部品には、同一の符号を付す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of a laminated LSI according to the present invention will be described below with reference to the drawings. The components having the same functions as those of the conventional example are designated by the same reference numerals.
【0021】図1は、実施例に係る積層型LSIを示す
模式的拡大断面図であり、LSIチップを2層に積層し
たときのものである。図中210は、下部LSIチップ
を示し、下部LSIチップ210は以下のように構成さ
れる。半導体基板201上にゲート絶縁膜307で囲ま
れたゲート電極305が形成され、ゲート電極305が
形成されていない半導体基板201上に絶縁層302が
形成され、絶縁層302上には絶縁膜303が形成さ
れ、絶縁膜303とゲート絶縁膜307との間にLSI
配線500が形成される。また、LSI配線500の形
成方法としてはメタル蒸着法、あるいはスパッタ法等が
用いられ、複合膜を形成する場合には、さらにメッキ法
などを用いればよい。FIG. 1 is a schematic enlarged cross-sectional view showing a laminated LSI according to the embodiment, in which LSI chips are laminated in two layers. Reference numeral 210 in the drawing denotes a lower LSI chip, and the lower LSI chip 210 is configured as follows. A gate electrode 305 surrounded by a gate insulating film 307 is formed over the semiconductor substrate 201, an insulating layer 302 is formed over the semiconductor substrate 201 where the gate electrode 305 is not formed, and an insulating film 303 is formed over the insulating layer 302. LSI is formed between the insulating film 303 and the gate insulating film 307.
The wiring 500 is formed. Further, a metal vapor deposition method, a sputtering method, or the like is used as a method for forming the LSI wiring 500, and a plating method or the like may be further used when forming a composite film.
【0022】また、図中208は上部LSIチップを示
し、上部LSIチップ208は以下のように構成され
る。積層化半導体基板202a上にゲート絶縁膜307
に囲まれたゲート電極305が形成され、ゲート電極3
05が形成されていない積層化半導体基板202a上に
絶縁層302が形成され、この絶縁層302上に絶縁膜
303が形成される。ゲート絶縁膜307と絶縁膜30
3との間には、LSI配線301が形成され、絶縁膜3
03の所定箇所に上下のLSIを結ぶスルーホールが化
学的エッチングまたは反応性イオンエッチング等の方法
によって形成される。In the figure, reference numeral 208 indicates an upper LSI chip, and the upper LSI chip 208 is constructed as follows. A gate insulating film 307 is formed on the stacked semiconductor substrate 202a.
The gate electrode 305 surrounded by the
The insulating layer 302 is formed on the laminated semiconductor substrate 202a on which 05 is not formed, and the insulating film 303 is formed on the insulating layer 302. Gate insulating film 307 and insulating film 30
3, an LSI wiring 301 is formed between
Through holes connecting the upper and lower LSIs are formed at predetermined locations 03 by a method such as chemical etching or reactive ion etching.
【0023】その後、研磨工程により貫通したスルーホ
ール300aの側壁、LSI配線301およびゲート絶
縁膜307上にCVD法等によって素子保護用の絶縁膜
304が形成される。そして、上部LSIチップ208
は接着剤501を塗布された下部LSIチップ210上
に接着され、積層型LSI100が形成される。貫通し
たスルーホール300a内にスルーホール電極600が
形成される。After that, an insulating film 304 for protecting the device is formed on the side wall of the through hole 300a, the LSI wiring 301 and the gate insulating film 307 which have been penetrated by the polishing process by the CVD method or the like. Then, the upper LSI chip 208
Is adhered onto the lower LSI chip 210 coated with the adhesive 501 to form the laminated LSI 100. A through hole electrode 600 is formed in the through hole 300a that penetrates.
【0024】上記のように構成された積層型LSI10
0においては、LSIチップ210に生じた熱をLSI
配線500から効果的に外気に放出することができる。
従って、放熱特性が向上し素子の誤動作および動作不良
を防ぐことが可能となる。Stacked type LSI 10 constructed as described above
At 0, the heat generated in the LSI chip 210 is transferred to the LSI
The air can be effectively released from the wiring 500 to the outside air.
Therefore, the heat dissipation characteristics are improved, and it becomes possible to prevent malfunction and malfunction of the element.
【0025】図2は、本発明に係る積層型LSIの第2
の実施例を示す模式的拡大断面図である。図中208は
上部LSIチップを示し、上部LSIチップ208は上
記した実施例の場合と同様の構成をなし、この部分の詳
細な説明をここでは省略する。図中201は半導体基板
を示し、半導体基板201上にゲート電極305を囲ん
だゲート絶縁膜307が形成され、ゲート絶縁膜307
が形成されていない半導体基板201上に絶縁層302
が形成され、絶縁膜302上に絶縁膜303が形成さ
れ、絶縁膜303とゲート絶縁膜307との間にはLS
I配線502が形成される。下部LSIチップ210の
上部LSIチップ208を搭載する箇所には接着剤50
1が塗布され、下部LSIチップ210と上部LSIチ
ップ208とが接着される。また、上部LSIチップ2
08が搭載される箇所のLSI配線502表面は平面状
に形成されるが、上部LSIチップ208で覆われず外
気に触れるLSI配線502表面には多数の凸部502
aが形成される。LSI配線502の形成には選択メッ
キ法などが用いられている。FIG. 2 shows a second laminated LSI according to the present invention.
3 is a schematic enlarged cross-sectional view showing the embodiment of FIG. In the figure, reference numeral 208 denotes an upper LSI chip, and the upper LSI chip 208 has the same configuration as that of the above-described embodiment, and a detailed description of this portion will be omitted here. Reference numeral 201 in the figure denotes a semiconductor substrate, and a gate insulating film 307 surrounding the gate electrode 305 is formed on the semiconductor substrate 201.
On the semiconductor substrate 201 on which the insulating layer 302 is not formed
Is formed, an insulating film 303 is formed on the insulating film 302, and LS is provided between the insulating film 303 and the gate insulating film 307.
The I wiring 502 is formed. Adhesive 50 is applied to the lower LSI chip 210 where the upper LSI chip 208 is mounted.
1 is applied and the lower LSI chip 210 and the upper LSI chip 208 are bonded. Also, the upper LSI chip 2
Although the surface of the LSI wiring 502 where the 08 is mounted is formed in a flat shape, a large number of convex portions 502 are formed on the surface of the LSI wiring 502 which is not covered with the upper LSI chip 208 and is exposed to the outside air.
a is formed. A selective plating method or the like is used for forming the LSI wiring 502.
【0026】このように構成された積層型LSI101
にあっては、外気に触れるLSI配線502表面に多数
の凸部502aが形成されるので、外気と接する面積を
増大させることができる。従って、下部LSIチップ2
10に生じた熱の放熱特性をより向上させることがで
き、発生した熱による素子の誤動作または動作不良を防
ぐことができる。Stacked type LSI 101 configured as described above
In this case, since many protrusions 502a are formed on the surface of the LSI wiring 502 which is exposed to the outside air, the area in contact with the outside air can be increased. Therefore, the lower LSI chip 2
It is possible to further improve the heat dissipation characteristics of the heat generated in the device 10, and prevent malfunction or malfunction of the element due to the generated heat.
【0027】図3は、本発明に係る積層型LSIの第3
の実施例を示す模式的拡大断面図である。図中208は
上部LSIチップを示し、上部LSIチップ208は上
記した実施例の場合と同様の構成をなし、この部分の詳
細な説明をここでは省略する。図中201は半導体基板
を示し、半導体基板201上にゲート電極305を囲ん
だゲート絶縁膜307が形成され、ゲート絶縁膜307
が形成されていない下部半導体基板201上に絶縁層3
02が形成され、絶縁層302上に絶縁膜303が形成
され、絶縁膜303とゲート絶縁膜307との間にはL
SI配線503が形成される。下部LSIチップ210
の上部LSIチップ208を搭載する箇所には接着剤5
01が塗布され、下部LSIチップ210と上部LSI
チップ208とが接着されて積層型LSI102が構成
される。また上部LSI208が搭載される箇所のLS
I配線503表面は平面状に形成されるが、上部LSI
チップ203で覆われず外気に触れるLSI配線503
表面には多数のトンネル部503aが形成される。この
トンネル部503aの内部は外気に接触する空洞になっ
ている。また、このLSI配線503の形成には選択メ
ッキ法が用いられており、エッチング液を用いてエッチ
ングされてトンネル部503aが形成される。FIG. 3 shows a third embodiment of the laminated LSI according to the present invention.
3 is a schematic enlarged cross-sectional view showing the embodiment of FIG. In the figure, reference numeral 208 denotes an upper LSI chip, and the upper LSI chip 208 has the same configuration as that of the above-described embodiment, and a detailed description of this portion will be omitted here. Reference numeral 201 in the figure denotes a semiconductor substrate, and a gate insulating film 307 surrounding the gate electrode 305 is formed on the semiconductor substrate 201.
Is formed on the lower semiconductor substrate 201 on which the insulating layer 3 is not formed.
02 is formed, an insulating film 303 is formed on the insulating layer 302, and L is provided between the insulating film 303 and the gate insulating film 307.
The SI wiring 503 is formed. Lower LSI chip 210
Adhesive 5 is applied to the place where the upper LSI chip 208 of
01 is applied to the lower LSI chip 210 and the upper LSI.
The chip 208 and the chip 208 are bonded together to form the stacked LSI 102. In addition, the LS of the place where the upper LSI 208 is mounted
Although the surface of the I wiring 503 is formed in a flat shape, the upper LSI
LSI wiring 503 that is not covered by the chip 203 and is exposed to the outside air
A large number of tunnel portions 503a are formed on the surface. The inside of this tunnel portion 503a is a cavity that contacts the outside air. A selective plating method is used to form the LSI wiring 503, and the tunnel portion 503a is formed by etching using an etching solution.
【0028】このように構成された積層型LSI102
にあっては、外気に触れるLSI配線503表面に多数
のトンネル部503aが形成されるので、外気と接する
面積を増大させることができる。従って、下部LSIチ
ップ210に生じた熱の放熱特性を一層向上させること
ができ、発生した熱による素子の誤動作または動作不良
を防ぐことができる。The laminated LSI 102 thus configured
In this case, a large number of tunnel portions 503a are formed on the surface of the LSI wiring 503 exposed to the outside air, so that the area in contact with the outside air can be increased. Therefore, it is possible to further improve the heat dissipation characteristic of the heat generated in the lower LSI chip 210, and prevent malfunction or malfunction of the element due to the generated heat.
【0029】なお、上記実施例では、MOS−LSIに
適用した場合を示したが、これに限定されるものではな
く、バイポーラLSIや化合物半導体あるいはLEDな
どの個別半導体に適用してもよい。また、図4では被積
層LSIがチップに切断された後に積層化されている
が、これに限定されるものではなく、ウエハのまま積層
化されてもよい。In the above embodiment, the case of application to a MOS-LSI is shown, but the present invention is not limited to this, and may be applied to a bipolar LSI, a compound semiconductor, or an individual semiconductor such as an LED. Further, in FIG. 4, the LSI to be laminated is laminated after being cut into chips, but the invention is not limited to this, and may be laminated as a wafer.
【0030】また、LSI配線の材料としては電気伝導
性を示す物質であればよいが、大気に接した際に被膜を
形成する物質(アルミニウムなど)であることが望まし
い。The material for the LSI wiring may be any material having electrical conductivity, but it is preferably a material (aluminum or the like) that forms a film when exposed to the atmosphere.
【0031】[0031]
【発明の効果】上記に詳述したように本発明に係る積層
型半導体集積回路において、積層された各半導体集積回
路を構成する半導体集積回路配線の一部あるいは全部が
絶縁膜で被覆されていないので、積層型半導体集積回路
中の各半導体集積回路において発生する熱が前記半導体
集積回路配線を通して効率良く放熱され、放熱特性を向
上させることができる。As described above in detail, in the laminated semiconductor integrated circuit according to the present invention, some or all of the semiconductor integrated circuit wirings constituting each laminated semiconductor integrated circuit are not covered with the insulating film. Therefore, the heat generated in each semiconductor integrated circuit in the stacked semiconductor integrated circuit is efficiently radiated through the semiconductor integrated circuit wiring, and the heat radiation characteristics can be improved.
【0032】また、上記半導体集積回路配線が凹凸形状
を有する場合、外気と接触する面積が大きくなり、さら
に放熱特性を向上させることが可能となる。Further, when the semiconductor integrated circuit wiring has an uneven shape, the area in contact with the outside air becomes large and the heat dissipation characteristics can be further improved.
【0033】また、上記半導体集積回路配線がトンネル
部を有する場合、外気と接触する面積が大きくなり、さ
らに放熱特性を向上させることが可能となる。Further, when the semiconductor integrated circuit wiring has a tunnel portion, the area in contact with the outside air becomes large and the heat dissipation characteristics can be further improved.
【図1】本発明に係る積層型LSIの第1の実施例を模
式的に示す拡大断面図である。FIG. 1 is an enlarged sectional view schematically showing a first embodiment of a laminated LSI according to the present invention.
【図2】本発明に係る積層型LSIの第2の実施例を模
式的に示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing a second embodiment of the laminated LSI according to the present invention.
【図3】本発明に係る積層型LSIの第3の実施例を模
式的に示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view schematically showing a third embodiment of the laminated LSI according to the present invention.
【図4】(a)〜(h)は、一般の積層型LSIの製造
工程を示す平面図及び断面図であり、(a′)及び
(e′)は、半導体基板202及び201を示す平面図
である。4A to 4H are plan views and cross-sectional views showing a manufacturing process of a general laminated LSI, and FIGS. 4A to 4E are plan views showing semiconductor substrates 202 and 201. It is a figure.
【図5】従来例における支持基板を搭載した上部LSI
を示す拡大断面図である。FIG. 5 is an upper LSI on which a supporting substrate according to a conventional example is mounted.
It is an expanded sectional view showing.
【図6】従来例における支持基板を搭載した上部LSI
の裏面研磨後の構造を示す拡大断面図である。FIG. 6 is an upper LSI on which a supporting substrate according to a conventional example is mounted.
FIG. 4 is an enlarged cross-sectional view showing the structure of the back surface after polishing.
【図7】従来例における積層したLSIを示す拡大断面
図である。FIG. 7 is an enlarged cross-sectional view showing a stacked LSI in a conventional example.
【図8】従来例における積層したLSIにスルーホール
電極を形成した後の状態を示す拡大断面図である。FIG. 8 is an enlarged cross-sectional view showing a state after a through-hole electrode is formed on the stacked LSI in the conventional example.
【符号の説明】 100、101、102 積層型LSI 208 上部LSIチップ 210 下部LSIチップ 501 接着剤(接着手段) 502a 凸部(凹凸形状) 503a トンネル部[Explanation of Codes] 100, 101, 102 Stacked LSI 208 Upper LSI Chip 210 Lower LSI Chip 501 Adhesive (Adhesive Means) 502a Convex (Concave and Concave) 503a Tunnel
Claims (3)
り積層されて立体化された積層型半導体集積回路におい
て、 各半導体集積回路を構成する半導体集積回路配線の一部
あるいは全部が絶縁膜で被覆されていないことを特徴と
する積層型半導体集積回路。1. In a laminated semiconductor integrated circuit in which a plurality of semiconductor integrated circuits are laminated by an adhesive means to form a three-dimensional structure, a part or all of the semiconductor integrated circuit wiring forming each semiconductor integrated circuit is covered with an insulating film. A stacked semiconductor integrated circuit characterized by being not formed.
ことを特徴とする請求項1記載の積層型半導体集積回
路。2. The stacked semiconductor integrated circuit according to claim 1, wherein the semiconductor integrated circuit wiring has an uneven shape.
ることを特徴とする請求項1又は請求項2記載の積層型
半導体集積回路。3. The stacked semiconductor integrated circuit according to claim 1, wherein the semiconductor integrated circuit wiring has a tunnel portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32302392A JPH06177133A (en) | 1992-12-02 | 1992-12-02 | Multilayer semiconductor integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32302392A JPH06177133A (en) | 1992-12-02 | 1992-12-02 | Multilayer semiconductor integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06177133A true JPH06177133A (en) | 1994-06-24 |
Family
ID=18150264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32302392A Pending JPH06177133A (en) | 1992-12-02 | 1992-12-02 | Multilayer semiconductor integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06177133A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100510112B1 (en) * | 2000-01-03 | 2005-08-26 | 인터내셔널 비지네스 머신즈 코포레이션 | Multistack 3-dimensional high density semiconductor device and method for fabrication |
US7834440B2 (en) * | 2008-09-29 | 2010-11-16 | Hitachi, Ltd. | Semiconductor device with stacked memory and processor LSIs |
-
1992
- 1992-12-02 JP JP32302392A patent/JPH06177133A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100510112B1 (en) * | 2000-01-03 | 2005-08-26 | 인터내셔널 비지네스 머신즈 코포레이션 | Multistack 3-dimensional high density semiconductor device and method for fabrication |
US7834440B2 (en) * | 2008-09-29 | 2010-11-16 | Hitachi, Ltd. | Semiconductor device with stacked memory and processor LSIs |
US7977781B2 (en) | 2008-09-29 | 2011-07-12 | Hitachi, Ltd. | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5481133A (en) | Three-dimensional multichip package | |
JP2660300B2 (en) | Manufacturing method of integrated circuit chip | |
TW586196B (en) | System on a package fabricated on a semiconductor or dielectric wafer | |
US6166438A (en) | Ultrathin electronics using stacked layers and interconnect vias | |
JP4906994B2 (en) | Method for transferring ultrathin substrate and method for manufacturing multilayer thin film device using the method | |
US6465892B1 (en) | Interconnect structure for stacked semiconductor device | |
JP4441974B2 (en) | Manufacturing method of semiconductor device | |
US7781887B2 (en) | Semiconductor device including an interconnect | |
JPH08213548A (en) | Manufacture of three-dimensional integrated circuit | |
JPS6281745A (en) | Lsi semiconductor device in wafer scale and manufacture thereof | |
US5134539A (en) | Multichip module having integral decoupling capacitor | |
US8476753B2 (en) | Process for enhanced 3D integration and structures generated using the same | |
JPH05198738A (en) | Multichip-package and manufacture thereof | |
US5274270A (en) | Multichip module having SiO2 insulating layer | |
EP1227515A2 (en) | Buried type capacitor for integrated circuits | |
JPH06177133A (en) | Multilayer semiconductor integrated circuit | |
JPH0544829B2 (en) | ||
JPS61287133A (en) | Manufacture of semiconductor device | |
US5214844A (en) | Method of assembling integrated circuits to a silicon board | |
JPH0661418A (en) | Laminated semiconductor integrated circuit | |
JPH08236979A (en) | Hybrid integrated circuit device and its manufacture | |
US5946584A (en) | Method for manufacturing a dielectric isolation substrate | |
JPH0845935A (en) | Forming method of multilayer interconnection | |
US20040125574A1 (en) | Multi-chip semiconductor package and method for manufacturing the same | |
CN217933781U (en) | Wiring layer structure |